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Background
With the reauthorization of the United States Elementary and Secondary Education Act 
(referred to in 2001 as No Child Left Behind–NCLB), attention focused on the need for evi-
denced-based education research, particularly education policies and interventions that rest 
on what NCLB referred to as “scientifically based research.” In practice, this focus on scien-
tifically based education research translated into a preference for research studies based on 
the principles of randomized experimental designs. Specifically, Part A., Sec. 9101 of the No 
Child Left Behind Act, under the definition ‘Scientifically Based Research” stated

“The term ’scientifically based research’(A) means research that involves the appli-
cation of rigorous, systematic, and objective procedures to obtain reliable and valid 
knowledge relevant to education activities and programs; and (B) includes research 
that ... (iv) is evaluated using experimental or quasi-experimental designs in which 
individuals, entities, programs, or activities are assigned to different conditions and 
with appropriate controls to evaluate the effects of the condition of interest, with a 
preference for random-assignment experiments, or other designs to the extent that 
those designs contain within-condition or across-condition controls;...”

Abstract 

This paper reviews recent research on causal inference with large-scale assessments 
in education from a Bayesian perspective. I begin by adopting the potential outcomes 
model of Rubin (J Educ Psychol 66:688-701, 1974) as a framework for causal inference 
that I argue is appropriate with large-scale educational assessments. I then discuss the 
elements of Bayesian inference arguing that methods and models of causal inference 
can benefit from the Bayesian approach to quantifying uncertainty. Next I outline one 
method of causal inference that I believe is fruitful for addressing causal questions 
with large-scale educational assessments within the potential outcomes framework—
namely, propensity score analysis. I then discuss the quantification of uncertainty 
in propensity score analysis through a Bayesian approach. Next, I discuss a series of 
necessary conditions for addressing causal questions with large-scale educational 
assessments. The paper closes with a discussion of the implications for the design of 
large-scale educational assessments when the goal is in asking causal questions and 
warranting causal claims.
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Although randomized experimental and quasi-experimental designs can, under ideal 
conditions, provide a sound basis for evaluating causal claims, this does not preclude the 
possibility that reliable causal inferences can be drawn from non-experimental/observa-
tional settings.

For our purposes, the goal is to address causal questions in the context of large-scale 
educational assessments (LSAs). Examples of such LSAs include national surveys such 
as the Early Childhood Longitudinal Study (ECLS-K) and the National Assessment of 
Educational Progress (NAEP) in the United States, but also cross-national surveys such 
as the Organization for Economic Cooperation and Deveopment (OECD)’s Program for 
International Student Assessment (PISA) and the International Association for the Eval-
uation of Educational Achievement (IEA)’s Program on International Reading Literacy 
Study (PIRLS). There is an increasing desire among policymakers charged with admin-
istering LSAs to begin to address questions from a causal inferential framework and so 
new thinking about the problem of causal inference with LSAs is required.

The purpose of this paper is to review and synthesize recent work by the author on the 
issue of causal inference with LSAs. In considering causal inference in any empirical set-
ting, a theory of causal inference is needed in which to situate causal questions. Theories 
of causality abound (see Cartwright 2007); however for this paper, I situate causal infer-
ence with LSAs in the context of the potential outcomes framework of Rubin (1974). The 
statistical model that I focus on that arguably best illustrates the utility of the potential 
outcomes framework for LSAs is propensity score analysis (Rosenbaum and Rubin 1983). 
In addition, I examine propensity score analysis from a Bayesian perspective primarily 
because the Bayesian framework explicitly allows the analyst to incorporate what is rea-
sonable to believe about the causal effect into an analysis. Prior beliefs reflect the ana-
lyst’s degree-of-uncertainty about a causal effect, and the Bayesian framework is the only 
paradigm of statistics that deals directly with this type of uncertainty.1

Finally, the administration and implementation of LSAs is, arguably, much more dif-
ficult than conducting a relatively small-scale randomized experiment. In addition to 
the sheer magnitude of the project, LSAs are often guided by political considerations 
that must be acknowledged and somehow addressed in the assessment design. Thus, this 
paper will also argue for some necessary conditions when implementing an LSA when 
the goal is to address a set of causal questions. These conditions have implications for 
the design of the assessments, and these implications will also be addressed in this paper.

The present paper follows closely and synthesizes the work of Kaplan and his col-
leagues—in particular Kaplan (2009, 2014); Kaplan and Chen (2012); Chen and Kaplan 
(2015).2 The organization of this paper is as follows. I begin by providing an overview of 
the potential outcomes theory of Rubin (1974) as a framework for causal inference that I 
argue is appropriate with LSAs. I then outline the importance of the Bayesian perspec-
tive as a means of capturing uncertainty in all aspects of the causal inferential process. 
This is followed by a discussion of propensity score analysis which can be framed from 

1  In the frequentist domain, the standard error of a parameter captures the sampling variability of the parameter under 
hypothetical repeating sampling from a population; it does not capture uncertain knowledge about the parameter itself.
2  Permission to draw on this material has been obtained from Guilford Press, Springer Publications and Taylor and 
Francis. Proof of permission is available upon request.
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both a classical (frequentist) perspective as well as a Bayesian perspective. Next, I argue 
for a series of necessary steps when addressing causal questions with LSAs. The paper 
closes with a discussion of the implications of addressing causal questions with large-
scale educational assessments.

The Rubin causal model: notation and definitions
An important set of papers that have provided the statistical foundations for causal 
inference in experimental and quasi-experimental studies derives from the work of 
Neyman (1923) and Rubin (1974), see also; Holland 1986) here referred to as the Rubin 
Causal Model (RCM). Their papers provide a framework for how statistical models that 
test causal claims are different from those that test associational claims, and that statisti-
cal theory has a great deal to add to the discussion of causal inference. Moreover, their 
work has led both the statistics and social science community to a deeper appreciation 
of the counterfactual theory of causation and has served as an impetus for extensions 
of the counterfactual theory of causation to the estimation of treatment effects (see e.g. 
Morgan and Winship 2007).

In outlining the RCM it is important to note that the terminology of “cause” is not 
confined to cases of randomized experiments. The notion of “cause” (or, interchangeably 
treatment) in the RCM is relative to some other cause. Specifically, in considering the 
phrase “attendance in full-day kindergarten causes higher scores in reading proficiency”, 
the idea is that attendance in full-day kindergarten causes higher reading proficiency rel-
ative to another cause—including the possibility of “not attending kindergarten”, or in 
our case “attending part-day kindergarten”. Holland (1986) states that “For causal infer-
ence, it is critical that each unit must be potentially exposable to any one of its causes”.

As an example, I might hypothesize that attending full-day kindergarten increases a 
student’s reading proficiency because I can also envision a student not attending full-day 
kindergarten but rather attending part-day kindergarten. That is, I can set up a sensible 
counterfactual conditional statement of the sort “what if the student was not exposed 
to full-day kindergarten”. Rubin (1974) thus links exposability to counterfactual proposi-
tions and the idea of a hypothetical experiment.

To formalize these ideas, Holland (1986) starts by defining a selection variable S that 
assigns a unit i (e.g. a student) who is a member of population to either a treatment con-
dition, T = 1 or a control condition, T = 0. In randomized experiments, S is created by 
the experimenter, but in observational studies such as LSAs, assignment to a treatment 
condition often occurs naturally. In the RCM, the critical characteristic is that the value 
Si for each individual, i, could potentially be different.

The role of the outcome variable Y in the RCM is also crucial to the framework. First, 
for the variable Y to measure the effect of the cause, Y must be measured (or presumed 
to occur) post-exposure—that is after exposure to the treatment. Then, the value of the 
post-exposure outcome variable must be a result of either the cause T = 1 or the cause 
T = 0 defined on a particular student. Therefore, the RCM conceives of the same student 
providing an outcome variable after being exposed to the treatment, Y1i and after being 
exposed to the control Y0i. The causal effect defined within the RCM framework is then 
the difference between Y1 and Y0 for student i. That is for individual i, the goal, ideally, 
would be to observe the individual under receipt of the treatment and under non-receipt 



Page 4 of 24Kaplan ﻿Large-scale Assess Educ  (2016) 4:7 

of the treatment. This, then, defines the potential outcomes framework for causal infer-
ence and can be expressed formally as

where Yi is the observed outcome of interest for individual i, Y1i is the potential outcome 
for individual i when exposed to the treatment, and Y0i is the potential outcome for indi-
vidual i when not exposed to the treatment. however, as Holland (1986) points out, the 
potential outcomes framework has a serious problem—namely, it is rarely possible to 
observe the values of Y0 and Y1 on the same individual i, and therefore rarely possible to 
observe the effects of T = 1 and T = 0. Holland refers to this as the fundamental prob-
lem of causal inference.

A statistical solution to the Fundamental Problem offered by Holland (1986) is to make 
use of the population to which individual i belongs. In this case, the average treatment 
effect, can be defined (relative to the control group) as the expected value of the differ-
ence between Y1 and Y0 over the units in the population—viz.

where ATE is the average treatment effect, simplified as

To quote Holland (1986),  “The important point is that the statistical solution replaces 
the impossible-to-observe causal effect of T on a specific unit with the possible-to-esti-
mate average treatment effect of T over a population of units” (p. 947. Italics in original).

Much more can be said about the RCM, but what must be discussed is Holland’s 
notion of what constitutes a cause, as his views are central to the arguments made in this 
paper. Holland writes

“Put as bluntly and as contentiously as possible... I take the position that causes are 
only those things that could, in principle, be treatments in experiments. The quali-
fication, “in principle” is important because practical, ethical, and other consider-
ations might make some experiments infeasible, that is, limit us to contemplating 
hypothetical experiments.”

In the final analysis, four points are crucial to an understanding of the RCM frame-
work. First, the goal should be to seek out the effect of causes and not necessarily the 
causes of effects. For Holland, seeking out the causes of effects is valuable, but because 
our knowledge of causes is provisional, it is more valuable for a theory of causation to 
examine effects of causes. Second, effects of causes are always relative to other causes—
particularly, the control. For Holland, and Campbell and Stanley (1966) before him, 
experiments that do not have a control condition are not experiments. Third, not eve-
rything can be a cause, and specifically, attributes cannot be causes. For example, an 
attribute of an individual, such as gender or race cannot be a cause since the notion of 
potential exposability of the unit to all levels of the treatment is not possible without also 
changing many other aspects of the individual. I cannot conceive of a situation in which 
I wish to know what a reading proficiency score would be if a female child were male, 
because potential exposability is simply not possible. In the context of attributes, all that 

(1)Yi = TiY1i + (1− Ti)Y0i,

(2)E(Y1 − Y0) = ATE,

(3)ATE = E(Y1)− E(Y0).
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can be derived are associations, and although associations are important and suggestive 
of variables that might moderate causal effects, they cannot be causes in the sense of 
the RCM framework. In other words, for Rubin (1974) and Holland (1986), there can be 
“no causation without manipulation” (Holland 1986, p. 959). That is, the RCM requires 
that the treatment is something under the direct or hypothetical manipulation of an 
investigator.

Assumptions of the Rubin causal model

The Rubin causal model rests on two very important assumptions of relevance to its 
application with large-scale assessments. The first assumption is referred to as strong 
ignorability of treatment assignment, also referred to as no confounding or no hidden 
bias. Formally, the assumption of strong ignorability states

where Z is a set of observed covariates. In words, Eq. (4) states that given a set of covari-
ates Z the potential outcome under the treatment Y1 or control Y0 are independent of 
the treatment assignment mechanism. Strong ignorability will hold in randomized 
experiments where the treatment assignment (for a binary treatment) is obtained as a 
Bernoulli random variable. however, for observational data, the extent to which strong 
ignorability holds is dependent on Z.

The strong ignorability assumption is not plausible in LSAs or observational studies 
in general. This is because it is virtually impossible in observational studies to measure 
all necessary covariates that can be used to control for the non-random assignment of 
students to treatments. Any unobserved covariates that relate to treatment assignment 
will result in a violation of the strong ignorability assumption. Below I will consider the 
concept of the causal field discussed in Mackie (1974) to help restrict our measurement 
of covariates to those that are of immediate concern to the causal question at hand.

The second assumption underlying the Rubin Causal Model is the so-called Stable 
Unit Treatment Value Assumption–SUTVA. The SUTVA has two conditions. The first 
condition states that the treatment status of any unit does not affect the potential out-
comes of the other units. Given that a treatment in the context of LSAs represents a 
self-reported (or parent-reported status (e.g. attendance in full-day or part-day kinder-
garten), it is unlikely that this part of SUTVA would be violated. The second condition of 
SUTVA is that the treatment for all units is comparable. This assumption is much harder 
to verify, particularly in international LSAs, because of the possibility of cross-national 
differences in the meaning of a particular causal variable.

The Bayesian perspective
In the previous section I overviewed the RCM framework of causal inference that I argue 
is applicable to LSAs. Because, as noted by Holland, statistics plays a crucial role in the 
causal inference enterprise, a statistical framework is required to move to the next step 
of estimating the causal effect. Estimation of the causal effect of interest can proceed 
from the classical (frequentist) perspective or from the Bayesian perspective. I adopt a 
Bayesian perspective insofar as the Bayesian inferential paradigm represents a coher-
ent system whereby all forms of uncertainty can be addressed when considering a causal 

(4){Y0,Y1} ⊥ T |Z,
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question with LSAs. A general treatment of Bayesian statistics with applications to LSAs 
can be found in Kaplan (2014).

To briefly overview the Bayesian paradigm, denote by Y an outcome variable such as 
a student’s score on the ECLS-K reading proficiency assessment. Next, denote by θ a 
parameter that is believed to characterize the probability model of interest. For example 
θ could be the effect of attending full-day kindergarten (i.e. the regression coefficient on 
the dummy variable “attended full-day kindergarten or part-day kindergarten. Our con-
cern is with determining the probability of observing Y given the unknown parameters 
θ, which I write as p(Y |θ). In statistical inference, the goal is to obtain estimates of the 
unknown parameters given the data.

The key difference between Bayesian statistical inference and frequentist statistical 
inference concerns the nature of the unknown parameters θ. In the frequentist tradi-
tion, the assumption is that θ is unknown but has a fixed value that we wish to estimate. 
In Bayesian statistical inference, θ is also considered unknown but instead is vieId as a 
random variable which needs to be described by a probability distribution that reflects 
our uncertainty about the true value of θ. Because both the observed data Y and the 
parameters θ are treated as random variables, we can model the joint probability of the 
parameters and the data as a function of the conditional distribution of the data given 
the parameters and the prior distribution of the parameters. More formally,

where p(θ ,Y ) is the joint distribution of the parameters and the data. Using Bayes’ theo-
rem, we obtain the following

Note that the denominator of Eq. (6) does not involve model parameters, so we can omit 
the term and obtain the unnormalized posterior distribution

Equation (7) represents the core of Bayesian statistical inference and is what separates 
Bayesian statistics from frequentist statistics. In the context of our kindergarten-type 
attendance example, Eq. (7) states that our uncertainty regarding the effect of full-day 
kindergarten attendance on reading proficiency as expressed by the prior distribution 
p(θ), is weighted by the actual data p(Y |θ), yielding an updated estimate of our uncer-
tainty, as expressed in the posterior density p(θ |Y ).

The immediate question that arises is how do we characterize our uncertainty about 
the effect of full-day kindergarten program attendance on reading proficiency? This is 
referred to as the “elicitation problem”, which has been discussed in detail in O’Hagan 
et  al. (2006), and is beyond the scope of this paper. However, following the discus-
sion given in Kaplan (2014), the general approach to specifying a prior distribution 
for the causal effect is to consider first what is reasonable to believe about the effect 
and to further consider the source of our belief. This issue has also been discussed by 
Leamer (1983) who orders priors on the basis of degree of confidence. Leamer’s hierar-
chy of confidence is as follow: truths (e.g. axioms) > facts (data) > opinions (e.g. expert 

(5)p(θ ,Y ) = p(Y |θ)p(θ),

(6)p(θ |Y ) =
p(θ ,Y )

p(Y )
=

p(Y |θ)p(θ)

p(Y )
,

(7)p(θ |Y ) ∝ p(Y |θ)p(θ).
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judgement) > conventions (e.g. pre-set alpha levels). An interesting feature of this hier-
archy, as noted by Leamer, concerns the inherent lack of “objectivity” in such choices 
as pre-set alpha levels, or any of a number of conventions used in frequentist statistics. 
Leamer (1983) goes on to argue that the problem should be to articulate exactly where 
a given investigation is located on this hierarchy. The strength of Bayesian inference lies 
precisely in its ability to incorporate existing knowledge into statistical specifications.

In the next section I discuss one method of causal inference—propensity score analysis 
that is directly situated within the RCM framework and has recently been extended to 
the Bayesian framework.

Propensity score analysis
An implication of the RCM is that because we are unable to observe the outcomes of an 
individual under both treatment and control we need to find individuals in both groups 
that serve as each others’ counterfactuals. Thus, in order to warrant causal inferences in 
the setting of LSAs, individuals in treatment conditions should be matched as closely 
as possible to those in the control condition on observed pre-treatment assignment 
variables.

As a motivating example, consider again the effect of full- vs part-day kindergarten 
attendance on reading proficiency using data from ECLS-K (National Center for Edu-
cation Statistics 2001). To warrant the claim that full-day kindergarten attendance 
increases reading proficiency, a researcher would need to find children who attended 
full-day kindergarten who are as similar as possible to those children who attended part-
day kindergarten on characteristics that might lead to selection into one or the other 
kindergarten program. These characteristics should have been measured (or hypotheti-
cally present) before the child’s selection into kindergarten program type (e.g. parental 
socio-economic status). Various forms of pre-treatment equating are available (see e.g. 
Rässler 2002; Rubin 2006). For this paper, I focus our attention on propensity score anal-
ysis as a method for equating groups on the basis of pre-treatment variables that are 
putatively related to the probability of having been observed in one or the other of the 
treatment conditions.

The propensity score

In their seminal paper, Rosenbaum and Rubin (1983) proposed propensity score analy-
sis as a practical tool for reducing selection bias through balancing treatment and con-
trol groups on measured covariates. Since then, a variety of propensity score techniques 
have been developed for both the estimation and the application of the propensity score. 
Models for estimating the propensity score equation have included parametric logit 
regression with chosen interaction and polynomial terms (e.g., Dehejia and Wahba 1999; 
Hirano and Imbens 2001a), and generalized boosting modeling (McCaffrey et al. 2004), 
to name a few. Methods for estimating the treatment effect while accounting for the pro-
pensity score include stratification, weighting, matching, and regression adjustment Guo 
and Fraser (2010).

More formally, consider first the potential outcomes model in Eq. (1). Under this 
model, the probability that individual i receives the treatment can be expressed as

(8)ei = p(T = 1|Y1i,Y0i,Zi,Ui),
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where Ui contain unobserved covariates. Notice that in an LSA, (Y0i,Y1i,Ui) are not 
observed. Thus, it is not possible to obtain the true propensity score. Instead, we esti-
mate the propensity score based on covariates Z. Specifically,

which is referred to as the estimated propensity score.
The estimated propensity score ê(Z) has many important properties. Perhaps the most 

important property is the balancing property, which states that those in T = 1 and T = 0 
with the same ê(Z) will have the same distribution on the covariates Z. Formally, the bal-
ancing property can be expressed as

or equivalently as

Implementation of the propensity score

There are four approaches that are commonly used in implementing the propensity 
score (a) stratification on ê(Z), (b) propensity score weighting, (c) optimal full match-
ing, and (d) propensity score regression. Propensity score stratification involves form-
ing strata directly on the basis of the observed propensity score. Subclassification into 
five strata on continuous distributions such as the propensity score has been shown to 
remove approximately 90 % of the bias due to non-random selection effects (Cochran 
1968, see also Rosenbaum and Rubin 1983). However, for stratification on the propensity 
score to achieve the desired effect, the assumption of no hidden biases must hold.

Assuming no hidden biases, Rosenbaum and Rubin (1983) proved that when units 
within strata are homogeneous with respect to ê(Z), then the treatment and control 
units in the same stratum will have the same distribution on Z. Moreover, Rosenbaum 
and Rubin showed that instead of using all of the covariates in Z, a certain degree of par-
simony can be achieved by using the coarser propensity score ê(Z). Finally, Rosenbaum 
and Rubin (1983) showed that if there are no hidden biases, then units with the same 
value on a balancing score (e.g., the propensity score), but assigned to different treat-
ments, will serve as each other’s control in that the expected difference in the responses 
of the units is equal to the average treatment effect.

Still another approach to implementing the propensity score is based on weighting. 
Specifically, propensity score weighting is based on the idea of Horvitz–Thompson 
sampling weights (Horvitz and Thompson, 1952), and is designed to weight the treat-
ment and control group participants in terms of their propensity scores. Weights can 
be defined to yield either the average treatment effect or the average treatment effect on 
the treatment. The details of this approach can be found in Hirano and Imbens (2001b), 
Hirano et al. (2003), and Rosenbaum (1987).

The third common approach for implementing the propensity score is based on the 
idea of statistical matching (see e.g. Hansen 2004; Hansen and Klopfer 2006; Rässler 
2002; Rosenbaum 1989). Following Rosenbaum (1989), consider the problem of match-
ing a treated unit to a control unit on a vector of covariates. In observational studies, 
the number of control units typically exceeds the number of treated units. A matched 

(9)ê(Z) = p(T = 1|Z),

(10)p{Z|T = 1, ê(Z)} = p{Z|T = 0, ê(Z)},

(11)T ⊥ Z|ê(Z).
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pair is an ordered pair (i, j), with 1 ≤ i ≤ N  and 1 ≤ j ≤ M denoting that the ith treated 
unit is matched with the jth control unit. As defined by Rosenbaum (1989), “A complete 
matched pair is a set I of N disjoint matched pairs, that is N matched pairs in which 
each treated unit appears once, and each control unit appears either once or not at all”  
(p. 1024).

Rosenbaum suggests two aspects of a “good” match. The first aspect is based on the 
notion of close matching in terms of a distance measure on the vector of covariates – for 
example, nearest neighbor matching. Obtaining close matches becomes more difficult as 
the number of covariates increases. Another aspect of a good match is based on covari-
ate balance, for example, obtained on the propensity score. If distributions on the pro-
pensity score within matched samples are similar, then there is presumed to be balanced 
matching on the covariates.

Finally, the propensity score can be implemented directly into the regression that is 
used to estimate the treatment effect on the outcome. This is referred to as propensity 
score regression adjustment.

Bayesian propensity score analysis
Propensity score analysis has been used in a variety of settings, including economics, 
education, epidemiology, psychology, and sociology. For comprehensive reviews see 
e.g. Guo and Fraser (2010), Steiner and Cook (2013), and Thoemmes and Kim (2011). 
Historically, propensity score analysis has been implemented within the frequentist per-
spective of statistics. In addition to the literature on frequentist-based propensity score 
analysis, there also exists literature examining propensity score analysis from a Bayesian 
perspective.

 Rubin (1985) argued that because propensity scores are, in fact, randomization prob-
abilities, a Bayesian approach to propensity score analysis should be of great interest 
to the applied Bayesian analyst, and yet propensity score estimation within the Bayes-
ian framework was not addressed until relatively recently. Hoshino (2008) developed a 
quasi-Bayesian estimation method for general parametric models, such as latent variable 
models, and developed a Markov chain Monte Carlo (MCMC) algorithm to estimate the 
propensity score. McCandless et al. (2009) provided a practical Bayesian approach to pro-
pensity score stratification, estimating the propensity score and the treatment effect and 
sampling from the joint posterior distribution of model parameters via an MCMC algo-
rithm. The marginal posterior probability of the treatment effect can then be obtained 
based on the joint posterior distribution. Similar to the McCandless et al. (2009) study, 
An (2010) presented a Bayesian approach that jointly models both the propensity score 
equation and outcome equation at the same time and extended this one-step Bayesian 
approach to propensity score regression and single nearest neighbor matching methods.

A consequence of the Bayesian joint modeling procedure utilized by McCandless et al. 
(2009) and An (2010) is that the posterior distribution of the propensity score may be 
affected by the outcome variable that are observed after treatment assignment, result-
ing in biased propensity score estimation. In order to maintain a fully Bayesian frame-
work while overcoming the conceptual and practical difficulties of the joint modeling 
methods of McCandless et  al. (2009) and An (2010), a two-step Bayesian propensity 
score approach (BPSA) was recently developed by Kaplan and Chen (2012) that can 
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incorporate prior information on the model parameters of both the propensity score 
equation and outcome model equation. Consistent with Bayesian theory (see e.g., 
Kaplan 2014), specifying prior distributions on the model parameters is a natural way to 
quantify uncertainty—here in both the propensity score and outcome equations.

A two‑step Bayesian propensity score analysis

A recent paper by Kaplan and Chen (2012) advanced a two-step approach to Bayes-
ian propensity score analysis that was found to quite accurately estimate the treatment 
effect, while at the same time preventing undesirable feedback between the propensity 
score model and the outcome model.

In the Kaplan and Chen (2012) two-step Bayesian propensity score approach (hereaf-
ter, BPSA), the propensity score model specified was the following logit model.

where α is the intercept, β refers to the slope and Z represents a set of chosen covari-
ates. For this step, Kaplan and Chen (2012) used the R package MCMClogitMar-
tin et al. (2010) to sample from the posterior distributions of α and β using a random 
walk Metropolis algorithm (Gilks et al., 1996). After the posterior propensity scores are 
obtained, a Bayesian outcome model is fit in the second step to estimate the treatment 
effect via various propensity score methods such as stratification, weighting and optimal 
full matching.

To illustrate their approach, Kaplan and Chen (2012) consider a posterior sampling 
procedure of a chosen Bayesian logit model with 1000 iterations and a thinning interval 
of 1. Then for each observation, there are m = 1000 posterior propensity scores ê(x) cal-
culated using propensity score model parameters α and β as follows,

Based on each posterior propensity score, there are J = 1000 posterior draws of the 
treatment effect generated from the posterior distribution of γ, where γ is the treat-
ment effect. Assuming that y is the outcome and T is the treatment indicator, Kaplan and 
Chen (2012) then provide the following treatment effect estimator,

where J−1
∑J

j=1
γj(ηi) is the posterior sample mean of γ in the Bayesian outcome model 

based on the  ith set of propensity scores ηi, i = 1, . . . ,m and j = 1, . . . , J . This posterior 
sample mean is then averaged over m sets of posterior propensity scores. The posterior 
variance of γ is then based on the total variance formula,

(12)Log

(

e(Z)

1− e(Z)

)

= α + βZ,

(13)ê(x) =
exp(α + βx)

1+ exp(α + βx)
.

(14)E(γ | x, y,T ) = m−1J−1

m
∑

i=1

J
∑

j=1

γj(ηi),

(15)Var(γ | x, y,T ) = m−1

m
∑

i=1

σ 2
γ (ηi)

+ (m− 1)−1

m
∑

i=1

{

µγ(ηi) −m−1

m
∑

i=1

µγ(ηi)

}2

,
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where

is the posterior sample variance of γ in the Bayesian outcome model under the  ith set of 
propensity scores and

is the posterior sample mean of γ in the same Bayesian outcome model. Notice that two 
sources of variation are present in Eq. (15). The first source of variation is the average 
of the posterior variances of γ across the posterior samples of propensity scores, repre-
sented by the first part of the right hand side of Eq. (15), and the second source of vari-
ation comes from the variance of the posterior means of γ obtained across the posterior 
samples of propensity scores, estimated by the second part of the right of hand side of 
Eq. (15) Kaplan and Chen (2012).

 Kaplan and Chen (2012) conducted three simulation studies as well as a small case study 
comparing frequentist propensity score analysis with the two-step Bayesian alternative 
focusing on the estimated treatment effect and variance estimates. The effects of different 
sample sizes, true treatment effects and choice of priors on the treatment effect and vari-
ance estimates were also evaluated. Consistent with Bayesian theory, Kaplan and Chen’s 
(2012) findings showed that lower prior precision of the treatment effect is desirable when 
no prior information is available in order to obtain estimates similar to frequentist results 
but with wider intervals that properly capture the uncertainty in the treatment effect; or, 
higher prior precision is preferable when accurate prior information regarding treatment 
effects is attainable in order to obtain more precise treatment effect estimates and nar-
rower intervals. For the case of small sample size, the Bayesian approach shows slight supe-
riority in the estimation of the treatment effect compared to the frequentist counterpart.

The case study in Kaplan and Chen (2012) used data from the Early Childhood Lon-
gitudinal Study Kindergarten Cohort of 1998 (ECLS-K) National Center for Education 
Statistics (2001). The ECLS-K is a nationally representative longitudinal sample provid-
ing comprehensive information from children, parents, teachers and schools. The sam-
pled children comes from both public and private schools and attends both full-day 
and part-day kindergarten programs, having diverse socioeconomic and racial/ethnic 
backgrounds.

In their case study, Kaplan and Chen examined the treatment effect of full versus part 
day kindergarten attendance on IRT-based reading scores for children at the end of 1998 
fall kindergarten. A sample of 600 children was randomly selected proportional to the 
number of children in full or part day kindergarten in the population. This resulted in 
320 children in full day kindergarten and 280 children in part day kindergarten. Thirteen 
covariates were chosen for the propensity score equation. These included gender, race, 
child’s learning style, self-control, social interactions, sadness/loneliness, impulsiveness/
overreactiveness, mother’s employment status, whether first time kindergartner in 1998, 

(16)σ 2
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mother’s employment between birth and kindergarten, non-parental care arrangements, 
social economic status and number of grandparents who live close by. Missing data 
were handled via the R program mice (multivariate imputation by chained equations) 
(van  Buuren and Groothuis-Oudshoorn, 2011). Non-informative uniform priors were 
used for both the propensity score equation and the outcome equation. The MCMC 
sampling required 400,000 iterations with burnin 5000 and thin interval 400, which sig-
nificantly reduced autocorrelation to an acceptable range.

Compared to the nonsignificant results estimated by simple regression, both PSA 
and BPSA were able to detect the significant treatment effect and greatly reduced the 
estimation bias. The Bayesian approach with little prior information achieved similar 
estimated treatment effects compared to the conventional frequentist approach, but 
offered a better variance estimate, taking into account the uncertainty of propensity 
scores and therefore having wider credible intervals. On average, the Bayesian stratifica-
tion method had 6.2 % wider interval than conventional approach, the Bayesian weight-
ing approach achieved an 8.9 % wider interval, and the Bayesian optimal full matching 
method obtained as much as 14 % wider interval. This result agreed with McCandless 
et al. (2009) and was consistent with Kaplan and Chen’s (2012) simulation results and 
Bayesian theory.

A further study of the covariate balance properties of the Kaplan and Chen (2012) 
approach was given in a case study by Chen and Kaplan (2015). Their results revealed 
that both Bayesian and frequentist propensity score approaches substantially reduced 
initial imbalance as expected, and their performance on covariate balance was similar 
in regard to the standardized mean/proportion differences and variance ratios in the 
treatment group and control group. Similar performance was also found with respect 
to the 95 % bootstrap intervals and posterior probability intervals. That is, although the 
frequentist propensity score approach provided slightly better covariate balance for the 
propensity score stratification and weighting methods, the two-step Bayesian approach 
offered slightly better covariate balance under optimal full matching method. Results of 
the Chen and Kaplan (2015) simulation study indicated similar findings. In addition, the 
Bayesian propensity score approach with informative priors showed equivalent balance 
performance compared to the Bayesian approach with non-informative priors, indi-
cating that the specification of the prior distribution did not greatly influence the bal-
ance properties of the two-step Bayesian approach. The optimal full matching method, 
on average, offered the best covariate balance compared to stratification and weight-
ing methods for both Bayesian and frequentist propensity score approaches. Chen and 
Kaplan (2015) also found that the two-step Bayesian approach under optimal full match-
ing with highly informative priors provided, on average, the smallest standardized mean/
proportion difference and variance ratio of the covariates between the treatment and 
control groups.

Chen and Kaplan (2015) argued that a benefit of conducting Bayesian propensity 
score analysis is that one can obtain the posterior distribution of the propensity score 
and thus the posterior distribution of corresponding balance indices (e.g. Cohen’s d and 
variance ratio) so that the variation in balance indices can be studied in addition to 
the point estimates to assist in balance checking. Good balance is achieved if both the 
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point estimates and the posterior probability intervals of the balance indices fall into 
the desirable range.

Bayesian model averaging for PSA

The distinctive feature that separates Bayesian statistical inference from its frequentist 
counterpart is its focus on describing and modeling all forms of uncertainty. The pri-
mary focus of uncertainty within Bayesian inference concerns prior knowledge about 
model parameters. however, within the Bayesian framework, parameters are not the 
only unknown elements. In fact, the Bayesian framework recognizes that model choice 
possess uncertainty insofar as a particular model is typically chosen based on prior 
knowledge of the problem at hand and the variables that have been used in previously 
specified models. This form of uncertainty often goes unnoticed. his problem was suc-
cinctly stated by Hoeting et al. (1999) who write

“Standard statistical practice ignores model uncertainty. Data analysts typically 
select a model from some class of models and then proceed as if the selected model 
had generated the data. This approach ignores the uncertainty in model selection, 
leading to over-confident inferences and decisions that are more risky than one 
thinks they are.” (p. 382)

An internally consistent Bayesian framework for model building and estimation must 
also account for model uncertainty. The current approach to addressing the problem of 
uncertainty lies in the method of Bayesian model averaging (BMA) (Hoeting et al. (1999, 
1996); Madigan and Raftery 1994).

In outlining BMA consider a quantity of interest such as a future observation or a 
parameter. Following Madigan and Raftery (1994), I denote this quantity as �. Next, 
consider a set of competing models Mk, k = 1, 2, . . . ,K  that are not necessarily nested. 
The posterior distribution of � given data D can be written as

where p(Mk |D) is the posterior probability of model Mk written as

The interesting feature of Eq. (19) is that p(Mk |D) will likely be different for different 
models. The term p(D|Mk) can be expressed as an integrated likelihood

where p(θk |Mk) is the prior density of θk under model Mk Raftery et al. (1997). Thus, 
Bayesian model averaging provides an approach for combining models specified by 
researchers, or perhaps elicited by key stakeholders.

As pointed out by Hoeting et al. (1999), Bayesian model averaging is difficult to imple-
ment. In particular, they note that the number of terms in Eq. (18) can be quite large, the 
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corresponding integrals are hard to compute, and choosing the class of models to average 
over is also challenging. To address the problem of computing Eq. (20) the Laplace method 
can be used and this will lead to a simple BIC approximation under certain circumstances 
(Tierney and Kadane 1986; cited in Hoeting et al. 1999). The problem of reducing the over-
all number of models that one could incorporate in the summation of Eq. (18) has led to 
two interesting solutions. One solution is based on the so-called Occam’s window Madigan 
and Raftery (1994) and the other is based on Markov chain Monte Carlo Model composi-
tion (MC3). A discussion of the algorithms is beyond the scope of this paper. Suffice to 
say that the advantage of BMA has been discussed in Madigan and Raftery (1994) who 
showed that Bayesian model averaging provides better predictive performance than that of 
a single model based on the log score rule Hoeting et al. (1999).

In a recent paper Kaplan and Chen (2014), investigated the use of Bayesian model 
averaging in propensity score analysis in a simulation study and a case study again using 
data from ECLS-K. Kaplan and Chen (2014) approximated Bayesian model averaging 
approach based on the model-averaged propensity score estimates produced by the R 
package BMA, but which ignored uncertainty in the propensity score itself. There-
fore, Kaplan and Chen (2014) provided a fully Bayesian model averaging approach via 
MCMC to account for uncertainty in both parameters and models. A detailed study of 
their approach examined the differences in the causal estimate when incorporating non-
informative versus informative priors in the model averaging stage. Kaplan and Chen 
(2014) also assessed the predictive performance of both Bayesian model averaging pro-
pensity score approaches and compare it to the case without Bayesian model averag-
ing. Overall, their results showed that both Bayesian model averaging propensity score 
approaches recovered the treatment effect estimates well and generally provide larger 
uncertainty estimates, as expected. Both Bayesian model averaging approaches offered 
slightly better prediction of the propensity score compared to the Bayesian approach 
with a single propensity score equation. Covariate balance checks for the case study 
showed that both Bayesian model averaging approaches offered good balance. The fully 
Bayesian model averaging approach also provided posterior probability intervals of the 
balance indices

Necessary conditions for causal inference in LSAs
The view regarding the appropriateness of drawing causal inferences with LSAs advo-
cated in this paper rests on several necessary conditions. I view these conditions as 
essential regardless of whether one adopts a Bayesian approach to causal inference or 
situate our investigation in the frequentist framework. However, as noted earlier, I view 
the Bayesian framework as more flexible insofar as it can account for all the layers of 
uncertainty in statistical models for causal inference. The necessary steps are as fol-
lows and more fully developed below in the context of our kindergarten program type 
example.

1.	 A well defined causal question stemming from a theoretical framework that is pre-
sumably of interest to governing bodies responsible for policy priorities.

2.	 A causal question framed as a counterfactual question capable of yielding a real-life 
manipulation or intervention within the framework of a randomized experiment.
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3.	 The collection of ancillary covariate information relevant to the causal question of 
interest.

4.	 The choice of a statistical method that provides an appropriate causal estimand 
accounting for the ancillary covariate information and a sequence of sensitivity anal-
yses that examine changes in the causal estimand across a range of plausible con-
founding relationships.

Condition 1: a well‑defined causal question

The administrative structure of LSAs usually contains an overarching governing board 
representing key stakeholders. For example, PISA is governed by the PISA Governing 
Board which is made up of representatives of the PISA participating countries and who 
set the policy priorities for PISA. These policy priorities become instantiated through 
the various frameworks produced by the contractors chosen to implement PISA, with 
input from outside expert groups and mediated by the OECD Secretariat. A similar 
structure exists for large-scale surveys administered by the IEA. Thus, central to the use 
of LSAs for causal inference is the articulation of one or more priority causal questions 
agreed upon by the governing body and further articulated through the frameworks. 
From our example, a governing body might agree that the issue of attendance in full-day 
kindergarten programs is important in terms of its purported linkage to reading profi-
ciency. This policy priority would be communicated to the framework developers and 
eventually to those charged with writing the questionnaire items.

Condition 2: counterfactual propositions

Given a well-defined causal question that is of policy priority, the next step is to articulate 
the question in the form of a counterfactual conditional statement. Recall that a counter-
factual conditional statement is a subjunctive phrase in of the form “if T had not occurred, 
Y would not have occurred”. This form of causal reasoning is intimately connected to the 
RCM insofar as the RCM presumes that a unit of observation could have two potential 
outcomes under different conditions of a treatment T, including “not T”. In this section 
I review the work of Mackie (1974), as it is his work on counterfactual propositions that 
I argue is of most value to causal inference with LSAs. The specific form of the ques-
tion must have cross-cultural comparability when interest is in comparative causal infer-
ence with international LSAs. Developing a well articulated counterfactual proposition 
is a crucial component of the necessary conditions for causal inference with LSAs and 
so I discuss this issue at length next. For an additional detailed study of counterfactuals 
from the philosophical tradition, see Lewis (1973). An excellent review of counterfactuals 
within social science research can be found in Morgan and Winship (2007).

Mackie and the INUS condition

In this section, I outline Mackie’s important contribution to our understanding of causa-
tion, as developed in his seminal work The Cement of the Universe (1974). I concentrate 
on two specific aspects of Mackie’s work on causation because his ideas lay a strong logi-
cal groundwork for how to consider causal inference in LSAs. The first aspect of Mack-
ie’s work addresses a regularity theory of causation and the second aspect concerns a 
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conditional analysis of causation. It should be understood that Mackie’s overall contribu-
tions are much deeper than I have the space to present.

To begin, Mackie (1974) situates the issue of causation in the context of a modified 
form of the counterfactual conditional statement if X causes Y, then this means that X 
occurred and Y occurred, and Y would not have occurred if X had not. This strict coun-
terfactual statement is problematic for the following reason; I can conceive of Y occur-
ring if X had not. For example, I can conceive of improved reading proficiency without 
exposure to early literacy programs. Thus, if I am to attribute improved reading profi-
ciency to exposure to early literacy programming, I must define the conditions under 
which the exposure took place.

Mackie suggests that the problem in distinguishing between conditions and causes is 
addressed by considering that causes take place in a context, or what Mackie refers to as 
a causal field. For Mackie

“Both cause and effect are seen as differences within a field; anything that is not part 
of the assumed (but commonly understated) description of the field itself will, then, 
be automatically ruled out as a candidate for the role of cause”.

Mackie goes on to say

“What is said to be caused, then, is not just an event, but an event-in-a-certain-
field, and some ’conditions’ can be set aside as not causing this-event-in-this-field 
simply because they are part of the chosen field, though if a different field were cho-
sen, in other words if a different causal question were being asked, one of those con-
ditions might well be said to cause this-event-in-that-other-field.” (p. 35)

In the context of a causal field, there can be a host of factors that could qualify as causes 
of an event. Following Mackie (1974) let A, B, C..., etc, be a list of factors that lead to some 
effect whenever some conjunction of the factors occurs. A conjunction of events may be 
ABC or DEF or JKL, etc. This allows for the possibility that ABC might be a cause or DEF 
might be a cause, etc. So, all (ABC or DEF or JKL) are followed by the effect. For simplic-
ity, assume the collection of factors is finite, that is only ABC, DEF, and JKL. Now, this 
set of factors (ABC or DEF or JKL) is a condition that is both necessary and sufficient for 
the effect to occur. Each specific conjunction, such as ABC is sufficient but not necessary 
for the effect. In fact, following Mackie, ABC is a “minimal sufficient” condition insofar 
as none of its constituent parts are redundant. That is, AB is not sufficient for the effect, 
and A itself is neither a necessary nor sufficient condition for the effect. however, Mackie 
states that the single factor, in this case, A, is related to the effect in an important fash-
ion—viz. “[I]t is an insufficient but non-redundant part of an unnecessary but sufficient 
condition: it will be convenient to call this ... an inus condition.” (p. 62)

It may be useful to examine Mackie’s ideas in the context of our full-day kindergarten 
program attendance and reading proficiency example. Mackie’s concept of inus condi-
tions alerts us to the importance of carefully specifying the causal field in which causal 
claims regarding the full-day kindergarten program attendance are made, and to attempt 
to isolate those factors that serve as inus conditions for causal inferences. Specifically, in 
the context of examining policies or interventions centered on improving reading profi-
ciency in young children, Mackie would have us first specify the causal field or context 
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under which the development of reading proficiency. I could envision a large number 
of factors that could qualify as causes of reading proficiency. In Mackie’s analysis, the 
important step would be to isolate the set of conjunctions, any one of which might be 
necessary and sufficient for improved reading proficiency. A specific conjunction might 
be attendance in pre-primary education, parental support and reading involvement, 
teacher training. This set is the minimal sufficient condition for reading proficiency in 
that none of the constituent parts are redundant. Any two of these three factors is not 
sufficient for reading proficiency, and one alone—say focusing on pre-primary educa-
tion, is neither necessary nor sufficient. however, full-day kindergarten program attend-
ance is an inus condition for reading proficiency. That is, the emphasis on full-day 
kindergarten program attendance is insufficient as it stands, but it is also a non-redun-
dant part of a set of unnecessary but (minimally) sufficient conditions.

Woodward and the manipulability theory of causation

Mackie’s notions of causal fields and the inus condition are essential in providing a 
deeper background for a counterfactual theory of causation. however, Mackie does not 
provide specific advice with regard to developing notions of causal explanation. More 
recently, a manipulability theory of causation was put forth by Woodward (2003) as an 
attempt to provide a foundation for causal explanation. For Woodward (2003), a causal 
explanation is an explanation that provides information for purposes of manipulation 
and control. To quote Woodward

“... my idea is that one ought to be able to associate with any successful explanation 
a hypothetical or counterfactual experiment that shows us that and how manipula-
tion of the factors mentioned in the explanation ... would be a way of manipulat-
ing or altering the phenomenon explained...Put in still another way, an explanation 
ought to be such that it can be used to answer what I call the what-if-things-had-
been-different question...” (p. 11)

It is certainly the case that the experimental approach allows one to ask the what-if-
things-had-been-different question. Note that Woodward’s reasoning is the centerpiece 
of the RCM framework because it bases this question at the level of the individual.

At the forefront of Woodward’s manipulability account of causal explanation is the 
idea of a hypothetical experiment. however, Woodward makes clear that experiments are 
not the only way that one can learn about causal relationships. Under certain assump-
tions, one can learn about causal relationships from a combination of observation and 
experiment. Woodward writes

“A plausible manipulability theory will not deny that reliable causal inference on 
the basis of non-experimental evidence is possible, but rather, suggests a specific way 
of thinking about such inferences: I should think of them as an attempt to deter-
mine (on the basis of other kinds of evidence) what the results of a suitably designed 
hypothetical experiment of manipulation would be without actually carrying out 
this experiment.”

I argue that Mackie’s theories of causal fields and inus conditions provide a philosophi-
cal foundation for Woodward’s manipulability theory of causal explanation. Specifically, 
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articulating the causal field and identifying an inus condition for causality is not enough. 
We need an account of how identifying an inus condition for causation provides a pos-
sible explanation for some observed effect. Woodward’s detailed account of manipula-
tion and intervention, along with the crucial notion of invariance, provides, in our view, 
precisely the grounding needed to move forward to a non-experimental/observational 
approach to causal inference in the context of LSAs. however, what is required is a meth-
odology for testing causal explanations with survey data that provides value-added by 
moving us beyond the relatively simple causal accounts gleaned from randomized 
experimental designs. In my view, Bayesian statistical methods framed within the Rubin 
Causal Model may provide such a methodology.

Condition 3: collecting ancillary covariates

A clear implication of Mackie’s notion of a causal field and Woodward’s manipulability 
account of causation for causal inference in LSAs is the need to collect as many relevant 
ancillary covariates as possible. Mackie’s notions of a causal field and the resulting inus 
condition for causal inference is helpful in narrowing down the number of covariates to 
be collected; however there still remains a number of practical concerns. First and fore-
most is the collection of the “right” covariates. The concept of the causal field notwith-
standing, it still remains that relevant covariates need to be chosen and measured to help 
insure that strong ignorability holds given the observed covariates. Naturally this falls 
in the domain of the content experts who advise contractors and governing bodies as 
to the relevant covariates to be collected in support of the priority causal questions. For 
example, guided by policy priorities, experts in early childhood education and in read-
ing would work to develop a list of possible covariates that could be used in a propensity 
score analysis for modeling the non-random selection into pre-primary education.

A practical problem that still remains, however, is the space in the survey necessary 
to add such questions insofar as questionnaires contain not only needed demographic 
information but also trend information across cycles of the survey. Possible solutions to 
this space problem involve questionnaire rotation design (see e.g. Kaplan and Su 2016; 
Gonzalez and Rutkowski 2010; Rutkowski 2011; von Davier 2013) or optional country 
questionnaires; these are areas for further research and development.

Condition 4: choosing a statistical model

For this paper, I chose to discuss Bayesian propensity score analysis as one of many possible 
statistical models for estimating causal effects with LSAs. The issue is not so much what 
paradigm of statistics one identifies with (Bayesian or frequentist), but rather that the statis-
tical model matches the causal question of interest and allows for assessing the sensitivity of 
the statistical model to violations of the assumptions underlying the causal modeling frame-
work. Thus, in addition to propensity score analysis described in this paper, other methods 
such as causal mediation analysis Imai et al. (2010a, b, 2011) and its Bayesian extensions 
(Park and Kaplan, 2015) might be applicable to causal questions with LSAs. What matters is 
whether such methods yield the causal estimand of interest and whether the obtained esti-
mand is capable of being evaluated against violations of causal assumptions.

The issue of assessing whether the causal estimand is sensitive to violations of causal 
assumptions concerns the sensitivity to hidden bias. Specifically, a sensitivity analysis 
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allows the researcher to assess changes to the causal estimand based on incorporating 
a series of reasonable values for the parameters relating the unobserved confounders 
to the observed covariates and causal variable. Substantively important changes to the 
causal parameter due to small changes in the magnitude of the hidden bias can lead to 
bounds being placed on the causal estimand. A sensitivity analysis of this sort is con-
sistent with the Bayesian statistical framework insofar as hidden bias parameters can be 
set as priors with specified precision reflecting prior knowledge about possible hidden 
biases.

Eliciting priors

Condition 4 mentioned above focused on choosing the correct statistical model for the 
causal question of interest. however, if one does adopt a Bayesian approach to causal 
inference, the question of priors comes to the forefront. To reiterate, perhaps the sin-
gular advantage of the Bayesian school of statistics is that it provides a way to elicit and 
directly incorporate prior knowledge into a study. The frequentist school treats each 
study as if it is the first of its kind, and that no prior information is available on the topic 
at hand. however, even a casual consideration of standard frequentist practice reveals 
that this is patently untrue. Perhaps the most obvious example within frequentist prac-
tice is the choice of variables to be included in a model. This choice is most certainly 
made on the basis of prior information; but given that there are likely alternative inter-
pretations of that prior information, the uncertainty in the choice is not made explicit. 
The Bayesian school, in stark contrast, incorporates prior knowledge into an analysis 
that is open to scrutiny by the scientific community and provides an immediate assess-
ment of the analyst’s view of the degree of uncertainty entering into his/her parameters 
and models.

Subjective Bayes

In a similar vein, the kind of prior knowledge that can be entered into a Bayesian frame-
work can be “subjective” or “objective”. Subjective Bayesian practice attempts to bring 
prior knowledge about what is reasonable to believe about a parameter directly into an 
analysis. This prior knowledge represents the analysts (or others) degree-of-belief, which 
I prefer to consider as one’s “degree-of-uncertainty”. An analyst’s degree-of-uncertainty 
is encoded directly into the specification of the prior distribution, and in particular on 
the degree of precision around the parameters of interest.

 Press (2003) notes that there are advantages and disadvantages to adopting subjective 
Bayesian practice which I summarize here. Of relevance to the the use of Bayesian meth-
ods for causal inference, the major advantage in using subjective priors is that it is the 
only way to encode prior research findings into an analysis. In the context of LSAs, rela-
tively “objective” prior knowledge can come from prior administrations of the assess-
ment. However, encoding even objective prior knowledge into the prior distribution can 
be difficult. Moreover, subjective priors may not always be appropriate for public policy 
situations because other researchers as well as policy stakeholders may hold different 
priors.3

3  However, models with different priors can be compared in terms of their predictive accuracy using such methods as 
Bayes factors.
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Objective Bayes

What if objective data from prior LSA administrations is unavailable? In the absence of 
prior data and perhaps the inability to obtain expert opinion, then so-called “objective” 
priors can be implemented. The advantages of objective priors, as pointed out by Press 
(2003) is that (a) objective priors can be used as benchmarks against which choices of 
other priors can be compared, (b) objective priors reflect the view that little information 
is available about the process that generated the data, (c) there are cases in which the 
results of a Bayesian analysis with an objective prior provides results equivalent to those 
based on a frequentist analysis, and (d) objective priors are sensible public policy priors 
insofar as they allow for policy analysis without incorporating the prior knowledge of the 
analyst.

A major problem with objective priors is that they are hard to defend—particularly 
in the context of research with LSAs. For example, perhaps the most extreme version 
of an objective prior is the so-called uniform prior which encodes total ignorance about 
the average value and precision of a parameter. For example, in the case of pre-primary 
education, using a uniform prior distribution ranging from −∞ to +∞ would say that all 
values of the causal effect across the real numbers are equally likely. It should be noted, 
however, that the Bayesian literature has developed a large number of objective (aka “ref-
erence”) priors that can also be used for Bayesian inference as well as comparisons to 
models that use subjective priors (e.g, Jeffreys’ prior or the maximum entropy prior); but 
these priors simply provide different ways of quantifying the notion of complete uncer-
tainty about a causal effect. Nevertheless, I agree with Berger (2006), that reference pri-
ors should be used “in scenarios in which a subjective analysis is not tenable”, although I 
believe that these scenarios are now rare in the world of LSA.

An aside: handling multilevel data

Our discussion so far has focused on causal inference in LSAs where the policy ques-
tion of interest concerned student reported attendance in full or part-day kindergarten. 
Large-scale assessment data, however, are typically generated from a clustered sampling 
design where (within countries) schools are sampled first followed by sampling students 
within schools. It is well known that statistical modeling of any sort that ignores the clus-
tered nature of the data can lead to biased estimates regardless of whether the estimates 
have a causal interpretation or simply represent associations. In the context of causal 
inference, however, it is important to note that selection into treatment conditions may 
vary across schools due to the specific features of local policy. Thus, particularly for pro-
pensity score analysis, it is necessary to have a method to address differential selection 
mechanisms across schools.

Recent work by Kim and Steiner (2015) provide an approach for addressing differential 
selection across schools through the use of latent class models for across-school match-
ing. The essential idea is to identify clusters of schools that are similar with respect to the 
propensity score model. This is accomplished by specifying a multilevel latent class logit 
model (see e.g. McLachlan and Peel (2000) that yields the probability that, say, student 
i (i = 1, 2, . . . n) in school g (g = 1, 2, . . .G) in latent class c (c = 1, 2, . . . ,C) selected to 
receive the treatment. This probability is modeled as a function of level–1 and level–2 
covariates. By adding a latent class component to the multilevel logit model, Kim and 
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Steiner (2015) are able to identify classes of schools that share similar selection mecha-
nisms but also different causal estimands for different latent selection classes of schools. 
The approach advanced by Kim and Steiner (2015) provides a nuanced assessment of the 
treatment effect of interest while at the same time accounting for the multilevel nature 
of the data.

The approach developed by Kim and Steiner (2015) is situated within frequentist 
framework of statistics. Their approach could be implemented within a Bayesian frame-
work by recognizing that the multilevel logit model can be specified as a Bayesian hier-
archical model (Kaplan, 2014). First, as usual, priors would have to be assigned to all 
model parameters. However, in the case of Kim and Steiner (2015) approach which is 
based on latent class analysis, the latent selection classes are assumed to follow a multi-
nomial distribution with parameters, say, π = (π1,π2, . . . ,πC) representing latent class 
probabilities. The conjugate prior for π is the Dirichlet(π1,π2, . . . ,πC) prior (see e.g. 
Evans et al. (2000). For a discussion of Bayesian latent class analysis, see Gelman et al. 
(2013) and Kaplan (2014).

Discussion
This paper provided a review and synthesis of the problem of causal inference in large-
scale educational assessments from a Bayesian perspective. I proposed an approach to 
causal inference in LSAs that requires the articulation of framework for causal inference 
followed by a statistical approach that closely matches the framework and can yield the 
causal estimand of interest. For this paper, I situated causal inference with LSAs in the 
framework of the Rubin Causal Model Rubin (1974). The Rubin Causal Model rests on 
the the notion of potential outcomes, which, in turn requires us to consider causal vari-
ables as representing hypothetically manipulable policies or interventions. I next chose 
the Bayesian paradigm of statistical inference as the most coherent and natural approach 
to assessing causal effects within the Rubin Causal Model. My choice of the Bayesian 
paradigm rested on the view that all forms of uncertainty within the causal inferential 
enterprise should be made explicit, and that the Bayesian approach is uniquely suited to 
this end. Finally, I provided a set of conditions that I argued is necessary for conducting 
causal inference with LSAs.

The enterprise of LSAs is complex and multi-faceted; attempting to balance political/
policy priorities with the technical requirements necessary to yield reliable and valid 
data. In my view, the political/policy priorities need to be addressed first. That is, the 
governing bodies of LSAs must first decide if addressing the effects of specific causes is 
a policy priority, and then to focus on a small set of priority causal questions. Given the 
operational concerns mentioned earlier, it will not be easy to balance a priority focus on 
causal inference with the other real demands placed on LSAs. however, should there be 
an interest in addressing causal questions with LSAs, I argue that the framework and 
methodology developed in this paper serve as a starting point for engaging in causal 
inquiry with LSAs.

Of course, additional support for basic research on causal inference with large-scale 
assessments is needed. First, the methods described in this paper need to be developed 
more fully and tested on extant large-scale assessment data, and concurrently, new soft-
ware must be developed to support the statistical models proposed in this paper. Second, 
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it is important to study precisely how causal variables can be reliably measured and used 
in statistical models such as those described in this paper. This issue pertains to the sec-
ond condition of SUTVA—that the treatment for all units is comparable—and this is 
especially true when interest is focused on comparative causal inference with interna-
tional large-scale assessments. The field-trial stage of large-scale assessment operations 
might provide a fruitful testbed for this research. Moreover, it must be noted that my 
example was one of a simple binary treatment. Clearly, pre-primary education is a mar-
ket basket of quite specific sets of activities, each of which could serve as treatments in 
their own right. Here again, this issue is less one of the framework of causal inference 
or the statistical method, but rather one of fruitful collaboration among content experts 
guided by policy priorities with testing and evaluation of causal variables within the 
field-trial stage. Finally, alternative frameworks for causal inference should be studied in 
terms of their value in the context of large-scale assessments. The hope is that this paper 
stimulates a broader discussion of the challenges and opportunities of causal inference 
with large-scale assessments.
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