Al-Kadi, A. S., & Donnon, T. (2013). Using simulation to improve the cognitive and psychomotor skills of novice students in advanced laparoscopic surgery: a meta-analysis. Medical Teacher, 35(sup1), S47–S55. https://doi.org/10.3109/0142159X.2013.765549
Article
Google Scholar
Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White (Eds.), Learning analytics (pp. 61–75). Springer. https://doi.org/10.1007/978-1-4614-3305-7_4
Chapter
Google Scholar
Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of severalmethods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29. https://doi.org/10.1145/1007730.1007735
Article
Google Scholar
Bonaccorso, G. (2017). Machine learning algorithms: A reference guide to popular algorithms for data science and machine learning. Packt Publishing.
Google Scholar
Bowen, J. L. (2006). Educational strategies to promote clinical diagnostic reasoning. New England Journal of Medicine, 355(21), 2217–2225. https://doi.org/10.1056/NEJMra054782
Article
Google Scholar
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Article
Google Scholar
Charlin, B., Lubarsky, S., Millette, B., Crevier, F., Audétat, M.-C., Charbonneau, A., Caire Fon, N., Hoff, L., & Bourdy, C. (2012). Clinical reasoning processes: Unravelling complexity through graphical representation. Medical Education, 46(5), 454–463. https://doi.org/10.1111/j.1365-2923.2012.04242.x
Article
Google Scholar
Chen, R.-C., Dewi, C., Huang, S.-W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data. https://doi.org/10.1186/s40537-020-00327-4
Article
Google Scholar
Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., & Fischer, F. (2020). Simulation-based learning in higher education: A meta-analysis. Review of Educational Research, 90(4), 499–541. https://doi.org/10.3102/0034654320933544
Article
Google Scholar
Cirigliano, M. M., Guthrie, C. D., & Pusic, M. V. (2020). Click-level learning analytics in an online medical education learning platform. Teaching and Learning in Medicine, 32(4), 410–421. https://doi.org/10.1080/10401334.2020.1754216
Article
Google Scholar
Cook, D. A., Hamstra, S. J., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., Erwin, P. J., & Hatala, R. (2013). Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher, 35(1), e867–e898. https://doi.org/10.3109/0142159X.2012.714886
Article
Google Scholar
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Article
Google Scholar
Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247–256. https://doi.org/10.1016/j.chb.2017.01.047
Article
Google Scholar
Damashek, M. (1995). Gauging similarity with n-grams: Language-independent categorization of text. Science, 267(5199), 843–848. https://doi.org/10.1126/science.267.5199.843
Article
Google Scholar
Ericsson, K. A. (2004). Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Academic Medicine, 79(10), S70–S81. https://doi.org/10.1097/00001888-200410001-00022
Article
Google Scholar
Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15(1), 3133–3181.
Google Scholar
Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., Neuhaus, B., Dorner, B., Pankofer, S., Fischer, M., Strijbos, J.-W., Heene, M., & Eberle, J. (2014). Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learning Research., 2(3), 28–45. https://doi.org/10.14786/flr.v2i2.96
Article
Google Scholar
Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research, 20(177), 1–81. http://jmlr.org/papers/v20/18-760.html
Google Scholar
Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd ed.). Wiley. https://doi.org/10.1002/0471445428
Book
Google Scholar
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21(2), 137–146. https://doi.org/10.1007/s11222-009-9153-8
Article
Google Scholar
Gegenfurtner, A., Quesada-Pallarès, C., & Knogler, M. (2014). Digital simulation-based training: A meta-analysis. British Journal of Educational Technology, 45(6), 1097–1114. https://doi.org/10.1111/bjet.12188
Article
Google Scholar
Goldhammer, F., Naumann, J., Stelter, A., Tóth, K., Rölke, H., & Klieme, E. (2014). The time on task effect in reading and problem solving is moderated by task difficulty and skill: Insights from a computer-based large-scale assessment. Journal of Educational Psychology, 106(3), 608–626. https://doi.org/10.1037/a0034716
Article
Google Scholar
Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W. (2018). Advancing the science of collaborative problem solving. Psychological Science in the Public Interest, 19(2), 59–92. https://doi.org/10.1177/1529100618808244
Article
Google Scholar
Greenwell, B., Boehmke, B., Cunningham, J., & GBM Developers. (2020). Package ‘gbm’ (Version 2.1.8) [Computer software]. https://cran.r-project.org/web/packages/gbm/gbm.pdf
Greiff, S., Niepel, C., Scherer, R., & Martin, R. (2016). Understanding students’ performance in a computer-based assessment of complex problem solving: An analysis of behavioral data from computer-generated log files. Computers in Human Behavior, 61, 36–46. https://doi.org/10.1016/j.chb.2016.02.095
Article
Google Scholar
Greiff, S., Stadler, M., Sonnleitner, P., Wolff, C., & Martin, R. (2015). Sometimes less is more: Comparing the validity of complex problem solving measures. Intelligence, 50, 100–113. https://doi.org/10.1016/j.intell.2015.02.007
Article
Google Scholar
Griffin, P., & Care, E. (2015). Assessment and teaching of 21st century skills. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9395-7
Book
Google Scholar
Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. W. (2009). Teaching practice: A cross-professional perspective. Teachers College Record, 111(9), 2055–2100.
Article
Google Scholar
Hall, D., & Buzwell, S. (2012). The problem of free-riding in group projects: Looking beyondsocial loafing as reason for non-contribution. Active Learning in Higher Education, 14(1), 37–49. https://doi.org/10.1177/1469787412467123
Article
Google Scholar
He, Q., & Von Davier, M. (2016). Analyzing process data from problem-solving items with n-grams. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Handbook of research on technology tools for real-world skill development (pp. 749–776). IGI Global. https://doi.org/10.4018/978-1-4666-9441-5
Chapter
Google Scholar
Heitzmann, N., Seidel, T., Opitz, A., Hetmanek, A., Wecker, C., Fischer, M. R., Ufer, S., Schmidmaier, R., Neuhaus, B., Siebeck, M., Stürmer, K., Obersteiner, A., Reiss, K., Girwidz, R., & Fischer, F. (2019). Facilitating diagnostic competences in simulations in higher education: A framework and a research agenda. Frontline Learning Research., 7(4), 1–24. https://doi.org/10.14786/flr.v7i4.384
Article
Google Scholar
Heitzmann, N., Stadler, M., Richters, C., Radkowitsch, A., Schmidmaier, R., Weidenbusch, M., & Fischer, M. R. (2023). Learners’ adjustment strategies following impasses in simulations—effects of prior knowledge. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2022.101632
Article
Google Scholar
Herborn, K., Stadler, M., Mustafić, M., & Greiff, S. (2020). The assessment of collaborative problem solving in PISA 2015: Can computer agents replace humans? Computers in Human Behavior. https://doi.org/10.1016/j.chb.2018.07.035
Article
Google Scholar
Hilbert, S., Coors, S., Kraus, E. B., Bischl, B., Frei, M., Lindl, A., Wild, J., Krauss, S., Goretzko, D., & Stachl, C. (2021). Machine learning for the educational sciences. Review of Education. https://doi.org/10.1002/rev3.3310
Article
Google Scholar
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107. https://doi.org/10.1080/00461520701263368
Article
Google Scholar
Hussain, M., Zhu, W., Zhang, W., Abidi, S. M. R., & Ali, S. (2019). Using machine learning to predict student difficulties from learning session data. Artificial Intelligence Review, 52(1), 381–407. https://doi.org/10.1007/s10462-018-9620-8
Article
Google Scholar
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23–31. https://doi.org/10.1207/S15326985EP3801_4
Article
Google Scholar
Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12(1), 1–48. https://doi.org/10.1207/s15516709cog1201_1
Article
Google Scholar
Kuhn, M. (2020). caret: Classification and Regression Training (Version 6.0–86) [Computer software]. https://CRAN.R-project.org/package=caret
Landriscina, F. (2012). Simulation and learning The role of mental models. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning. Springer. https://doi.org/10.1007/978-1-4419-1428-6_1874
Chapter
Google Scholar
Liu, L., Hao, J., von Davier, A. A., Kyllonen, P., & Zapata-Rivera, J. D. (2015). A tough nut to crack. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Advances in higher education and professional development (AHEPD) book series. Handbook of research on technology tools for real-world skill development. IGI Global. https://doi.org/10.4018/978-1-4666-9441-5.ch013
Chapter
Google Scholar
Mamede, S., & Schmidt, H. G. (2017). Reflection in medical diagnosis: A literature review. Health Professions Education, 3(1), 15–25. https://doi.org/10.1016/j.hpe.2017.01.003
Article
Google Scholar
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics. https://doi.org/10.3389/fnbot.2013.00021
Article
Google Scholar
Norman, G. (2005). Research in clinical reasoning: Past history and current trends. Medical Education, 39(4), 418–427. https://doi.org/10.1111/j.1365-2929.2005.02127.x
Article
Google Scholar
Oakes, M., Gaaizauskas, R., Fowkes, H., Jonsson, A., Wan, V., & Beaulieu, M. (2001). A method based on the chi-square test for document classificatioDn. In D. H. Kraft, W. B. Croft, D. J. Harper, & J. Zobel (Eds.), Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 440–441). ACM Press. https://doi.org/10.1145/383952.384080
Chapter
Google Scholar
OECD. (2017). PISA 2015 Assessment and analytical framework: Science, reading, mathematic, financial literacy and collaborative problem solving. PISA, OECD Publishing. https://doi.org/10.1787/9789264281820-en
Article
Google Scholar
O’Neil, H. F., Chuang, S.-H., & Chung, G. K. W. K. (2003). Issues in the computer-based assessment of collaborative problem solving. National Center for Research on Evaluation, Standards, and Student Testing, 10(3), 361–373. https://doi.org/10.1080/0969594032000148190
Article
Google Scholar
O’Neill, T. A., Allen, N. J., & Hastings, S. E. (2013). Examining the “Pros” and “Cons” of TeamConflict: A Team-Level Meta-Analysis of Task, Relationship, and Process Conflict. Human Performance, 26(3), 236–260. https://doi.org/10.1080/08959285.2013.795573
Article
Google Scholar
Pargent, F., Schoedel, R., & Stachl, C. (2022). An introduction to machine learning for psychologists in R. PsyArXiv. https://doi.org/10.31234/osf.io/89snd
Article
Google Scholar
Pauli, R., Mohiyeddini, C., Bray, D., Michie, F., & Street, B. (2008). Individual differences in negative group work experiences in collaborative student learning. Educational Psychology, 28(1), 47–58. https://doi.org/10.1080/01443410701413746
Article
Google Scholar
Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423–451. https://doi.org/10.1207/s15327809jls1303_6
Article
Google Scholar
Plass, J. L., & Pawar, S. (2020). Toward a taxonomy of adaptivity for learning. Journal of Research on Technology in Education, 52(3), 275–300. https://doi.org/10.1080/15391523.2020.1719943
Article
Google Scholar
Probst, P., Boulesteix, A.-L., & Bischl, B. (2019). Tunability: Importance of hyperparameters of machine learning algorithms. Journal of Machine Learning Research, 20(1), 1–32. https://www.jmlr.org/papers/volume20/18-444/18-444.pdf
Google Scholar
Qiao, X., & Jiao, H. (2018). Data Mining Techniques in Analyzing Process Data: A Didactic. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2018.02231
Article
Google Scholar
Radkowitsch, A., Sailer, M., Fischer, M. R., Schmidmaier, R., & Fischer, F. (2022). Diagnosing collaboratively: A theoretical model and a simulation-based learning environment. In F. Fischer & A. Opitz (Eds.), Learning to diagnose with simulations: Teacher education and medical education (pp. 123–141). Springer Nature. https://doi.org/10.1007/978-3-030-89147-3
Chapter
Google Scholar
Richter, M. M., & Weber, R. O. (2013). Case-Based Reasoning. Springer. https://doi.org/10.1007/978-3-642-40167-1
Article
Google Scholar
R Core Team. (2020). R: A Language and environment for statistical computing (Version R4.0.2) [Computer software]. https://www.R-project.org/
Roosevelt, F. D. (2008). Zone of proximal development. In N. J. Salkind (Ed.), Encyclopedia of educational psychology (pp. 1017–1022). SAGE Publications. https://doi.org/10.4135/9781412963848.n282
Chapter
Google Scholar
Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. In C. O. Malley (Ed.), Computer supported collaborative learning (pp. 69–97). Springer. https://doi.org/10.1007/978-3-642-85098-1_5
Chapter
Google Scholar
San Pedro, M., Baker, R. S., Bowers, A. J., & Heffernan, N. T. (2013). Predicting college enrollment from student interaction with an intelligent tutoring system in middle school. In S. D’Mello R. Calvo, & A. Oldey (Eds.), Proceedings of the 6th international conference on eduactional data mining (pp. 177-184).
Schmidt, D., & Heckendorf, C. (2017). Guide to the ngram package: Fast n-gram tokenization (Version 3.0.4) [Computer software]. https://cran.r-project.org/package=ngram
Schröders, U., Schmidt, C., & Gnambs, T. (2022). Detecting careless responding in survey data using stochastic Gradient boosting. Educational and Psychological Measurement, 82(1), 29–56. https://doi.org/10.1177/00131644211004708
Article
Google Scholar
Shute, V. J. (2011). Stealth assessment in computer-based games to support learning. Computer Games and Instruction, 55(2), 503–524.
Google Scholar
Stadler, M., Fischer, F., & Greiff, S. (2019). Taking a closer look: An exploratory analysis of successful and unsuccessful strategy use in complex problems. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2019.00777
Article
Google Scholar
Stadler, M., Hofer, S., & Greiff, S. (2020). First among equals: Log data indicates ability dif-ferences despite equal scores. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2020.106442
Article
Google Scholar
Stadler, M., Radkowitsch, A., Schmidmaier, R., Fischer, M., & Fischer, F. (2021). Take your time: Invariante of time-on-task in problem-solving tasks across expertise levels. Psychological Test and Assessment Modeling, 65(4), 517–525.
Google Scholar
Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292.
Article
Google Scholar
Tenison, C., & Arslan, B. (2020). Characterizing pause behaviors in a science inquiry task. In T. C. Stewart (Ed.), Proceedings of the 18th International Conference on Cognitive Modeling (pp. 283–298). Applied Cognitive Science Lab.
Google Scholar
Tomasevic, N., Gvozdenovic, N., & Vranes, S. (2020). An overview and comparison of supervised data mining techniques for student exam performance prediction. Computers & Education. https://doi.org/10.1016/j.compedu.2019.103676
Article
Google Scholar
Tschan, F., Semmer, N. K., Gurtner, A., Bizzari, L., Spychiger, M., Breuer, M., & Marsch, S. U. (2009). Explicit reasoning, confirmation bias, and illusory transactive memory: A simulation study of group medical decision making. Small Group Research, 40(3), 271–300. https://doi.org/10.1177/1046496409332928
Article
Google Scholar
Ulitzsch, E., Ulitzsch, V., He, Q., & Lüdtke, O. (2022). A machine learning-based procedure for leveraging clickstream data to investigate early predictability of failure on interactive tasks. Behavior Research Methods. https://doi.org/10.3758/s13428-022-01844-1
Article
Google Scholar
VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369
Article
Google Scholar
Vygotsky, L. S. (1978). Mind in society: Development of higher psychological processes. Harvard University Press. https://doi.org/10.2307/j.ctvjf9vz4
Article
Google Scholar
Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1–17. https://doi.org/10.18637/jss.v077.i01
Article
Google Scholar
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393
Article
Google Scholar
Zhu, M., Shu, Z., & von Davier, A. A. (2016). Using networks to visualize and analyze process data for educational assessment: Network analysis for process data. Journal of Educational Measurement, 53(2), 190–211. https://doi.org/10.1111/jedm.12107
Article
Google Scholar
Ziv, A., Wolpe, P. R., Small, S. D., & Glick, S. (2003). Simulation-based medical education: An ethical imperative. Academic Medicine, 78(8), 783–788. https://doi.org/10.1097/00001888-200308000-00006
Article
Google Scholar