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Background
Large-scale assessments in education are typically administered using multiple test 
forms or booklets in which the same items are presented in different positions or loca-
tions within the forms. The main purpose of this practice is to improve test security 
by reducing the possibility of cheating among test takers (Debeer and Janssen  2013). 
This practice also helps test developers administer a greater number of field-test items 
embedded within multiple test forms. Although this is an effective practice for ensuring 
the integrity of the assessment, it may result in context effects—such as an item position 
effect—that can unwittingly influence the estimation of item parameters and the latent 
trait (Bulut 2015; Hohensinn et al. 2011). For example, test takers may experience either 
increasing item difficulty at the end of the test due to fatigue or decreasing item difficulty 
due to test-wiseness as they become more familiar with the content (Hohensinn et al. 
2008).

It is often assumed that position effects are the same for all test takers or for all items 
and thus do not have a substantial impact on item difficulty or test scores (Hahne 2008). 
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However, this assumption may not be accurate in operational testing applications, such 
as statewide testing programs. For example, in a reading assessment where items are 
often connected to a reading passage, it is challenging to maintain the original posi-
tions of the items from field test to final form to eliminate the possibility of any posi-
tion effects (Meyers et al. 2009). Similarly, the positions of items cannot be controlled 
in computerized adaptive tests in which item positions typically differ significantly from 
one examinee to another (Davey and Lee 2011; Kolen and Brennan 2014; Meyers et al. 
2009). Therefore, non-negligible item position effects may become a source of error in 
the estimation of item parameters and the latent trait (Bulut et al. 2016; Hahne 2008).

Several methodological studies have focused on item position effects in national and 
international large-scale assessments, such as the Trends in International Mathemat-
ics and Science Study (Martin et al. 2004), a mathematics assessment of the Germany 
Educational Standards (Robitzsch 2009), a mathematical competence test of the Aus-
trian Educational Standards (Hohensinn et al. 2011), the Graduate Record Examination 
(Albano 2013), the Program for International Student Assessment (Debeer and Janssen 
2013; Hartig and Buchholz 2012), and a German nationwide large-scale assessment in 
mathematics and science (Weirich et  al. 2016). In these studies, item position effects 
were estimated as either fixed or random effects using multilevel item response theory 
(IRT) models within the generalized linear mixed modeling framework. This approach is 
also known as explanatory item response modeling (De Boeck and Wilson 2004), which 
is equivalent to Rasch modeling (Rasch 1960) with explanatory variables.

An alternative way of estimating IRT models is with a binary factor analysis (FA) 
model in which the item parameters and latent trait can be estimated using tetrachoric 
correlations among dichotomous item responses (Kamata and Bauer 2008; McDonald 
1999; Takane and de Leeuw 1987). In addition to estimating the item parameters and 
latent trait, the binary FA model can be expanded to a structural equation model (SEM) 
in which item difficulty parameters can be predicted by other manifest (i.e., observed) 
variables (e.g., item positions, passage or testlet positions, and indicators of test forms). 
The purpose of this study is to (1) introduce the SEM approach for detecting position 
effects in large-scale assessments; (2) demonstrate the methodological adequacy of the 
SEM approach to model different types of position effects using an empirical study; and 
(3) examine the accuracy of the SEM approach in detecting position effects using a sim-
ulation study.

Theoretical framework
IRT and factor analysis

The FA model is a regression model in which the independent variables are latent vari-
ables and the dependent variables are manifest variables (Ferrando and Lorenzo-Seva 
2013). Previous studies on the relationship between the FA and IRT frameworks showed 
that the unidimensional two-parameter normal ogive IRT model is equivalent to a one-
factor FA model when binary manifest variables are predicted by a continuous latent 
variable (e.g., Brown 2006; Ferrando and Lorenzo-Seva 2005; Glöckner-Rist and Hoijtink 
2003; MacIntosh and Hashim 2003; Takane and de Leeuw 1987). The two-parameter 
normal ogive IRT model can be written as

(1)P(yi = 1|θ, ai, bi) = �(aiθ− bi),
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where yi is the dichotomous item responses for item i, θ is the latent trait (i.e., ability), 
ai is the item discrimination parameter, bi is the item difficulty parameter, and � is the 
standard normal cumulative distribution function. Using the parameterization described 
in Asparouhov and Muthén (2016), the one-factor FA model for binary manifest varia-
bles that corresponds to the two-parameter IRT model in Eq. 1 can be written as follows:

where y∗i  is the continuous latent response underlying the observed item response for 
item i, νi is the intercept term for item i, which is typically assumed to be zero, �i is the 
factor loading for item i, which is analogous to item discrimination in traditional IRT 
models, η is the latent trait, which is often assumed to follow a normal distribution as 
η ∼ N (0, 1)1, and εi is the residual term2 for item i (for compactness in the notation, no 
person subscript is included). In case of the Rasch model (Rasch 1960) or the one-
parameter IRT model, factor loadings in the one-factor FA model are fixed to “1” or con-
strained to be equal across all items.

In the one-factor FA model, there is also a threshold parameter (τi) for each dichoto-
mous item, which corresponds to item difficulty (bi in Eq. 1) in traditional IRT models. 
Based on the threshold parameter, an observed item response yi becomes

Although factor loadings and intercepts in the one-factor FA model are analogous to 
item discrimination and item difficulty in IRT, these factor analytic terms can be for-
mally transformed into item parameters in the traditional IRT scale (Asparouhov and 
Muthén 2016; Muthén and Asparouhov 2002). Assuming that the latent trait is nor-
mally distributed as η ∼ N (α,ψ) and η = α +√

ψθ where θ is the IRT-based latent 
trait with mean 0 and standard deviation 1, the item discrimination parameter can 
be computed as ai = �i/

√
ψ , and the item difficulty parameter can be computed as 

bi = (τi − �iα)/
(

�i
√
ψ
)

 [see Brown (2006) and Takane and de Leeuw (1987) for a review 
of similar transformation procedures].

Modeling position effects

As Brown (2006) noted, the use of the FA model provides greater analytic flexibility than 
the IRT framework because traditional IRT models can be embedded within a larger 
model that includes additional variables to explain the item parameters as well as the 
latent trait (e.g., Ferrando et al. 2013; Glöckner-Rist and Hoijtink 2003; Lu et al. 2005). 
Using the structural equation modeling (SEM) framework, an IRT model can be defined 
as a measurement model in which there is a latent trait (e.g., reading ability) underly-
ing a set of manifest variables (e.g., dichotomous items in a reading assessment). In the 
structural part of the SEM model, the causal and correlational relations among the latent 
trait, the manifest variables, and other latent or manifest variables (e.g., gender and atti-
tudes toward reading) can therefore be tested.

(2)y∗i = νi + �iη + εi,

1   The mean and variance are fixed to 0 and 1, respectively, to identify the scale of the latent variable.
2  The residuals are typically assumed to have a normal distribution (Kamata and Bauer 2008).

yi =
{

1, if y∗i ≥ τi
0, if y∗i < τi.



Page 4 of 20Bulut et al. Large-scale Assess Educ  (2017) 5:8 

A well-known example of this modeling framework is the Multiple Indicators Multi-
ple Cause (MIMIC) model for testing uniform and nonuniform differential item func-
tioning in dichotomous and polytomous items (e.g., Finch 2005; Lee et al. 2016; Woods 
and Grimm 2011). In the MIMIC model, a categorical grouping variable (e.g., gender) 
is used as an explanatory variable to explain the relationship between the probability of 
responding to an item correctly and the grouping variable, after controlling for the latent 
trait. Based on the results of this analysis, one can conclude that the items become sig-
nificantly less or more difficult depending on which group the examinee belongs to.

In the current study, instead of a categorical grouping variable, item position will be 
used as a continuous, explanatory variable to predict whether there is any relationship 
between item difficulty and the varying positions of the items on the test. Using the FA 
model in Eq. 2, the SEM model for examining linear item position effects can be written 
as follows:

where pi is a manifest variable that shows the positions of item i across all examinees 
who responded to item i (e.g., 1, 15, 25, and 50 if item i is administered at the 1st, 15th, 
25th, or 50th positions), βi is the linear position effect based on one unit change in the 
position of item i, and the remaining terms are the same as those from Eq. 2. In Eq. 3, if 
βi = 0, it can be concluded that the difficulty of item i does not depend on its position 
on the test. If, however, βi �= 0, then the difficulty of item i either linearly increases or 
decreases as a function of its position on the test (i.e., pi).

It is also possible to extend the SEM model in Eq. 3 to examine the interaction between 
the latent trait and item position, if the relation between the difficulty of an item and its 
position on the test is assumed to be moderated by the latent trait. To estimate the inter-
action effect, an interaction term as a product of item position and the latent trait needs 
to be included as an additional predictor in the model (Moosbrugger et al. 2009). The 
SEM model for examining linear position effects and interaction effects can therefore be 
written as follows:

where pi is the positions of item i across all examinees who responded to item i, βi is the 
linear position effect, ωi is the interaction effect for item i, and the other terms are the 
same as those in Eq. 3. If, ωi �= 0, then the difficulty of item i increases or decreases as 
a result of the interaction between the latent trait and item positions (i.e., ηpi in Eq. 4). 
There are several methods used for estimating the interaction between the latent trait 
and manifest variables (e.g., item and testlet positions), such as the Latent Moderated 
Structural Equations (LMS) approach (Klein and Moosbrugger 2000), the Quasi-Maxi-
mum Likelihood (QML) approach (Klein and Muthén 2007), the constrained approach 
(Jöreskog and Yang 1996), and the unconstrained approach (Marsh et  al. 2004). The 
examples of interaction effects in SEM with binary manifest variables can be found in 
Woods and Grimm (2011) and Lee et al. (2016).

Figure 1 shows a path diagram of an SEM model based on k dichotomous items. In the 
model, item 1 is tested for linear position effects and interaction effects. Although Fig. 1 
only shows the estimation of item position effect for item 1, all items on the test (or a 

(3)y∗i = �iη + βipi + εi,

(4)y∗i = �iη + βipi + ωiηpi + εi,
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group of items) could be evaluated together for item position effects in the same model. 
It should be noted that the correlations between item positions and the latent trait (i.e., 
a double-headed arrow as in Fig. 1) are optional. If item positions are randomly deter-
mined for each examinee (i.e., independent of examinees’ latent trait levels), then the 
correlation between item positions and the latent trait can be excluded from the model 
for the sake of model parsimony. However, the ordering of items can sometimes depend 
on examinees’ latent trait level. For example, in a computerized adaptive test, two exami-
nees can receive the same item at different positions because of how they responded to 
earlier items on the test (e.g., van der Linden et al. 2007). Furthermore, in a fixed-form 
and non-adaptive test, examinees can still start and exit the test with different items, 
depending on test administration rules related to examinees’ response patterns (e.g., 
Bulut et al. 2016; Li et al. 2012). When examining item position effects in such assess-
ments, a correlational link between item positions and the latent trait should be included 
in the model to account for this dependency.

Model constraints and assumptions

The proposed SEM approach requires the use of constraints to ensure model identifica-
tion and accurate estimation of model parameters. Using the marginal parameterization 
with a standardized factor (Asparouhov and Muthén 2016; Millsap and Yun-Tein 2004; 
Muthén and Asparouhov 2002), the variance of y∗i  is constrained to be 1 for all items; the 
mean and the variance of the latent trait (η) are constrained to be 0 and 1, respectively 
[see Kamata and Bauer (2008) for other parameterizations in the binary FA model]. Fur-
thermore, additional constraints might be necessary depending on which the IRT model 
is used. For example, if the Rasch model is the underlying IRT model for the data, all 
factor loadings in the model must be constrained to be 1. The general assumptions of 

Fig. 1  The structural equation model for examining item position effects (Note η = Latent trait; �1 to �k = fac-
tor loadings; τ1 to τk = item thresholds; p1 = positions of item 1 on the test; β1 = linear item position effect for 
item 1; ω1 = interaction term between latent trait and positions of item 1)
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IRT must also hold in order to estimate the IRT model with item position effects within 
the SEM framework. These assumptions include a monotonic relationship between the 
probability of responding to an item correctly and the latent trait, the unidimensionality 
of the latent trait, local independence of items, and invariance in the item parameters 
and the latent trait across different subgroups in a population.

Model estimation

The proposed SEM models for examining item position effects can be estimated using 
commercial software programs for the SEM analysis, such as Mplus (Muthén and 
Muthén 1998–2015), LISREL (Jöreskog and Sörbom 2015), AMOS (Arbuckle 2011), 
and EQS (Bentler and Wu 2002), or non-commercial software programs, such as the 
sem (Fox et al. 2016), lavaan (Rosseel 2012), OpenMx (Pritikin et al. 2015), and nlsem 
(Umbach et al. 2017) packages in R (R Core Team 2016). It should be noted that these 
software programs differ with regard to their algorithms for estimating SEM models 
with binary variables, model estimators (e.g., ULS, MLR, and WLSMV), the capability 
to estimate interaction effects, and methods for handling missing data. Therefore, when 
choosing the most suitable program, researchers should consider the research ques-
tions that they aim to address, the statistical requirements of their hypothesized SEM 
model(s), and data characteristics (e.g., the number of items, amount of missing data).

As noted earlier, item position effects can be examined one item at a time using Eqs. 3 
and 4. However, it is more convenient to estimate the position effects for all items within 
the same SEM model and then create a simplified model by removing non-significant 
effects from the model. Since the simplified model would be nested within the origi-
nal model that includes the position effects for all items, the two models can be com-
pared using a Chi square (χ2) difference test. The procedure for the χ2 difference test 
varies depending on which model estimator (e.g., the robust maximum likelihood esti-
mator ‘MLR’ or the weighted least square with mean- and variance-adjusted Chi square 
‘WLSMV’ in Mplus) is used for estimating the SEM model. For example, the χ2 dif-
ference test using the corrected loglikelihood values or the Satorra–Bentler χ2 statis-
tic (Satorra and Bentler 2001) are widely used when the model estimator is MLR. The 
reader is referred to Brown (2006, p. 385), Asparouhov and Muthén (2006), and the 
Mplus website (www.statmodel.com/chidiff.shtml) for detailed descriptions of the χ2 
difference testing in SEM. When the SEM models are not nested, the model selection 
or comparison can be done on the basis of information-based criteria that assess rela-
tive model fit, such as Akaike information criterion (AIC; Akaike 1974) and the Bayesian 
information criterion (BIC; Schwarz 1978).

Comparison with other approaches

To date, three different methodological approaches for investigating item position effects 
have been described: (1) logistic regression models (e.g., Davey and Lee 2011; Pomplun 
and Ritchie 2004; Qian 2014); (2) multilevel models based on the generalized linear 
mixed modeling (GLMM) framework (e.g., Albano 2013; Alexandrowicz and Matsch-
inger 2008; Debeer and Janssen 2013; Hartig and Buchholz 2012; Li et al. 2012; Weirich 
et al. 2014); and (3) test equating methods (e.g., Kingston and Dorans 1984; Kolen and 
Harris 1990; Moses et al. 2007; Pommerich and Harris 2003; Meyers et al. 2009; Store 

http://www.statmodel.com/chidiff.shtml
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2013). Although there are some empirical studies that used the factor analytic methods 
for modeling position effects (e.g., Bulut et  al. 2016; Schweizer 2012; Schweizer et  al. 
2009), the current study represents the first study that utilized the SEM framework as a 
methodological approach for examining item position effects.

The proposed SEM approach has four noteworthy advantages over the other methods 
mentioned above when it comes to modeling item position effects. First, the proposed 
approach overcomes the limitation of examining position effects only for dichotomous 
items, which is the case with the approaches based on the GLMM framework (e.g., 
Hartig and Buchholz 2012). Using the SEM framework, assessments that consist of 
polytomously scored items can also be examined for item position effects. Second, the 
proposed approach is applicable to assessments in which item parameters are obtained 
using the two-parameter IRT model. Because the one-factor FA model is analogous to 
the two-parameter IRT model, it is possible to estimate item position effects when both 
item difficulty and item discrimination parameters are present in the model. Third, the 
proposed approach can be used with multidimensional test structures in which there are 
multiple latent traits underlying the data. Fourth, once significant item position effects 
are detected, other manifest and/or latent variables (e.g., gender, test motivation, and 
test anxiety) can be incorporated into the SEM model to explain the underlying reasons 
of the found effects. For example, Weirich et al. (2016) recently found in an empirical 
study that item position effects in a large-scale assessment were affected by the exami-
nees’ test-taking efforts. Response time effort (Wise and Kong 2005) and disability sta-
tus (Abedi et al. 2007; Bulut et al. 2016) are other important factors highlighted in the 
literature.

Next, the results from an empirical study first are presented to demonstrate the use 
of the proposed SEM approach for investigating three types of position effects that 
are likely to occur in large-scale assessments: test form (or booklet) effect, passage (or 
testlet) position effect, and item position effect. Real data from a large-scale reading 
assessment are used for the empirical study. The interpretation of the estimated posi-
tion effects and model comparisons are explained. Then, the results from a Monte Carlo 
simulation study are presented to investigate the extent to which the proposed SEM 
approach can detect item position effects accurately. For both the empirical and Monte 
Carlo studies, Mplus (Muthén and Muthén 1998–2015) is used because of its flexibility 
to formulate and evaluate IRT models within a broader SEM framework and its exten-
sive Monte Carlo simulation capabilities (e.g., Glöckner-Rist and Hoijtink 2003; Lu et al. 
2005).

Empirical study
Data

Position effects were evaluated using data from a large-scale statewide reading assess-
ment administered annually to all students in elementary, middle, and high schools. The 
assessment was delivered as either a computer-based test or a paper-and-pencil test, 
depending on the availability of computers in the schools. The paper-and-pencil ver-
sion was administered to the students using a single test form that consisted of the same 
items in the same positions. Unlike the paper–pencil version, the computer-based ver-
sion was administered to the students by randomizing the positions of the items across 
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the students. The sample used in this study consisted of 11,734 third-grade students who 
completed the reading test of the statewide assessment on a computer.

Instrument

The reading test consisted of 45 multiple-choice items related to seven reading passages. 
The positions of reading passages and items varied across students, while the positions 
of the items within each passage remained unchanged. This process resulted in four 
different patterns of item positions on the test, which were referred to as test forms in 
this study. Table  1 shows the demographic characteristics of the students across the 
four forms. The forms were similar in terms of sample sizes and students’ demographic 
characteristics. 

Model formulations

Four SEM models were specified and analyzed. The first model (M1) was the baseline 
model because it did not include any predictors for item position effects. M1 was equiva-
lent to the Rasch model because the item parameters in the selected reading assessment 
were originally calibrated using the Rasch model. The remaining three models (i.e., M2 
to M4) were designed to evaluate form effects, passage position effects, and item posi-
tion effects, respectively. The proposed models are shown in Fig. 2. In each model, a uni-
dimensional latent variable (i.e., reading ability) predicted a set of manifest variables (i.e., 
reading items). For models M2–M4, there were also additional predictors for the form, 
passage position, and item position effects.

Rasch model (M1)

The first model was the Rasch model. It did not include any predictors for examining 
positions effects. Under the SEM framework, M1 is equivalent to a one-factor model 
with all factor loadings fixed to 1 (see Fig. 1a). The latent variable defines the reading 
ability and the intercepts of the items are equivalent to item difficulties.

Form effects model (M2)

This model examined the form effects using indicators of test forms as categorical pre-
dictors. The SEM formulation of M2 can be written as follows:

Table 1  Demographic summary of the students across test forms

Variable Form 1 Form 2 Form 3 Form 4

N % N % N % N %

Gender

 Female 1460 49.1 1471 49.2 1477 50 1419 49

 Male 1515 50.9 1517 50.8 1479 50 1478 51

Ethnicity

 American Indian 50 1.7 63 2.1 34 1.2 57 2

 Asian 65 2.2 61 2 62 2.1 65 2.2

 Black 272 9.1 259 8.7 236 8 249 8.6

 Hispanic 373 12.5 465 15.6 428 14.5 398 13.7

 White 2215 74.5 2140 71.6 2196 74.3 2128 73.5
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where form1, form2, and form3 are the dummy codes for the three test forms (using the 
fourth test form as the reference form), β1, β2, and β3 are the regression coefficients that 
represent the differences between the overall difficulty of the three test forms and the 
reference test form. Note that β1, β2, and β3 do not have the subscript for items, indicat-
ing that the form effects were constrained to be the same across all items. Under the 
SEM framework, M2 is equivalent to a one-factor model with all factor loadings fixed to 
1 and with form1 to form3 as additional predictors (see Fig. 1b).

Passage position effects model (M3)

This model examined passage position effects by incorporating passage positions into 
the SEM model as predictors. Given item i belongs to passage h, the SEM formulation of 
M3 can be shown as

where passage positionh is the position of passage h across all examinees and βh is the 
regression coefficient that represents the impact of one unit change in the position of 
passage h on the difficulty of items linked to passage h. Note that the passage position 
effect was constrained to be the same for all items linked to passage h. Under the SEM 

(5)y∗i = �iη + β1form1 + β2form2 + β3form3 + εi,

(6)y∗i = �iη + βh ∗ passage positionh + εi,

a b

c d
Fig. 2  Structural equation models to estimate a the Rasch model, b form effects, c passage position effects, 
and d item position effects (Note: In all figures, i stands for item; in b, f stands for manifest variables for form 
effects; in c, pp stands for manifest variables for passage position effects; and in d, ip stands for manifest vari-
ables for item position effects)
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framework, M3 is equivalent to a one-factor model with all factor loadings fixed to 1 and 
with passage positionh as an additional predictor (see Fig. 1c).

Item position effects model (M4)

The last model examined individual item position effects by incorporating item posi-
tions into the model as predictors. The SEM formulation of M4 is given as:

where item positioni is the position of item i across all examinees, and βi is the regres-
sion coefficient that represents the impact of one unit change in the position of item i 
on the difficulty of item i. Unlike the first three models summarized above, this model 
allows the effect of item position on each item to vary across items. Under the SEM 
framework, M4 is equivalent to a one-factor model with all factor loadings fixed to 1 and 
with item positioni as an additional predictor (see Fig. 1d).

Model estimation

Table 2 demonstrates the layout of the data structure for estimating the four SEM mod-
els (M1 to M4) summarized above. The SEM models were estimated using the maximum 
likelihood estimation with robust standard errors ‘MLR’ in Mplus 7 (Muthén and 
Muthén 1998–2015). The MLR estimator was chosen over the maximum likelihood esti-
mator because it adjusts the standard errors of the parameter estimates when the data 
do not meet the multivariate normality assumption, which is often the case with binary 
and ordinal manifest variables (Li 2016). Mplus also provides alternative model estima-
tors—such as WLSMV3 and MLM—for the estimation of FA and SEM models with 
binary manifest variables [see Brown (2006), chapter 9, for a discussion of the estimators 
for categorical data]. The Mplus codes for estimating the passage and item position 
effects are provided in “Appendices 1 and 2”.

All of the SEM models converged in less than two minutes. The estimated regression 
coefficients for the form, passage, and item position effects were evaluated. Then, the 
baseline model (i.e., M1) was compared to the other SEM models (M2 to M4) using a 
Chi square difference test based on loglikelihood values and scaling correction factors 
obtained from the SEM models. The scaling correction term (ccorrection) and the adjusted 
Chi square value (χ2

adjusted) for the difference test can be computed as follows:

(7)y∗i = �iη + βi ∗ item positioni + εi,

3  When the WLSMV estimator was used, the SEM models in the empirical study did not converge due to high correla-
tions among passage and item position variables.

Table 2  The layout of the data structure for the SEM analysis

i1 to i45: dichotomous item responses; f1 to f4: dummy variables for the test forms; pp1 to pp7: passage positions; ip1 to ip45: 
item positions. Only one examinee from each test form was used to demonstrate the data layout

Examinees Item responses Forms Passage positions Item positions

i1 … i45 f1 f2 f3 f4 pp1 … pp7 ip1 … ip45

1 1 0 0 0 1 … 7 46 … 4

2 0 1 0 0 2 … 4 45 … 3

3 0 0 1 0 1 … 6 52 … 5

4 0 0 0 1 3 … 4 52 … 6
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where df  is the number of parameters in the model, c is the scaling correction factor, L 
is the loglikelihood value from the estimated model, and subscripts 0 and 1 represent 
the baseline (i.e., M1) and the comparison models (either M2, M3, or M4), respectively. 
Finally, the relative fit of the non-nested SEM models (M2, M3, and M4) was compared 
using the AIC and BIC model-fit indices.

Results
Rasch model

The Rasch model (M1) was the baseline model without any predictors for form, passage 
position, or item position effects. Table 3 shows the descriptive statistics of the latent 
trait estimates obtained from the Rasch model across the four test forms. The distribu-
tions of the latent trait from the four test forms were similar when the form effects, pas-
sage position effects, and item position effects were ignored.

Form effects

M2 included the indicators for the test forms in the SEM model to examine the overall 
differences in the item difficulty levels across the four forms. Using one form as the ref-
erence form, the estimated regression coefficients indicated the overall difficulty differ-
ences between the reference form and the other three forms. The estimated regression 
coefficients for the form effects ranged from −0.032 to 0.032. None of the form effects 
was statistically significant at the alpha level of α = .05, suggesting that the forms did not 
differ in terms of their overall difficulty.

Passage position effects

Table 4 shows the estimated passage positions effects from M3. The results indicated that 
passages 1, 4, and 5 showed significant passage position effects (−.029, −.044, and −.08, 
respectively). For example, if the position of passage 5 is increased by 1, then difficulties 
of the items linked to passage 5 would increase by .08 logit. Using the estimated passage 
position effect, the adjusted difficulty of each item linked to passage 5 can be computed. 
For example, the first item associated with passage 5 has a difficulty of −2.228. For the 

(8)ccorrection = (df0 ∗ c0 − df1 ∗ c1)
(df0 − df1)

, and

(9)χ2
adjusted = −2(L0 − L1)

ccorrection
, with dfadjusted =

(

df0 − df1
)

,

Table 3  Descriptive statistics of  latent trait estimates from  the Rasch model across  four 
test forms

Form N M SD Min Max

1 2975 −.01 1.02 −3.17 2.06

2 2901 .01 1.04 −2.75 2.06

3 2897 .00 1.01 −2.75 2.06

4 2961 −.01 1.04 −3.02 2.06
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students who received passage 5 in the first position on the test, the estimated difficulty 
of the item becomes −2.228+ (1 ∗ .08) = −2.148. If the same passage is administered in 
the fifth position, the difficulty of the same item becomes −2.228+ (5 ∗ .08) = −1.828 . 
Using the estimated position effects in Table 4, the impact of changes in passage posi-
tions on item difficulty can be calculated for other items and passages in a similar 
fashion.

Item position effects

Table 5 shows the estimated item positions effects from M4. The results indicated that 23 
out of the 45 items showed significant item position effects. The regression coefficients 
for item position effects ranged from −.009 to −.037. All of the significant position 
effects were negative. This finding suggests that as the positions of the items increase 
(e.g., the item moves from the 1st position to the 15th position), the difficulties of the 
items also increase and thus the probability of correctly answering the items decrease. 
The largest item position effect was −.037 for item 26, which had an estimated difficulty 

Table 4  Summary of estimated passage position effects

The order of passages in Form 1 was used as the reference. Standard errors of the estimated effects are shown in the 
parentheses

* p < .05, ** p < .01, *** p < .001

Passage Number of items Position effect

1 6 −.029 (.014)*

2 6 .000 (.021)

3 8 .023 (.013)

4 6 −.044 (.015)**

5 6 −.080 (.014)***

6 6 .004 (.014)

7 7 −.008 (.008)

Table 5  Summary of estimated item position effects

* p < .05; ** p < .01; *** p < .001

Item Position effect Item Position effect Item Position effect

1 −.008 (.005) 16 −.009 (.003)** 31 .006 (.004)

2 −.015 (.005)** 17 −.012 (.003)*** 32 .006 (.004)

3 −.025 (.005)*** 18 −.003 (.003) 33 −.007 (.005)

4 .000 (.004) 19 −.011 (.003)** 34 .001 (.004)

5 −.014 (.005)** 20 −.015 (.003)*** 35 −.007 (.004)

6 .009 (.005) 21 −.005 (.005) 36 −.005 (.004)

7 −.004 (.005) 22 .007 (.005) 37 −.010 (.004)*

8 −.023 (.005)*** 23 −.014 (.005)** 38 −.008 (.004)

9 .003 (.006) 24 −.015 (.005)** 39 −.011 (.004)**

10 −.017 (.006)** 25 .002 (.006) 40 −.014 (.006)*

11 −.023 (.006)*** 26 −.037 (.007)*** 41 −.015 (.004)***

12 −.030 (.007)*** 27 −.020 (.005)*** 42 −.005 (.004)

13 −.014 (.006)* 28 −.004 (.005) 43 −.023 (.005)***

14 −.013 (.006)* 29 −.002 (.004) 44 −.006 (.003)

15 −.008 (.003)* 30 −.005 (.004) 45 −.004 (.004)
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of −3.244. If item 26 was administered in the first position on the test, then the esti-
mated difficulty of the item would become −3.244 + (1 ∗ .037) = −3.207. If, however, 
the same item was administered at the 45th position (i.e., the last question) on the test, 
then the estimated difficulty of the item would become −3.244 + (45 ∗ .037) = −1.579 . 
This finding suggests that changes in the position of this item could substantially 
increase or decrease the probability of answering the item correctly. Adjusted difficul-
ties of other items with regard to their positions on the test can be calculated in the same 
way.

Model comparison

Table 6 shows model fit information from the SEM models. In addition to the four mod-
els described earlier, there was a variant of M4 that only included the significant item 
position effects in M4. Using the Chi square difference test described in Eqs. 8 and 9, the 
SEM models with either passage position or item position effects (M3 and M4) indicated 
significantly better model-data fit than the Rasch model (M1), whereas the SEM model 
with form effects (M2) was not better than the Rasch model in terms of model-data fit. 
This finding is not surprising given the non-significant form effects in M2. Among the 
four models that included additional predictors, M2 with form effects indicated the 
worst model fit, whereas M4 with only significant item position effects indicated the best 
model fit based on both AIC and BIC.

Simulation study
The empirical study demonstrated that the SEM approach is capable of detecting differ-
ent types of position effects in large-scale assessments. In the second part of this study, 
the Monte Carlo simulation capabilities of Mplus (Muthén and Muthén 1998–2015) 
were used to investigate the extent to which the proposed SEM approach can detect 
item position effects accurately. More specifically, the recovery of the SEM model in the 
presence of a linear position effect on item difficulty was evaluated. Hit rates in detecting 
items with the linear position effect and Type I error rates in flagging items with no posi-
tion effects were examined via simulated data sets.

Simulation design

To model the item characteristics of a large-scale assessment, item difficulty parame-
ters obtained from the Rasch model in the empirical study were used as the population 

Table 6  Summary of the model fit information from the SEM models

* This model only included the significant item position effects in M4

** The model fits the data significantly better than M1 at the alpha level of α = .05

Model Number of parameters Loglikelihood value Scaling factor AIC BIC

M1: Rasch model 45 −257,591 0.992 515,272 515,604

M2: Form effect 48 −257,590 1.008 515,277 515,631

M3: Passage position 
effect

52 −257,571** 1.007 515,246 515,629

M4: Item position effect 90 −257,420** 0.991 515,019 515,683

M4: Item position effect* 68 −257,437** 0.992 515,010 515,511
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parameters when generating item responses in the simulation study. The item difficulty 
parameters ranged from −2.894 to 0.196 (M = −1.22, SD =  0.63). Examinees’ latent 
traits were drawn from a standard normal distribution, η ∼ N (0, 1). Two test forms with 
45 dichotomous items were created. Six items were manipulated to have linear posi-
tion effects and the difficulty of the remaining items were not influenced by position 
changes. Table 7 shows how item difficulty parameters of the six items were manipulated 
as a result of their positions across the two test forms. There was no correlation between 
item positions and the latent trait because item positions were randomly determined 
independent of the latent trait.

The simulation study consisted of three factors: (a) the magnitude of the linear posi-
tion effect on item difficulty (.01 and .02 per one position change); (b) sample size (1000, 
5000, and 10,000 examinees); and (c) the size of position change for the six manipulated 
items across two forms (+10, +25, and +40 positions). The chosen values for the linear 
position effect were similar to those found in the empirical study as well as the position 
effects reported in earlier studies (e.g., Debeer and Janssen 2013). Similarly, sample size 
values resemble the number of examinees from previous empirical studies on item posi-
tion effects (e.g., Bulut et al. 2016; Debeer and Janssen 2013; Qian 2014; Weirich et al. 
2016). For each crossed condition, 1000 data sets were generated.

Model estimation
Each simulated data set was analyzed in Mplus using the SEM model in Eq. 7. Hit rates 
(i.e., correctly detecting items with a linear position effect) and Type I error rates (i.e., 
falsely flagging items with no position effects) were evaluated. Furthermore, recovery 
of item difficulty parameters was studied descriptively with root mean squared error 
(RMSE) and mean error (ME) as follows:

(10)RMSE = 1

K





K
�

k=1

�

�n
i=1(bi − b̂i)2

n



,

(11)ME = 1

K

(

K
∑

k=1

∑n
i=1(bi − b̂i)

n

)

,

Table 7  Summary of the items with linear position effects in the simulation study

Position 
in form 1

Position 
in form 2

Change 
in position

Position 
effect 
per one posi-
tion

Total posi-
tion effect

Item diffi-
culty in form 
1

Item difficulty 
in form 2

1 41 40 −.01 −.4 −0.99 −0.59

2 27 25 −.01 −.25 −0.98 −0.73

3 13 10 −.01 −.1 −0.97 −0.87

4 44 40 −.02 −.8 −0.92 −0.12

5 30 25 −.02 −.5 −0.90 −0.40

6 26 10 −.02 −.2 −0.88 −0.68
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where bi is the true value of item difficulty of item i, b̂i is the estimated value of item 
difficulty for item i, and n is the total number of items (i.e., 45), and K is the number of 
replications (i.e., 1000).

Results
Table 8 shows the results of the simulation study. The 95% coverage indicates the propor-
tion of replications for which the 95% confidence interval contains the population value of 
the linear position effect. Hit rate is the proportion of replications for which the items with 
position effects were correctly flagged for exhibiting a linear position effect at the α = .05 
level. Type I error rate is the average proportion of replications for which the items with 
no position effects were falsely flagged for exhibiting a linear position effect at the α = .05 
level. For every crossed condition, the estimated values of the position effect were very 
similar to the population values of the position effect. Furthermore, the 95% coverage col-
umn in Table 8 shows that the 95% confidence intervals of the estimated position effects 
covered the population values of the position effects 94% or more of the time. These find-
ings suggest that the SEM model could successfully recover the position effect parameters, 
even when the size of the position effect was small and sample size was not large.

Hit rates appeared to vary depending upon sample size, the magnitude of the posi-
tion effect, and the size of position change between two forms. When the magnitude 
of the position effect was larger (β = −.02 per one position change), hit rates were 
very high, except for the condition where sample size was 1000 and the size of position 
change between two forms was 10. Hit rates improved as sample size, the magnitude 

Table 8  Hit rates and Type I error rates in the simulation study

Simulation factors Estimated position effect Estimated 
item difficulty

Sample 
size

Position 
effect

Change 
in position

Total posi-
tion effect 
(β)

β̂ 95% cov-
erage

Hit rate Type I 
error rate

RMSE ME

1000 −.01 40 −.4 −.405 .958 .723 .051 .0058 .0033

−.01 25 −.25 −.248 .951 .351

−.01 10 −.1 −.097 .951 .086

−.02 40 −.8 −.805 .947 .999

−.02 25 −.5 −.504 .957 .892

−.02 10 −.2 −.204 .948 .252

5000 −.01 40 −.4 −.402 .951 1 .049 .0017 .0007

−.01 25 −.25 −.249 .953 .945

−.01 10 −.1 −.099 .946 .279

−.02 40 −.8 −.8 .94 1

−.02 25 −.5 −.499 .96 1

−.02 10 −.2 −.203 .96 .821

10,000 −.01 40 −.4 −.402 .947 1 .049 .0009 <.0001

−.01 25 −.25 −.248 .95 .999

−.01 10 −.1 −.099 .951 .48

−.02 40 −.8 −.8 .942 1

−.02 25 −.5 −.498 .961 1

−.02 10 −.2 −.202 .954 .976
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of the magnitude of the position effect, and the size of position change between two 
forms increased. Hit rates for the condition in which the magnitude of the position effect 
was −.01 per one position change and the size of position change was 10 remained low, 
despite increasing sample size from 1000 to 10,000. The average Type I error rates for 
the items with no position effects were near the nominal rate (α = .05), which indicates 
that the SEM model did not falsely flag items for exhibiting position effects. The RMSE 
and ME values for the estimates of item difficulty were quite small, suggesting that the 
recovery of the item difficulty parameters was good. The size of the RMSE and ME val-
ues decreased even further as sample size increased.

Discussion and conclusions
Item position effect, which often is viewed as a context effect in assessments (Brennan 
1992; Weirich et  al. 2016), occurs when the difficulty or discrimination level of a test 
item varies depending on the location of the item on the test form. For example, the 
difficulty of an item can increase in later positions due to a fatigue effect or decreas-
ing test-taking effort (Hohensinn et  al. 2011; Weirich et  al. 2016). To investigate item 
position effects, researchers have proposed different approaches using logistic regres-
sion (e.g., Davey and Lee 2011; Pomplun and Ritchie 2004), multilevel IRT models based 
on the GLMM framework (e.g., Albano 2013; Li et al. 2012; Weirich et al. 2014), and test 
equating (e.g., Pommerich and Harris 2003; Meyers et al. 2009; Store 2013). The purpose 
of the current study was to introduce a factor analytic approach for modeling item posi-
tion effects using the SEM framework. In the first part of the study, the methodological 
capabilities of the proposed SEM approach were illustrated in an empirical study using 
data from an operational testing program in reading. Test form, passage position, and 
item position effects were investigated. In the second part of the study, a Monte Carlo 
simulation study was conducted to evaluate the accuracy of the SEM approach in detect-
ing item position effects. The simulation study showed that the SEM approach is quite 
accurate in detecting linear item position effects, except for the conditions in which both 
the number of examinees and the magnitude of the item position effect are small.

The proposed SEM approach contributes to the literature of item position effects in 
large-scale assessments in three ways. First, the SEM approach allows researchers and 
practitioners to examine both linear position effects and interaction effects in the same 
model. It is typically assumed that item difficulty linearly increases or decreases as the 
items are administered in later positions. However, changing item positions can also result 
in changes in item difficulty as a result of the interaction of item positions and the latent 
trait (e.g., Debeer and Janssen 2013; Weirich et al. 2014). Hence, it is important to evaluate 
both linear position effects and interaction effects when designing a large-scale assessment 
containing multiple forms with different item orders or with randomized item ordering. 
Second, the SEM approach presented in this study is a flexible method for studying posi-
tion effects with various IRT models for dichotomously and polytomously scored items—
such as the two-parameter model, Partial Credit Model, and Graded Response Model. For 
example, the position analyses in the empirical part of this study could be easily extended 
to the two-parameter IRT model by freely estimating factor loadings of the items (see 
Fig. 2). Third, the SEM approach is applicable to large-scale assessments with more com-
plex designs, such as multiple test forms (or booklets) consisting of the same set of items in 
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different positions, test forms with completely randomized item ordering for each exami-
nee, and multiple matrix booklet designs (Gonzalez and Rutkowski 2010).

Significance and future research

The current study has important implications in terms of educational testing practices. 
First, this study evaluated position effects in a large-scale assessment. The proposed 
SEM approach can help practitioners identify problematic test items with significant 
position effects and thereby leading to large-scale assessments with improved test fair-
ness. Second, this study presents a straightforward and efficient approach to investigate 
different types of position effects (e.g., item position effect, passage position effect, and 
form effect). Hence, the proposed approach can be easily applied to assessments with a 
large number of items and examinees. Third, the results of this study can provide guid-
ance for further research on position effects in computer-based and computerized adap-
tive tests. For example, future research can focus identifying which types of items are 
more likely to exhibit position effects in computer-based assessments and computer-
ized adaptive tests. This can help practitioners select the most appropriate items when 
designing computer-based assessments and computerized adaptive tests.

This study introduced the SEM model that incorporates interaction effects, but did 
not investigate the statistical properties of the proposed model. Thus, further research is 
needed to evaluate the adequacy and accuracy of the proposed SEM model in detecting 
interaction effects. Given the increasing popularity of multidimensional IRT models, it 
would also be worthwhile to evaluate position effects in large-scale assessments that meas-
ure multiple latent traits. Finally, as Debeer and Janssen (2013) pointed out, there is a lack 
of research on the underlying reasons of item position effects in large-scale assessments. 
Future research with the SEM approach can include item-related predictors (e.g., cognitive 
demand, linguistic complexity) and examinee-related predictors (e.g., gender, test motiva-
tion, anxiety) to explain why item position effects occur in large-scale assessments.
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Appendix 2: Mplus code for testing item position effects
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