Allison, P. D. (2009). Fixed effects regression models. Quantitative Applications in the Social Sciences (160 vol.). SAGE
Allison, P. D., Williams, R., & Moral-Benito, E. (2017). Maximum Likelihood for Cross-lagged Panel Models with Fixed Effects. Socius: Sociological Research for a Dynamic World, 3, 1–17. https://doi.org/10.1177/2378023117710578
Arellano, M., & Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, 58(2), 277. https://doi.org/10.2307/2297968
Article
Google Scholar
Bailey, D. H., Oh, Y., Farkas, G., Morgan, P., & Hillemeier, M. (2020). Reciprocal effects of reading and mathematics? Beyond the cross-lagged panel model. Developmental Psychology, 56(5), 912–921. https://doi.org/10.1037/dev0000902
Article
Google Scholar
Bell, A., & Jones, K. (2015). Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data. Political Science Research and Methods, 3(01), 133–153. https://doi.org/10.1017/psrm.2014.7
Article
Google Scholar
Blossfeld, H. P., & Roßbach, H. G. (Eds.). (2019). Education as a lifelong process: The German National Educational Panel Study (NEPS). Edition ZfE (2nd ed.). Springer VS
Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., Estabrook, R., Bates, T. C., Mehta, P., von Oertzen, T., Gore, R. J., Hunter, M. D., Hackett, D. C., Karch, J., Brandmaier, A. M., Pritikin, J. N., Zahery, M., Kirkpatrick, R. M., Wang, Y., & Niesen, J. (2021). OpenMx: Extended Structural Equation Modelling (2.19.8) [Computer software]. https://CRAN.R-project.org/package=OpenMx
Bollen, K. A. (1989). Structural equations with latent variables. A Wiley-interscience publication. New York: Wiley
Google Scholar
Bollen, K. A., & Brand, J. E. (2011). A General Panel Model with Random and Fixed Effects: A Structural Equations Approach. Social Forces, 89(1), 1–34. https://doi.org/10.1353/sof.2010.0072
Article
Google Scholar
Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models: A synthesis of two traditions. Sociological Methods & Research, 32, 336–383. https://doi.org/10.1177/0049124103260222
Cameron, C. E., Kim, H., Duncan, R. J., Becker, D. R., & McClelland, M. M. (2019). Bidirectional and co-developing associations of cognitive, mathematics, and literacy skills during kindergarten. Journal of Applied Developmental Psychology, 62, 135–144. https://doi.org/10.1016/j.appdev.2019.02.004
Article
Google Scholar
Carroll, J. B. (1993). Human Cognitive Abilities: A Survey of Factor-Analytic Studies. Cambridge University Press
Cattell, R. B. (1987). Intelligence: Its Structure, Growth and Action. Elsevier
Chen, F., & Chalhoub-Deville, M. (2016). Differential and long-term language impact on math. Language Testing, 33(4), 577–605. https://doi.org/10.1177/0265532215594641
Article
Google Scholar
Cirino, P. T., Child, A. E., & Macdonald, K. T. (2018). Longitudinal predictors of the overlap between reading and math skills. Contemporary Educational Psychology, 54, 99–111. https://doi.org/10.1016/j.cedpsych.2018.06.002
Article
Google Scholar
Codding, R. S., Petscher, Y., & Truckenmiller, A. (2015). CBM reading, mathematics, and written expression at the secondary level: Examining latent composite relations among indices and unique predictions with a state achievement test. Journal of Educational Psychology, 107(2), 437–450. https://doi.org/10.1037/a0037520
Article
Google Scholar
Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6(4), 330–351. https://doi.org/10.1037/1082-989x.6.4.330
Article
Google Scholar
Curran, P. J., & Bollen, K. A. (2001). The best of both worlds: Combining autoregressive and latent curve models. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 107–135). American Psychological Association. https://doi.org/10.1037/10409-004
Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82, 879–894. https://doi.org/10.1037/a0035297
Article
Google Scholar
Davis, O., Band, G., Pirinen, M., et al. (2014). The correlation between reading and mathematics ability at age twelve has a substantial genetic component. Nature Communications, 5, 4204. https://doi.org/10.1038/ncomms5204
Article
Google Scholar
Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous Time Structural Equation Modeling with R Package ctsem. Journal of Statistical Software, 77(5), 1–35. https://doi.org/10.18637/jss.v077.i05
Article
Google Scholar
Driver, C., Voelkle, M., & Oud, H. (2021). ctsemOMX: Continuous Time SEM - „OpenMx“ Based Functions (1.0.4) [Computer software]. https://CRAN.R-project.org/package=ctsemOMX
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School Readiness and Later Achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428
Article
Google Scholar
Erbeli, F., Shi, Q., Campbell, A. R., Hart, S. A., & Woltering, S. (2021). Developmental dynamics between reading and math in elementary school. Developmental Science, 24(1), e13004. https://doi.org/10.1111/desc.13004
Article
Google Scholar
Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Jordan, N. C., Siegler, R., Gersten, R., Changas, P., & Cirino, P. T. (2013). Improving at-risk learners’ understanding of fractions. Journal of Educational Psychology, 105(3), 683–700. https://doi.org/10.1037/a0032446
Article
Google Scholar
Gehrer, K., Zimmermann, S., Artelt, C., & Weinert, S. (2013). NEPS framework for assessing reading competence and results from an adult pilot study. Journal for Educational Research Online, 5(2), 50–79
Google Scholar
Gnambs, T., & Lockl, K. (2022). Bidirectional effects between reading and mathematics development across secondary school. Zeitschrift für Erziehungswissenschaft. https://doi.org/10.1007
Grimm, K. J. (2008). Longitudinal Associations Between Reading and Mathematics Achievement. Developmental Neuropsychology, 33(3), 410–426. https://doi.org/10.1080/87565640801982486
Article
Google Scholar
Halaby, C. N. (2004). Panel Models in Sociological Research: Theory into Practice. Annual Review of Sociology, 30(1), 507–544. https://doi.org/10.1146/annurev.soc.30.012703.110629
Article
Google Scholar
Hamagami, F., & McArdle, J. J. (2001). Advanced studies of individual differences: Linear dynamic models for longitudinal data analysis. In G. A. Marcoulides, & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 203–246). Psychology Press. https://doi.org/10.4324/9781410601858
Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889
Article
Google Scholar
Hecht, M., Hardt, K., Driver, C. C., & Voelkle, M. C. (2019). Bayesian continuous-time Rasch models. Psychological Methods, 24, 516–537. https://doi.org/10.1037/met0000205
Article
Google Scholar
Hecht, M., Horstmann, K. T., Arnold, M., Sherman, R. A., & Voelkle, M. (2022). Modeling dynamic personality theories in a continuous-time framework: An illustration [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/q97pz
Hecht, M., & Voelkle, M. C. (2021). Continuous-time modeling in prevention research: An illustration. International Journal of Behavioral Development, 45(1), 19–27. https://doi.org/10.1177/0165025419885026
Article
Google Scholar
Hecht, M., & Zitzmann, S. (2020). A computationally more efficient Bayesian approach for estimating continuous-time models. Structural Equation Modeling: A Multidisciplinary Journal, 27, 829–840. https://doi.org/10.1080/10705511.2020.1719107
Article
Google Scholar
Hecht, M., & Zitzmann, S. (2021). Exploring the unfolding of dynamic effects with continuous-time models: Recommendations concerning statistical power to detect peak cross-lagged effects. Structural Equation Modeling: A Multidisciplinary Journal, 1–9. https://doi.org/10.1080/10705511.2021.1914627
Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: A longitudinal study from second to fifth grades. Journal of Experimental Child Psychology, 79(2), 192–227. https://doi.org/10.1006/jecp.2000.2586
Article
Google Scholar
Heeringa, S., West, B. T., & Berglund, P. A. (2010). Applied survey data analysis. Chapman & Hall / CRC statistics in the social and behavioral sciences series. Taylor & Francis. http://www.gbv.eblib.com/patron/FullRecord.aspx?p=555702
Holenstein, M., Bruckmaier, G., & Grob, A. (2020). Transfer effects of mathematical literacy: an integrative longitudinal study. European Journal of Psychology of Education, 1–27. https://doi.org/10.1007/s10212-020-00491-4
Horn, J. (1988). Thinking about Human Abilities. In J. R. Nesselroade & R. B. Cattell (Hrsg.), Handbook of Multivariate Experimental Psychology (pp. 645–685). Springer US. https://doi.org/10.1007/978-1-4613-0893-5_19
Hübner, N., Merrell, C., Cramman, H., Little, J., Bolden, D., & Nagengast, B. (2022). Reading to learn? The co-development of mathematics and reading during primary school. Child Development, 00, 1–17. https://doi.org/10.1111/cdev.13817
Article
Google Scholar
Jordan, N. C., Kaplan, D., & Hanich, L. B. (2002). Achievement growth in children with learning difficulties in mathematics: findings of a two-year longitudinal study. Journal of Educational Psychology, 94(3), 586–597. https://doi.org/10.1037//0022-0663.94.3.586
Article
Google Scholar
Kenny, D. A., & Zautra, A. (1995). The trait-state-error model for multiwave data. Journal of Consulting and Clinical Psychology, 63, 52–59. https://doi.org/10.1037/0022-160
Article
Google Scholar
Kenny, D. A., & Zautra, A. (2001). Trait-state models for longitudinal data. In L. M. Collins, & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243–263). American Psychological Association
Koponen, T., Eklund, K., Heikkilä, R., Salminen, J., Fuchs, L., Fuchs, D., & Aro, M. (2020). Cognitive Correlates of the Covariance in Reading and Arithmetic Fluency: Importance of Serial Retrieval Fluency. Child Development, 91(4), 1063–1080. https://doi.org/10.1111/cdev.13287
Article
Google Scholar
Korpipää, H., Koponen, T., Aro, M., Tolvanen, A., Aunola, K., Poikkeus, A. M., Lerkkanen, M. K., & Nurmi, J. E. (2017). Covariation between reading and arithmetic skills from Grade 1 to Grade 7. Contemporary Educational Psychology, 51, 131–140. https://doi.org/10.1016/j.cedpsych.2017.06.005
Article
Google Scholar
Kutscher, T., & Scharl, A. (2020). NEPS Technical Report for Reading: Scaling Results of Starting Cohort 3 for Grade 12. NEPS Survey Papers, volume 67. Leibniz Institute for Educational Trajectories, National Educational Panel Study, Bamberg, Germany
LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to Mathematics: Longitudinal Predictors of Performance. Child Development, 81(6), 1753–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.x
Article
Google Scholar
Lohmann, J. F., Zitzmann, S., Voelkle, M. C., & Hecht, M. (2022). A primer on continuous-time modeling in educational research: An exemplary application of a continuous-time latent curve model with structured residuals (CT-LCM-SR) to PISA data. Large-Scale Assessments in Education, 10, 1–32. https://doi.org/10.1186/s40536-022-00126-8
Article
Google Scholar
Lüdtke, O., & Robitzsch, A. (2021). A critique of the random intercept cross-lagged panel model. https://doi.org/10.31234/osf.io/6f85c
Lucas, R. E. (2022, February 14). It’s Time To Abandon The Cross-Lagged Panel Model. https://doi.org/10.31234/osf.io/pkec7
McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. M. Collins, & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 137–175). American Psychological Association
Moral-Benito, E. (2013). Likelihood-based estimation of dynamic panels with predetermined regressors. Journal of Business and Economic Statistics, 31(4), 451–472. https://doi.org/10.1080/07350015.2013.818003
Article
Google Scholar
Muthén, L. K., & Muthén, B. O. (2017). Mplus User’s Guide: 8th Edition (Version 8, April 2017). Los Angeles, CA: Muthen & Muthen. https://www.statmodel.com/download/MplusUserGuideVer_8.pdf
Google Scholar
Neumann, I., Duchhardt, C., Grüßing, M., Heinze, A., Knopp, E., & Ehmke, T. (2013). Modeling and assessing mathematical competence over the lifespan. Journal for Educational Research Online, 5(2), 80–109
Google Scholar
Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021). Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psychology, 120, 1013–1034. https://doi.org/10.1037/pspp0000358
Article
Google Scholar
Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous Time Modeling of Panel Data by means of SEM. In K. Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal Research with Latent Variables (pp. 201–244). Springer
Oud, J. H. L., & Voelkle, M. C. (2014). Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling. Quality & Quantity, 48, 3271–3288. https://doi.org/10.1007/s11135-013-9955-9
Article
Google Scholar
Petersen, L. A., Litteck, K., & Rohenroth, D. (2020). NEPS Technical Report for Mathematics: Scaling Results of Starting Cohort 3 for Grade 12. NEPS Survey Paper, Volume 75. Leibniz Institute for Educational Trajectories, National Educational Panel Study, Bamberg, Germany
Purpura, D. J., Logan, J. A. R., Hassinger-Das, B., & Napoli, A. R. (2017). Why do early mathematics skills predict later reading? The role of mathematical language. Developmental Psychology, 53(9), 1633–1642. https://psycnet.apa.org/buy/2017-32731-001
Article
Google Scholar
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org
Rinne, L. F., Ye, A., & Jordan, N. C. (2020). Development of arithmetic fluency: A direct effect of reading fluency? Journal of Educational Psychology, 112(1), 110–130. https://doi.org/10.1037/edu0000362
Article
Google Scholar
Ryan, O., Kuiper, R. M., & Hamaker, E. L. (2018). A continuous time approach to intensive longitudinal data: What, why and how? In K. van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 27–57). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6
Schmitt, S. A., Geldhof, G. J., Purpura, D. J., Duncan, R., & McClelland, M. M. (2017). Examining the relations between executive function, math, and literacy during the transition to kindergarten: A multi-analytic approach. Journal of Educational Psychology, 109(8), 1120–1140. https://doi.org/10.1037/edu0000193
Article
Google Scholar
Skopek, J. S., Pink, & Bela, D. (2012). Data Manual. Starting Cohort 3 – From Lower to Upper Secondary School. NEPS SC3 1.0.0. NEPS Research Data Paper. University of Bamberg
Solon, G., Haider, S. J., & Wooldridge, J. M. (2015). What Are We Weighting For? The Journal of Human Resources, 50(2), 301–316. http://www.jstor.org/stable/24735988
Article
Google Scholar
Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W. R., & Weir, D. R. (2014). Cohort Profile: the Health and Retirement Study (HRS). International Journal of Epidemiology, 43(2), 576–585. https://doi.org/10.1093/ije/dyu067
Article
Google Scholar
Steptoe, A., Breeze, E., Banks, J., & Nazroo, J. (2013). Cohort Profile: The English Longitudinal Study of Ageing. International Journal of Epidemiology, 42, 1640–1648. https://doi.org/10.1093/ije/dys168
Article
Google Scholar
StataCorp. (2019). Stata Statistical Software: Release 16. College Station. TX: StataCorp LLC
Google Scholar
Tourangeau, K., Nord, C., Le, T., Wallner-Allen, K., Vaden-Kiernan, N., Blaker, L., & Najarian, M. (2018). User’s manual for the ECLS-K: 2011 kindergarten-third grade data file and electronic codebook, public version. Washington, DC: National Center for Education Statistics
Google Scholar
Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of longitudinal models to examine reciprocal relations. Psychological Methods, 24, 637–657. https://doi.org/10.1037/met0000210
Usami, S. (2021). On the Differences between General Cross-Lagged Panel Model and Random-Intercept Cross-Lagged Panel Model: Interpretation of Cross-Lagged Parameters and Model Choice. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 331–344. DOI: https://doi.org/10.1080/10705511.2020.1821690
Article
Google Scholar
Vanbinst, K., van Bergen, E., Ghesquière, P., & De Smedt, B. (2020). Cross-domain associations of key cognitive correlates of early reading and early arithmetic in 5-year-olds. Early Childhood Research Quarterly, 51, 144–152. https://doi.org/10.1016/j.ecresq.2019.10.009
Article
Google Scholar
Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The Role of Time in the Quest for Understanding Psychological Mechanisms. Multivariate Behavioral Research, 53(6), 782–805. https://doi.org/10.1080/00273171.2018.1496813
Article
Google Scholar
Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176–192. https://doi.org/10.1037/a0027543
Article
Google Scholar
Voelkle, M. C., & Oud, J. H. L. (2015). Relating latent change score and continuous time models. Structural Equation Modeling: A Multidisciplinary Journal, 22, 366–381. https://doi.org/10.1080/10705511.2014.935918
Article
Google Scholar
Vukovic, R. K., & Lesaux, N. K. (2013). The language of mathematics: Investigating the ways language counts for children’s mathematical development. Journal of Experimental Child Psychology, 115(2), 227–244. https://doi.org/10.1016/j.jecp.2013.02.002
Article
Google Scholar
Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data (2nd ed.). The MIT Press
Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. (2020). From Data to Causes I: Building A General Cross-Lagged Panel Model (GCLM). Organizational Research Methods, 23(4), 651–687
Article
Google Scholar