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Introduction
In many large-scale assessments (LSAs), digital-based testing has become the primary 
mode of administration. For example, the Programme for International Student Assess-
ment (PISA) transitioned from a paper-based to a computer-based assessment (CBA) 
in the 2015 cycle, and the Programme for the International Assessment of Adult Com-
petencies (PIAAC) transitioned to CBA in 2012. Another prominent LSA program, the 
United States’ National Assessment of Educational Progress (NAEP), first administered 
a CBA in 2011 and transitioned the four main assessments of reading and mathematics 
at grades 4 and 8 to CBA in 2017 (NCES, 2018a, 2018b) . Notably, CBA enables the col-
lection of process data, which may include response times (RT), number of actions, and 
keystrokes. PISA started providing process data variables, in addition to traditional item 
responses, in the Public Use File (PUF; OECD, 2017, 2020) starting with the 2015 cycle, 
and NAEP also provides RT and process data upon request.
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The availability of process data collected in LSAs has led to considerable research on 
a variety of topics. Process data can be useful for improving data quality, test security, 
reliability, and validity (Bergner and von Davier, 2019; Ercikan et al., 2017); von Davier 
et al., 2019). For example, process data can be used to evaluate the validity of cognitive 
responses and whether the test has been administered in compliance with the technical 
standards Yamamoto and Lennon (2018), or to provide insights on the mechanisms of 
non-responses in low-stakes assessments and how the missing data should be treated in 
the analysis (e.g., Lu & Wang, 2020; Pohl et al., 2019, Ulitzsch et al., 2020b; Weeks et. al., 
2016). In particular, such non-response behavior unveiled by process data can be useful 
for investigating student effort and engagement (e.g., Ulitzsch et al., 2020a; Michaelides 
et  al., 2020). A recent study by Pohl, Ulitzsch, and von Davier (2021) argued that dis-
entangling and reporting test-taking behaviors based on process data can improve the 
comparability and interpretability of the reported scores. For example, test takers from 
some countries may perform better than test takers from other countries by taking more 
time and responding to fewer tasks. Such an insight can provide rich and relevant infor-
mation for policy makers. Furthermore, classifying respondents into classes defined by 
process data contributes to deepening our understanding of test-taking behaviors and 
student inquiry (e.g., Greiff et al., 2015; He et al., 2018; Teig et al., 2020).

In many LSAs, a primary goal is to provide accurate group-level estimates that allow 
for comparisons over time to measure trends (Kirsch et al., 2013). An important question 
then is how newly available process data can be utilized to improve group-level report-
ing without threatening the comparability of scores over time. Yet, to our knowledge, 
most research using LSA process data has focused on relatively small subsets of items 
and sub-samples of students who provided data to those subsets of items (von Davier 
et al., 2019). In-depth investigation with limited data can be informative to contextualize 
test-taking behaviors, but cannot guide methodological advances in generating report-
ing group-level scores in LSAs due to the limited use of data and limited implications 
for reporting of scores. LSAs, such as NAEP and PISA, involve item response theory-
latent regression models (IRT-LRMs) to generate plausible values (PVs) for every stu-
dent, which are used for both the official results and for secondary analysis.1 PVs are 
multiply imputed values (Rubin, 1996) for latent proficiencies that enable secondary 
users to examine the relationships between proficiencies and contextual variables with 
simple statistical models commonly available in statistical packages, such as regression 
models and t-tests. Analysis with multiply imputed values must be congenial with the 
imputation model to avoid a source of estimation bias (Meng, 1994). In the context of 
LSAs, this means that if the relationship between ability and a given contextual variable 
is of interest to secondary users, that contextual variable must be included as a covariate 
in the IRT-LRM. This is the main reason why hundreds of covariates are often included 
in the IRT-LRM to accommodate as many potential secondary-user analyses as possible 
(von Davier et. al. 2006). Analogously, process data must be incorporated in the PV gen-
eration to ensure correct inferences about the relationships between proficiencies and 
process data.1

1  Details about analytic procedures used in LSA, such as NAEP and PISA, are well-described in Mislevy et. al.  (1992), 
von Davier and Sinharay (2013); von Davier et. al. (2006); von Davier et. al. (2009).
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As a consequence, PISA 2018 cycle started to incorporate the process data (more 
precisely, RT) in the PV generation process (OECD, 2020; Shin et al.,  in press). In this 
approach, student-level RT were pre-processed to be included in the IRT-LRM as a pre-
dictor in addition to the other covariates. However, the degree to which incorporating 
process data in the PV-generating procedures violates the assumptions underlying the 
IRT-LRM is largely unknown, and gathering further insights on how to best incorpo-
rate process data in the IRT-LRM is important. IRT-LRMs in LSAs follow the stand-
ard assumption of independence between the cognitive item responses and regression 
covariates, conditional on latent ability (Mislevy, 1985; von Davier et  al., 2006). This 
conditional independence assumption is typically reasonable for contextual variables 
that are measured independently from performance on the test (response accuracy; 
RA), such as demographics and background questionnaire responses (or evaluated with 
measurement non-invariance methods during routine operational procedures; Mer-
edith 1993). However, RT and other process data are not measured independently of 
performance on the test, and some degree of conditional dependence can therefore be 
expected (Bolsinova et al., 2017).

In this paper, we examine the impacts of RA-RT conditional dependence, which vio-
lates a central assumption in utilizing process data in the statistical analyses used in 
LSAs. While the literature on RA-RT conditional dependencies is extensive (for reviews, 
see Bolsinova et al., 2017, De Boeck & Jeon, 2019), the magnitude and impact of such 
conditional dependencies has, to our knowledge, not been previously evaluated within 
the context of LSAs. In this paper, we examine the issue of RA-RT conditional depend-
ence within the context of LSAs. First, we estimate the significance and magnitude of 
the conditional dependencies in LSAs by applying methods from the literature to NAEP 
and PISA data in our first research question (RQ1). Second, we evaluate the impact on 
parameter estimation of applying the current LSA operational methods, which assume 
conditional independence, to data that has conditional dependencies in research ques-
tions 2 and 3 (RQ2 and RQ3).

•	 RQ1: What is the degree to which RA-RT conditional dependencies are found in 
NAEP and PISA data?

•	 RQ2: What are the empirical consequences of including RT in the IRT-LRMs?
•	 RQ3: What are the empirical consequences of ignoring conditional dependencies in 

the IRT-LRMs?

Conditional independence assumptions in the IRT‑LRM
Fundamental assumptions in the IRT‑LRM

An IRT-LRM consists of two components: a measurement model (the item response 
theory model; IRT model) and a structural model (the latent regression model; LRM). 
Two types of observed variables can be distinguished: measurement variables x (the item 
responses from the cognitive assessment that are assumed to measure the latent ability 
in the IRT model) and contextual variables (other variables collected about the students 
that are assumed to relate to the latent ability, such as gender and parental education). 
As thousands of contextual variables may be collected, the standard operational practice 
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is to reduce the dimensionality of the contextual variables by means of principal compo-
nent analysis (PCA), and a selected set of principal components is used as covariates or 
predictors in the LRM, z . With xj denoting the response to item j in the test, two primary 
assumptions of IRT-LRM are:

•	 Assumption 1. Conditional independence between item responses given the latent 
ability: 

•	 Assumption 2. Conditional independence between item responses and contextual 
variables given the latent ability: 

With these two assumptions, we can find the conditional density of the latent ability as 
follows:

where f (θ |z) is usually assumed to be a normal distribution. This conditional density 
plays a seminal role in the analysis of LSAs (e.g., Mislevy et al., 1992; von Davier et al., 
2006, 2009).

Additional assumptions associated with process data

There are at least two possible ways to include RT and other process data in the IRT-
LRM: in the measurement model along with item responses or in the structural model 
as predictors. Entering RT or process data as measurement variables by combining RT in 
the scoring rubric (van Rijn and Ali, 2018a, 2018b), or by utilizing as collateral informa-
tion (Bolsinova and Tijmstra, 2018a; Reis Costa et al., 2021), proved to be promising to 
improve the precision of ability estimation.

In the measurement model, a useful starting point for including RT and studying con-
ditional dependencies is the hierarchical model (van der Linden, 2007) in which an IRT 
model is used for the item responses and a log-normal factor model for RT. Based on the 
hierarchical model, two additional conditional independence assumptions are imposed. 
Note that tj indicates the RT for item j, and τ indicates a latent speed variable.

•	 Assumption 3. Conditional independence among RTs given latent speed: 

•	 Assumption 4. Conditional independence between RTs and responses given latent 
ability and latent speed: 

(1)P(x|θ) =
∏

j

P(xj|θ).

(2)P(x|θ , z) = P(x|θ).

(3)f (θ |x, z) =
P(x|θ)f (θ |z)

∫

P(x|θ)f (θ |z) dθ
,

(4)f (t|τ ) =
∏

j

f (tj|τ ).

(5)f (x, t|θ , τ ) = P(x|θ , τ )f (t|θ , τ ),
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where t is the vector of RTs for all items. Glas (2010) elaborated three different assump-
tions of conditional independence for the hierarchical framework, and each of those 
assumptions corresponds to Assumptions 1, 3 and 4.

Finally, as the most relevant assumption to this paper, in order to include RT in the 
IRT-LRM based on van der Linden’s, (2007) hierarchical model, we also need the follow-
ing conditional independence assumption for RTs and contextual variables.

•	 Assumption 5. Conditional independence between RTs and contextual variables 
given latent speed: 

Now, the conditional density of the latent variables on the observed variables becomes

Our paper deals with RT variables since these are more commonly studied and consid-
ered as important process data features, but conditional independence can be studied 
for other types of process data as well (e.g., number of actions) using the same principles 
outlined here.

Testing conditional independence

A comprehensive overview of psychometric models for RT and RA is provided in De 
Boeck and Jeon (2019). In their review, the most relevant psychometric model to our 
study is categorized as local dependency models. This approach includes models in 
which RA and RT are jointly modeled but in which extra dependency is modeled beyond 
the relationship of their latent variables and item parameters. Within this approach, they 
further categorized two types of models. The first type includes latent variable models 
with remaining dependencies through the local dependency parameters. More specifi-
cally, local dependency parameters can be incorporated into the model as residual cor-
relations (e.g., Ranger & Ortner, 2012) or the direct effect of RT on the corresponding 
RA (e.g., Bolsinova et al., 2017, De Boeck et al., 2017). The second type includes models 
that classify the item responses based on different response mechanisms. Classes can 
be defined through the observed RT variables, such as a fast mode and a slow mode 
(e.g., Partchev & De Boeck, 2012), or latent classes can be estimated (e.g., Molenaar & de 
Boeck, 2018, Wang & Xu, 2015). De Boeck (2017) also provide a thorough overview of 
joint models for RA and RT focusing on modeling conditional dependence. They suggest 
the possibility to move toward explanatory models to better understand response pro-
cesses that may lead to conditional dependencies.

In this paper, we focus on parametric methods in which conditional independence 
assumptions are tested through the estimation of parameters in existing or newly pro-
posed psychometric models with relatively strong distributional assumptions. Within 
the hierarchical model framework, van der Linden and Glas (2010) proposed Lagrange 
multiplier tests for evaluating three conditional independence assumptions (Assump-
tions 1, 3 and 4) when item parameters are known, and Glas and van der Linden (2010) 
further derived analogous tests when all structural parameters are estimated using 

(6)f (t|τ , z) = f (t|τ ).

(7)f (θ , τ |x, t, z) =
P(x|θ)f (t|τ )f (θ , τ |z)

∫

P(x|θ)f (t|τ )f (θ , τ |z) dθ dτ
.



Page 6 of 19Shin et al. Large-scale Assessments in Education            (2022) 10:4 

marginal maximum likelihood estimation. Alternatively, Molenaar, Tuerlinckx, and van 
der Maas Molenaar et. al. (2015) developed a bivariate generalized linear IRT approach 
in which separate generalized linear measurement models for responses and for RT vari-
ables are subsequently linked by cross-relations. Because of the flexibility of the model, 
this approach can be used to test those three aforementioned assumptions. In addition, 
this generalized modeling framework is further advantageous to model the residual cor-
relations for items that exhibit conditional dependencies. Modelling residual correla-
tions to relax the conditional independence assumption was also proposed in Ranger 
and Ortner (2012), focusing on residual correlations between RT and RA for within 
items. In this model, additional item-specific parameters reflect the remaining within-
item RA-RT relationship that is not explained by the latent correlation between ability 
and speed (see Analysis section below for equations). That is, conditional dependencies 
are allowed to vary across items. Later Meng et. al. (2015) further extended this model 
by allowing conditional dependencies to vary across items as well as persons. More for-
mally, Ranger and Ortner’s (2012) model corresponds to allowing possible effects of RT 
on the intercept of the item response function (Bolsinova et  al., 2017), and Bolsinova 
et. al. (2017) proposed an extended model that incorporates the effects of the residual 
RT on the slope as well as the intercept parameter. The latter can capture differences in 
item discrimination for slow and fast responses, which is a pattern found by, for exam-
ple, Goldhammer et. al. (2014). In this case, the probability of a correct item response 
interacts with the item difficulty, as well as its expected speed. More recently, relaxing 
the monotone and linear conditional dependence was attempted through modeling a 
nonlinear, such as quadratic or multiple-category, conditional dependence (Bolsinova 
and Molenaar, 2018).

Alternative to the parametric methods reviewed above, approaches with fewer or 
weaker assumptions can be employed as well. For example, posterior predictive checks 
can be used for testing RA-RT conditional dependencies (Bolsinova and Tijmstra, 2016), 
as a flexible method with respect to which model is chosen. Furthermore, Bolsinova and 
Maris (2016) proposed a non-parametric approach for testing conditional independ-
ence between RA and RT based on the Kolmogorov-Smirnov (KS) test. Another rele-
vant approach for jointly modeling RA and RT can be found in van Rijn and Ali (2018a) 
where RT information is utilized in the scoring rule: slower responses, regardless of 
whether they are correct or incorrect, contribute less to the item score. De Boeck and 
Jeon (2019) involved this generalized speed-accuracy response model as one of the local 
dependency models because being correct and fast or slow are combined in the scoring 
rules, although RA-RT conditional dependence is not explicitly modeled.

As the literature review shows, RA-RT conditional dependencies prevail in most of 
the cognitive assessments, and various statistical methods have proven useful to test and 
understand response processes. For instance, positive conditional dependence is inter-
preted as the unexplained association between slower and more accurate responses, 
while negative conditional dependence as the unexplained association between faster 
and more accurate responses. In this study, we aim to contribute to the literature in 
two ways by focusing on conditional dependencies in the context of LSAs. First, we 
empirically evaluate RA and RT dependencies with NAEP and PISA datasets to exam-
ine whether conditional dependencies are found in LSA data. Second, we evaluate the 
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impact on the operational IRT-LRMs as used in LSAs. Although we selected RT, our 
analysis is critical to other types of process data obtained from the cognitive assessment 
in LSAs as well.

Methods
Data

In this study, we analyzed the data from the NAEP 2017 mathematics and PISA 2015 
science assessments. The domains of mathematics for NAEP and science for PISA were 
chosen as the largest available datasets. Analyzed data for NAEP included about 126,700 
students, involving 178 items in total. In PISA 2015, science was the major domain, 
taken by all participating students. However, all students are assessed on at least one 
other domain as well (e.g., mathematics, reading), which is not the case in NAEP. For 
PISA, we used data collected in English from the United States and Canada to have suf-
ficient sample size for the analyses, comprising about 24,600 student responses on 183 
science items. Both NAEP and PISA data consisted of a mixture of multiple-choice items 
and open-ended response items.

In NAEP 2017 and PISA 2015, data were collected through a balanced incomplete 
block (BIB) design (Messick et al., 1983), where only a subset of the complete item pool 
was administered to each student. All items were assigned to one 30-minute item block 
(or clusters in PISA terminology). Each student received only two item blocks out of 
twelve in PISA, and two 30-min blocks out of ten in NAEP. Each item block was pre-
sented in approximately the same proportions in the first and second half of the assess-
ments, following the balanced block design generally used in LSAs (Mazzeo and von 
Davier, 2008). Note that because each student receives a small proportion of items in the 
total item pool, the datasets have a massive amount of missing data.

Concerning the test administration, each item block has a separate time limit in NAEP, 
while two blocks are sequentially taken with a shared time limit of one hour in PISA 
(e.g., students can spend more than 30 minutes on the items of first block provided they 
spend less than 30 minutes on the second block). To minimize confounding from time 
limits and to handle the massive missing problem, each separately timed section (or tim-
ing section) was analyzed as a separate dataset. Specifically, each NAEP block was treated 
as a separate dataset for analysis, while each possible pairing of PISA blocks was treated 
as a separate dataset. The pairing of PISA blocks ignored the order of the two blocks to 
ensure sufficient sample sizes for each analysis (e.g., students who took ’S07’ and ’S08’ 
item blocks were grouped together regardless of the order, ’S07’ then ’S08’ or ’S08’ then 
’S07’).2

Such data handling resulted in 10 timing sections for NAEP 2017 and 36 timing sec-
tions for PISA 2015 data. Item blocks in the NAEP timing sections were mutually exclu-
sive, while each student participated in two timing sections. In contrast, PISA item 
blocks were not mutually exclusive across timing sections, but no students appeared 
more than once in different timing sections. In the PISA data, two timing sections 
turned out to have sparse data due to the high frequencies for certain categories of 

2  We acknowledge that ignoring the order of blocks may affect conditional dependencies between items but this is not 
the focus of our analysis.
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certain contextual variables. Analyses could not be completed successfully in such cases, 
thus, 34 groups are reported in this paper except those two groups.3

Table  1 presents the distributions of sample size and the number of administered 
items per timing section. Furthermore, contextual variables were also listed. Because our 
paper pertains to the impact of conditional dependencies on the estimation of IRT-LRM, 
some of our modeling choices (M3, M4, and M5 in Fig.  2) included the regression of 
ability on contextual variables. Due to the computational complexity of the full NAEP 
and PISA IRT-LRMs that involve the regression of the latent variable on hundreds or 
thousands of variables, we approximate the full IRT-LRMs by including only key report-
ing variables in the regression as a way to compare the models in a relative manner to 
evaluate the impact of conditional dependencies. The selected key reporting variables 
that were used as covariates in the NAEP and PISA regressions are listed in Table 1, and 
descriptions of those variables are provided in the Appendix.

Analysis

To address the three research questions, five models were analyzed, including two 
measurement models (M1 and M2) and three latent regression models (M3, M4, and 
M5). To address our first research question, we focused on directly evaluating the mag-
nitude of conditional dependencies using M1 and M2 in a way that is comparable to 
the literature. To adress research questions two and three, we focused on evaluating the 
impact of conditional dependencies using M3, M4, and M5 on the operational method 
in LSAs, the IRT-latent regression, involving speed as a predictor of ability. To evaluate 
the dependencies in the context of the measurement model, we employed a parametric 
method involving parameters for within-item RA-RT dependencies (Ranger and Ortner, 
2012) as a generalization of the hierarchical model (van der Linden, 2007). To evaluate 
the dependencies in the context of the structural model, we extended the IRT-LRM to 
account for within-item conditional dependencies following a similar approach as used 
in the measurement model evaluation.

For M1, we start with the extended version of the hierarchical model, allowing item-
specific time discrimination parameters (Molenaar et  al., 2015), in which conditional 

Table 1  Distribution of sample size and number of items per timing section, and the list of 
contextual variables

PISA NAEP

Mean SD Min. Max. Mean SD Min. Max.

Number of students 677 29 610 744 25305 300 24935 25861

Number of items 31 3 25 35 18 3 14 21

Contextual variables ( z) HISCED LEP SCHTYPE

GENDER IEP SLUNCH1

IMMIG CENSREG SRAC10E

NBOOKS DSEX PARED

3  There are two sets of timing variables published for PISA 2015. In this study, we used the updated timing variables 
posted in November 2020 for PISA 2015 (http://​www.​oecd.​org/​pisa/​data/​2015d​ataba​se/). These updated timing vari-
ables report total time spent on the given item by summing over multiple item visits, if applicable.

http://www.oecd.org/pisa/data/2015database/
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independence between RA and RT is assumed. Similarly, Reis Costa et. al. (2021 and 
Bolsinova and Tijmstra (2018) considered the original hierarchical model as the baseline 
model in their studies for including RT variables in the measurement model. Building 
on this, we specify additional parameters for modeling within-item RA-RT conditional 
dependencies for M2. M2 is most relevant to test Assumption 4, and a comparison 
between M1 and M2 informs the presence of within-item RA-RT conditional dependen-
cies in the measurement model empirically observed in the NAEP 2017 and PISA 2015 
data. Moving to the structural model, M3 is considered a baseline model, which is a sim-
plified version of IRT-LRM specifying a limited number of regression predictors as listed 
in Table 1. M4 is an extended IRT-LRM that incorporates RT variables into M3, while 
maintaining the assumption of conditional independence. The most general model in 
our analysis is M5 in which within-item RA-RT conditional dependencies for each item 
are allowed.

•	 Model 1 (M1): Hierarchical model for accuracy and speed

The hierarchical model developed by van der Linden (2007) has latent ability and speed 
variables for RT and for RA, respectively, with a latent correlation between them. Assum-
ing dichotomously scored items, IRT models such as the Rasch, two-parameter-logistic 
(2PL), or three-parameter-logistic (3PL) model are typically used for the RA part. In this 
paper, however, we use the two-parameter normal ogive model (2PNO; Lord (1952)) for 
dichotomously scored items and the generalized 2PNO for polytomously scored items. 
Using the probit function �−1(.) , the 2PNO is given by

where aj is the item slope parameter, θ is the latent ability variable, and bj is the item 
intercept parameter. For the RT part, we use a log-normal factor model, which is 
extended to have item-specific time discrimination parameters (Molenaar et al., 2015). 
Denoting log-transformed RT as t∗j  , the model is expressed as

where βj is the item time intensity parameter, γj is the item time discrimination param-
eter, τ is the latent speed variable, and α2

j  is the residual variance of the log RT for item 
j. A graphical representation of this model is shown in the left panel of Fig. 1 where the 
possible relationships between item responses ( x ) and RT variables ( t ) are fully captured 
through the correlation ( ρ ) between θ and τ.

(8)P(xj = 1|θ , bj , aj) = �(ajθ + bj),

(9)t∗j ∼ N (βj − γjτ ,α
2
j ),

Fig. 1  Measurement Models: M1 (left) and M2 (right)
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The two equations above present RA and RT components of the hierarchical model 
separately. As a way to illustrate the within-item conditional independence assump-
tion, we can express the joint distribution of the underlying continuous RA variable 
( x∗j  ) and log-transformed RT variable ( t∗j  ) for item j as follows:

•	 Model 2 (M2): M1 + within-item RA-RT dependencies

As an extension of M1, M2 allows conditional dependencies between RA and RT that 
can vary for each item. The conditional dependence is expressed as the arrow con-
necting item responses ( x ) and RT variables ( t ) in the right panel of Fig. 1. The par-
ametric approach proposed in Ranger and Ortner (2012) allows the residuals to be 
correlated by means of an additional item parameter ( πj ). Building on Equation (10), 
this can be now expressed as:

Note that the off-diagonal elements changed from 0 to πjαj , thus reflecting the item-
level parameterization of conditional dependencies. In relation to RQ1, to examine the 
presence of RA-RT conditional dependencies (Assumption 4), the likelihood ratio test 
that compared M1 ( πj fixed to zero) and M2 ( πj freely estimated) was conducted for 
each timing section. We employed the robust weighted least squares (WLSMV) method 
using Mplus 8.0 (Muthén and Muthén, 2017). For the WLSMV method, the conven-
tional approach involving the difference between the chi-square values is not appropri-
ate because the chi-square difference does not follow a chi-square distribution under 
WLSMV (Muthén and Muthén, 2017). Therefore, we applied the DIFFTEST function 
that is afforded in Mplus to obtain a correct chi-square difference test as recommended 
by Muthén and Muthén (2017).

•	 Model 3 (M3): Baseline IRT-LRM specifying the main contextual variables

M3 is the baseline model for the IRT-LRMs, concerning the latent ability ( θ ) meas-
ured by item responses ( x ) but not latent speed ( τ ). As seen in the left panel of Fig. 2, 
the latent ability is regressed on the contextual variables ( z):

(10)
[

x∗j
t∗j

]

∼ N

[(

ajθ + bj
βj − γjτ

)

,

(

1 0

0 α2
j

)]

(11)
[

x∗j
t∗j

]

∼ N

[(

ajθ + bj
βj − γjτ

)

,

(

1 πjαj
πjαj α2

j

)]

(12)
x∗j ∼ N (ajθ + bj, 1),

θ | z ∼ N (Ŵ′
z, σ 2)

Fig. 2  IRT-LRMs: M3 (left), M4 (middle), and M5 (right)
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where Ŵ is a vector of regression coefficients, and σ 2 is the residual variance. In NAEP 
and PISA operational procedures, the conditional distribution f (θ | z) is typically 
assumed to be the multivariate normal distribution, allowing correlations among mul-
tiple latent abilities (e.g., correlations among math, reading, and science or correlations 
among subdomains of mathematics). In addition, item parameters (i.e., arrow from θ to 
item responses, x ) are estimated and fixed in the preceding IRT scaling stage so that 
only the regression coefficients (i.e., arrow from contextual variables z to θ ) and the 
residual variance σ 2 are estimated to reduce the computational burden (often called 
as “divide-and-conquer”; Patz & Junker, 1999). In this study, we estimate item param-
eters and regression coefficients simultaneously, focusing on the case of unidimensional 
latent ability ( θ ). Most importantly, note that in M3, ability is regressed on the contextual 
variables only, and not on the latent speed dimension. This approach is in line with the 
reporting practices in NAEP and PISA, and we consider M3 as the benchmark structural 
model.

•	 Model 4 (M4): M3 + latent speed as an additional predictor

M4 can be viewed as an extension of M3 by specifying the additional predictor of latent 
speed ( τ ) measured through observed RT variables. At the same time, this model is an 
extension of M1 by specifying the contextual variables in the regression to explain latent 
ability ( θ ). To aid interpretation, double-sided arrow is used in M1 and M2 to indicate 
that speed correlates with ability in the measurement model, while a one-sided arrow 
indicates that speed is a predictor of ability in the IRT-LRM (structural model; M4 and 
M5). Building on M3, with the use of RT variables, M4 can be expressed as:

where ω represents the main effect of the latent speed on the latent ability. In particu-
lar, as our study is within the context of LSAs and the operational statistical models 
use these methods, the residual variance ( σ 2 ) is critical in influencing the student con-
ditional posterior distributions, and by turn the within-person variance between PVs, 
which indicates measurement error. This is consistent with how measurement precision 
within the operational LSA methods are considered in previous studies (Mislevy, 1991; 
von Davier et al., 2009; von Davier and Sinharay, 2013). Therefore, the reduction in the 
estimates of σ 2 between M3 and M4 is interpreted as the measurement precision, which 
is addressed in RQ2. Having additional predictor should reduce the residual variance 
unless their correlation is zero, but the extent to which the variance is reduced with the 
inclusion of RT is unknown.

•	 Model 5 (M5): M4 + within-item RA-RT dependencies

Unlike general contextual variables, such as gender or parental education, RT vari-
ables are co-measured with RA and reflect item-specific processes. This implies that 
the RA and RT for a given item may be conditionally dependent (given the latent abil-
ity). Although RT can be summarized as a person characteristic by aggregating item-
level information (see, e.g. OECD, 2020; Shin et. al., in press), , it is unclear how much 
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dependency remains between individual item responses and corresponding RT varia-
bles. Therefore, M5 extends M4 by specifying additional parameters ( πj ) to account for 
residual correlations among item responses and RT variables. In the equations, the dif-
ference between M4 and M5 is only shown in the item-level variance-covariance matrix 
while the latent regression part is kept the same in the following equation:

For all analyses, the official sampling weights were used, which are adjusted to represent 
the sampling design and non-response rates (Rust and Johnson, 1992). All five models 
were fit through WLSMV method using Mplus 8.0 (Muthén and Muthén, 2017) through 
the MplusAutomation package in R (Hallquist and Wiley, 2018). The method WLSMV 
involves diagonally weighted least-squares estimation with mean- and variance-adjusted 
chi-square statistics and standard errors. This method is more appropriate for analyzing 
categorical data such as item responses (Asparouhov and Muthen, 2007; Muthén et al., 
1997), particularly when estimating correlations between categorical variables (RA) and 
continuous variables (RT) is of interest.

Results
To address our three research questions, we compared parameter estimates and model 
fit between nested models. First, we compared M1 and M2 to evaluate whether the 
within-item RA-RT conditional dependencies were significantly different from zero 
(RQ1). Next, a comparison between M3 and M4 showed the empirical consequences 
including RT in the IRT-LRMs to the measurement of ability (RQ2). Finally, the empiri-
cal consequences of ignoring conditional dependencies were addressed by comparing 
M4 and M5 in the IRT-LRM (RQ3).

RQ1. Presence of RA‑RT conditional dependencies

Across all ten NAEP timing sections, the measurement model accounting for the within-
item conditional dependencies (M2), fit significantly better than the measurement 
model that did not (M1; �χ2s = 1935.29− 14730.76,�dfs = 15− 21, ps < .0001 ). To 
quantify the degree to which M2 fit better than M1, we compared the model fit sta-
tistics, Root Mean Squared Error of Approximation (RMSEA; Steiger, 1990; Steiger 
& Lind, 1980) and Comparative Fit Index (CFI; Bentler, (1990). The differences in 
RMSEA ranged from 0.001 to 0.008, and the differences in CFI ranged from − 0.139 
to − 0.009, all favoring M2. As a guideline for testing measurement invariance, Chen 
(2007) recommended a change of ≤ − 0.01 in CFI combined with a change of ≥ 0.015 
in RMSEA to indicate measurement non-invariance when the sample size is adequate 
(total N > 300 ). While the difference in CFI exceeded the threshold for nine out of 
ten NAEP timing sections, the RMSEA differences did not reach the threshold, mean-
ing that the comparison did not meet the criteria for non-invariance. All PISA timing 
sections yielded similar results: significant test statistics across all 34 timing sections 
( �χ2s = 136.38− 673.13,�dfs = 25− 35, ps < .0001 ). Yet, a comparison of other 
model fit statistics did not show substantial benefits of M2 over M1. Across 34 timing 
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sections in PISA, differences in RMSEA ranged between 0.000 and 0.001, and the differ-
ences in CFI ranged between − 0.027 and − 0.002. Based on Chen’s criteria, the thresh-
old for CFI was exceeded in 16 of the 34 timing sections, but the change in RMSEA 
never reached the threshold.

RQ2. Inclusion of RT in the IRT‑LRMs

Next, we evaluated the benefits of including RT variables in the IRT-LRMs. If incorpo-
rating the RT variables in the IRT-LRM improves measurement precision of ability ( θ ), 
this improvement can be quantified as the extent to which the residual variance in ability 
is reduced (M3 vs. M4) given that comparable constraints on model identification are 
used. Table 2 and Fig. 3 present the residual variances estimated in NAEP and PISA data. 
In both programs, inclusion of RT in the IRT-LRM resulted in a substantial increase in 
measurement precision of ability (i.e., reduced residual variance): about 11% in NAEP 
data and 17.6% in PISA data. This increased precision is in line with previous studies 
that reported improved reliability when RT was included in the measurement model 
(Bolsinova and Tijmstra, 2018; Reis Costa et al., 2021).

RQ3. Consequences of ignoring conditional dependencies

Given the presence of within-item conditional dependencies in NAEP and PISA, we 
examined impacts of conditional dependencies on the estimates in the IRT-LRM 
(Assumption 5). If the impacts of within-item RA-RT are substantial, regression 
coefficients estimated from M5 will be different from the ones estimated from M4. 
Therefore, we compared the regression parameter estimates between the IRT-LRM 
with (M5) and without (M4) parameters for the conditional dependencies: (a) the 
regression coefficient estimates for all the contextual variables excluding the regres-
sion coefficient for latent speed, (b) the residual variance estimates, and (c) the 
regression coefficient estimates for latent speed.

Table 2  Residual variance estimates: NAEP 2017 data

M3 is the baseline model, including only contextual variables in the IRT-LRM.

M4 has all the parameters of M3, but also latent speed in the IRT-LRM.

M5 has all the parameters of M4, but also within-item parameters for all RA-RT conditional dependencies.

Timing section M3 M4 M5 M4 – M3 M5 – M4

T1 0.721 (0.009) 0.616 (0.010) 0.654 (0.009) 0.105 − 0.038

T2 0.719 (0.006) 0.609 (0.009) 0.615 (0.009) 0.110 − 0.006

T3 0.746 (0.009) 0.666 (0.010) 0.674 (0.010) 0.080 − 0.008

T4 0.737 (0.009) 0.572 (0.009) 0.574 (0.009) 0.165 − 0.002

T5 0.736 (0.009) 0.644 (0.009) 0.654 (0.009) 0.092 − 0.010

T6 0.725 (0.009) 0.620 (0.009) 0.630 (0.009) 0.105 − 0.010

T7 0.719 (0.009) 0.588 (0.010) 0.611 (0.009) 0.131 − 0.023

T8 0.733 (0.009) 0.630 (0.009) 0.633 (0.009) 0.103 − 0.003

T9 0.710 (0.009) 0.595 (0.009) 0.600 (0.009) 0.115 − 0.005

T10 0.702 (0.008) 0.618 (0.008) 0.624 (0.008) 0.084 − 0.006

Mean 0.725 0.616 0.627 0.109 − 0.011
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The regression coefficient estimates for the contextual variables were compared 
through root mean square deviation (RMSD) to evaluate whether these parameter 
estimates were different in M4 as a result of neglecting conditional dependencies. 
The RMSD was calculated as the square root of the mean of the squared differences 
between the estimates for M4 and M5. The RMSD values for the regression coef-
ficients across all timing sections ranged from 0.000 to 0.001 in NAEP, and from 
0.001 to 0.004 in PISA. Based on this analysis, it was apparent that the differences 
are negligible, and the same regression coefficient estimates were obtained regard-
less of whether the within-item RA-RT conditional dependencies were modeled.

In terms of the explained variance in latent ability, ignoring within-item condi-
tional dependencies in M4 as compared to M5 resulted in only slightly lower resid-
ual variance estimates (about 1%) in both data sets (Table 2 and Fig. 3). The slightly 
lower residual variance estimates corresponded to the slightly larger-in-magnitude 
regression coefficient estimate for the latent speed ( ω ) in M4. Specifically, the 
regression coefficient estimates for the latent speed ranged between − 0.41 and 
− 0.29 in M4 in NAEP, and corresponding values for M5 ranged between − 0.30 and 
− 0.26 . Similarly, in PISA, coefficient estimates ranged between − 0.55 and − 0.18 
in M4, while the range was between − 0.54 and − 0.19 in M5. On average, ignoring 
within-item RA-RT conditional dependencies resulted in a slightly lower coefficient 
for τ of .015 on average, and the difference was negative (larger in magnitude) in 
every dataset. The negative estimates of the regression coefficients result from faster 
responses being associated with lower accuracy.

Concluding remarks
The evaluation of conditional independence assumptions underlying the IRT-LRM is 
important to ensure accurate estimation of group-level scores in LSAs. Such assump-
tions are more plausible if the contextual variables included in the latent regression are 
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measured independently from the performance on the test (RA). However, conditional 
independence may be less plausible when it comes to incorporating process data derived 
from the cognitive assessment, such as response time, into the IRT-LRM. As response 
time and other types of process data are not measured independently from performance 
on the test, some degree of conditional dependence can be expected (Bolsinova et al., 
2017).

Nevertheless, including the process data in the IRT-LRM is still vital to support sec-
ondary analyses involving relationships between process data and abilities with plausible 
values (Mislevy, 1991), in order to avoid estimation biases associated with violations of 
congeniality (Meng, 1994). In addition, including process data in the IRT-LRM can con-
tribute to more precise estimation of latent ability (Bolsinova and Tijmstra, 2018; Reis 
Costa et al., 2021; Shin et al., in press). Therefore, we attempted to contribute to the field 
by focusing on the conditional dependencies in the context of LSAs. First, we evaluated 
RA and RT dependencies with NAEP and PISA datasets to examine the issue of whether 
the dependencies are also found in LSA data. Second, we evaluated the impact on the 
operational models used by LSAs (i.e., IRT-latent regression) when these models are fit 
to data that exhibit conditional dependencies. Through empirical analysis, we evaluated 
the benefits (i.e., increase in measurement precision) and the costs (i.e., potential estima-
tion biases) of incorporating RT into the IRT-LRM, which has critical implications to the 
modelling of response time, and indirectly to other types of process data more generally, 
in LSAs. We conclude the paper with a summary of the main findings with suggestions 
for future studies.

First, we elaborated five types of conditional independence assumptions imposed in 
IRT-LRMs that jointly model RA and RT variables. In such models, two types of con-
ditional independence assumptions are made that involve only a latent variable for RA 
(i.e., ability, θ ). To jointly model latent variables for RA (ability, θ ) and RT (speed, τ ) 
based on van der Linden’s (2007) hierarchical model, three assumptions were addition-
ally required in the IRT-LRM. Most critical for the present paper is the assumption of 
conditional independence between RA and RT at the item-level given the latent vari-
ables in the measurement model and in the structural model.

To address the first research question, we evaluated within-item conditional dependen-
cies in the measurement model. When parameters were added to the model to account for 
RA and RT conditional dependencies within each item, statistically significant within-item 
conditional dependencies exist in both NAEP and PISA, but their impact on the overall-
model fit looks negligible. While a substantive explanation of conditional dependencies 
would be relevant, it is beyond the scope of this paper. Bolsinova et. al. (2017) and De Boeck 
and Jeon (2019) provide possible sources of observed RA-RT conditional dependencies, 
and show how explanatory models can help in investigating particular phenomena involved 
in the observed RA-RT conditional dependencies. For example, item types (e.g., response 
format), position effects (e.g., running out of time), the working speed of respondents (Fox 
and Marianti, 2016), attention variation or the change of problem-solving strategies during 
the test can be studied in the future as between-item dependencies. In that line of research, 
a closer look at item-level and person-level results will be worthwhile to understand the 
reasons behind the conditional dependencies. As Molenaar et. al. (2015) illustrated, modi-
fication indices can be useful for such purposes to identify items that show large residual 
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correlations within or between items, given that all analyses considered in this paper can be 
understood as special cases of generalized linear latent variable models.

Next, we investigated the benefits of adding RT variables in the structural part of the IRT-
LRM. Adding RT to IRT-LRM led to substantial improvement in measurement precision, 
approximately 11% in NAEP and 18% in PISA on average, over and above the key report-
ing variables. Here, the gain in measurement precision was quantified as the relative dif-
ference in residual variance estimates of θ after including RT in the structural model along 
with key reporting variables. Further studies can evaluate the impact on the reporting out-
comes by taking into account imputation errors in generating the plausible values. Another 
research topic is related to the fit of the log-normal factor model for RT (van Sinharay and 
Rijn, 2020). More flexible approaches discussed in Entink, van Der Linden, and Fox (2009) 
and Glas and van der Linden (2010) could result in better fit to the distributions of the RT 
variables. However, if many additional parameters are needed to obtain good fit, this may 
complicate operational analysis of LSAs.

Finally, given the benefits of adding RT variables in the IRT-LRM, we quantified the cost 
of ignoring the conditional dependencies between RA and RT. Differences in regression 
coefficient estimates were small between IRT-LRMs that account for conditional depend-
encies and the corresponding models that did not. Ignoring within-item conditional 
dependencies resulted in slightly higher estimates of the regression coefficients for latent 
speed (about 0.015), corresponding to slightly lower residual variance estimates (about 1%) 
in both data sets. That is, the difference in residual variance estimates due to neglecting 
conditional dependencies were evidently smaller compared to the decrease in residual vari-
ance estimates by including RT to the IRT-LRM.

In summary, statistical evidence was found for RA-RT within-item conditional depend-
encies, consistent with previous research (e.g., Bolsinova, et. al. 2017), presenting a chal-
lenge for inclusion of RT in the operational models widely used in LSAs. However, speed 
was strongly correlated with ability, over and above the key reporting variables, suggesting 
that inclusion of RT in the IRT-LRM may be important to support secondary user analy-
sis of RT to avoid congeniality-related violations (Meng, 1994). Furthermore, the observed 
reduction in the residual variance indicates that the inclusion of RT in IRT-LRMs improves 
the estimation of latent ability (e.g., Shin et al., in press). In contrast, only a relatively mod-
est estimation difference was observed in the regression parameters from neglecting the 
within-item conditional dependencies in the IRT-LRM. Therefore, we conclude that the 
benefits of incorporating RT in the operational models for large-scale educational assess-
ments may outweigh the costs.

A. List of contextual variables (z) in NAEP and PISA
In NAEP, LEP is a dichotomous variable that indicates Limited English Proficiency. IEP is 
a dichotomous variable that indicates an Individualized Education Plan. CENSREG indi-
cates Census Region with categories of North East, Midwest, South, and West. DSEX is 
a dichotomous variable that indicates gender. SCHTYPE indicates school type, with cat-
egories of Public, Private, Catholic, Bureau of Indian Education school, and Department 
of Defense school. SLUNCH1 indicates eligibility for the National School Lunch Pro-
gram, with categories of Eligible, Not Eligible, and Information not Available. SRACE10 
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indicates race/ethnicity, with categories of White, Black, Hispanic, Asian, American 
Indian or Alaskan Native, Native Hawaiian and Pacific Islander, and Mixed Race. PARED 
indicates student-reported highest educational attainment of either parent, with levels 
Some Highschool, Graduated Highschool, Post Higshool, Graduated College, and I don’t 
know.

In PISA, HISCED is a variable that indicates the highest education level of parents, 
with categories of None and ISCED 1 combined, ISCED 2, ISCED 3B and ISCED 3A 
combined, and ISCED 5B, ISCED 5A, 6 combined due to the insufficient sample sizes. 
GENDER is a dichotomous variable (ST004D01T) that indicates gender. IMMIG repre-
sents immigration status, with categories of Native, First generation, and Second genera-
tion. NBOOKS represents the number of books (ST013Q01TA), with categories of 0-10 
books, 11-25 books, 26-100 books, 101-200 books, 201-500 books, and more than 500 
books.

All variables were contrast-coded, and the dichotomous contrast-coded variables were 
included in the regressions.
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