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Abstract

In this paper, we consider a two-level multidimensional item response model that
examines country differences in extreme response style (ERS) as a possible cause for
the achievement-attitude paradox in PISA 2006. The model is an extension of Bolt &
Newton (2011) that uses response data from seven attitudinal scales to assess
response style and to control for its effects in estimating correlations between
attitudes and achievement. Despite detectable variability in ERS across countries
and detectable biasing effects of ERS on attitudinal scores, our results suggest that the
unexpected between-country correlation between attitudes and achievement is not
attributable to country differences in ERS. The remaining between-country correlations
between mean attitudes and mean achievement once controlling for ERS can be
explained by the observation that (1) despite detectable country differences,
most variability in ERS occurs within, as opposed to between, countries, and
(2) ERS appears to be only weakly correlated with achievement. The methodological
approach used in this paper is argued to provide an informative way of studying the
effects (or lack thereof) of cross-country variability in response style.
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Background
One objective of cross-cultural assessments such as PISA is to better understand achieve-

ment differences across countries. Recent administrations of PISA and TIMSS have in-

cluded survey instruments that have the potential to inform about cross-cultural

differences in student attitudes toward different subject areas. The focus area in PISA 2006

was science, and attitudinal surveys on the assessment considered several different aspects

of attitudes related to science (e.g., enjoyment of science, perceived value of science, etc.).

The different content areas and numbers of items across the scales studied in this paper

are summarized in Table 1. Items on the surveys were answered via self-report using Likert

rating scales that had four scale points, ranging from 1 = Strongly Agree to 4 = Strongly

Disagree, such that lower overall scores imply a more positive attitude toward science.

Table 2 presents example items from two of the attitude scales, the Enjoyment and Value

subscales, respectively.

In studying the relationships between attitudes and achievement between and

within countries, one frequently occurring observation in both PISA and TIMSS is
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Table 1 Seven subscales in PISA 2006 science attitudes survey

Subscales Number of items

Science Enjoyment (ENJ) 5

Science Value (VAL) 10

Environmental Responsibility (ENV) 7

Usefulness for Science Career (USE) 4

Science in Future A (FUTA) 4

Science in Future B (FUTB) 5

Science Learning (LRN) 6
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an achievement-attitude paradox. Specifically, when evaluated at the country level,

mean levels of achievement in a subject area correlate with mean attitudes regard-

ing that subject area but in the opposite direction to what is expected. Specifically,

the countries that perform best on the subject achievement metric appear on aver-

age to have more negative feelings about the subject area. Moreover, such correl-

ational effects are the opposite of what is seen when studying the relationships

within countries, where the anticipated positive relationship between attitudes and

achievement is regularly observed. Figures 1 and 2 visually present the relationships

between science achievement and science enjoyment, within- and between-country,

respectively, in PISA 2006. (Note that due to the coding of responses on the attitu-

dinal scales, a negative correlation between survey scores and achievement implies

a positive relationship between attitudes and achievement, and vice-versa). Using

the country of Australia as an example, as shown in Fig. 1, the more enjoyment

students have in learning science, the more likely they are to have higher science

achievement. The same pattern is seen within virtually all countries. However, as

shown in Fig. 2, the between-country correlation is strongly in the opposite direc-

tion. The correlations at the country level for each of the other six science attitude

subscales with achievement show a similar pattern.

This apparent paradox has been observed and investigated in a number of previous stud-

ies (e.g., Buckley, 2009; Bybee & MaCrae, 2007; Loveless, 2006; Van de Gaer &

Adams 2010). Attempts to explain the paradox have typically focused on other differences

between countries that may explain how and why countries might differ in their responses

to the attitudinal surveys. For example, one explanation is a “big fish little pond effect”

(Marsh, Seaton, Trautwein, Ludthke, Han, O’Mara & Craven, 2008), whereby students who

attend schools where average ability is lower have higher academic self-concept than stu-

dents who attend schools where average ability is higher. Another theory attributes the ef-

fect to potential response style differences between countries, namely, stylistic differences in

how respondents across countries use rating scales when responding to attitudinal survey
Table 2 Examples of PISA 2006 science attitudes assessment

Science Enjoyment

Item 1: I generally have fun when I am learning < broad science > topics

1 = strongly agree 2 = agree 3 = disagree 4 = strongly disagree

Science Value

Item 1: Advances in < broad science and technology > usually improve people’s living conditions

1 = strongly agree 2 = agree 3 = disagree 4 = strongly disagree



Fig. 1 Scatter plot of science achievement and enjoyment—Australia (corr = − .46)
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items (Buckley, 2009). Examples of response style tendencies include extreme response style

(ERS, i.e., a tendency to respond using only the extreme endpoints of a rating scale), anti-

ERS (i.e., a tendency to avoid the extreme endpoints of a rating scale), acquiescent response

style (i.e., a tendency to always agree with items, regardless of content), and many others.

The response style theory seems plausible owing to the fact that cross-cultural variability in

response styles is well documented (Clarke, 2000; Johnson, Kulesa, Cho & Shavitt, 2005;

Van Herk, Poortenga & Verhallen, 2004) and that response styles frequently correlate with
Fig. 2 Scatter plot of science achievement and enjoyment—between countries (corr = .74)
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variables related to achievement, such as education and cognitive ability level (Meisenberg

& Williams, 2008; Weijters, Geuens & Schillewaert, 2010).

In this study, we formally investigate the possibility that extreme response style (ERS) dif-

ferences across PISA countries may explain the unexpected correlations between mean

achievement and mean attitudes on the country level. ERS refers to the tendency of select-

ing extreme endpoints of a rating scale regardless of item content, such as 1 = strongly agree

or 4 = strongly disagree on a 1–4 Likert scale. The correlations observed between ERS and

education in prior work, are in a direction that could in theory explain the peculiar

between-country correlation between attitudes and achievement seen in PISA. Specifically,

higher ERS tends to be associated with lower education. As the PISA attitudinal scales tend

(on average) to elicit “agree” responses across items, ERS will tend to produce more extreme

levels of agreement (i.e., scores on the attitudinal scales that are generally biased downward),

thus making it possible that more positively reported attitudes would be seen in the context

of lower educational achievement.

In the framework of item response theory (IRT), a multidimensional IRT (MIRT) model

proposed by Bolt and Johnson (2009) provides a technique for modeling and controlling

for the effects of ERS. The MIRT model incorporates response styles as explicit statistical

dimensions that influence item responding. As a result, it can account for the simultan-

eous influence of the substantive and ERS traits on response category selection. Under the

MIRT model, the probability that a respondent selects category k on item j, given a sub-

stantive trait level θ1 and an extreme response style trait θERS is given as

P Y j ¼ kjθ1; θERS
� � ¼ exp ajk1θ1 þ ajk2θERS þ cjk

� �
XK
h¼1

exp ajh1θ1 þ ajh2θERS þ cjh
� � ð1Þ

where a and c represent category slope and intercept parameters associated with item j.

The distinct θ1 and θERS traits reflect the influence each trait has on the propensity to-

ward selecting a given score category. To make the model applicable for modeling re-

sponse style, fixed value constraints are applied to the category slope parameters across

items. For a four-category Likert item for example, the a parameters for θ1 might be

fixed at −3, −1, 1, 3, while the a parameters for θERS could be fixed at 1, −1, −1, 1 for

all items, so as to allow θ1 to be interpreted as the substantive trait and θERS as an ex-

treme response style trait. The intercept parameters are generally freely estimated

across items but subject to a normalization constraint
X
k

cjk ¼ 0. The latter constraint

addresses the lack of identifiability of the individual category intercepts, as the intercept

for each category only defines a propensity toward selecting the category relative to the

other categories. A related model is presented in Johnson and Bolt (2010).

The model in Equation (1) can be viewed as a multidimensional extension of Bock’s

(1972) nominal response model and can be estimated using the software package Latent

Gold (Vermunt & Magidson, 2005, 2008), among others. Compared with other model-

based approaches for ERS, a distinguishing characteristic of the MIRT approach is that it

can psychometrically account for how both substantive and ERS traits combine to affect

response category selection. Relative to earlier studies on response styles which generally

only verified the existence of response styles, the MIRT model is also capable of correct-

ing ERS bias in providing substantive trait estimates.
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Bolt and Newton (2011) illustrated the method in relation to PISA 2006 data. Based

on the example items in Table 2, Table 3 presents some hypothetical examples of re-

sponse patterns and the corresponding trait estimates as observed by Bolt & Newton

(2011). The response patterns in Table 3 provide examples showing high, moderate,

and low estimated levels of θERS. Respondents with high estimated θERS consistently use

extreme categories in their responses, while respondents with low θERS predominantly

use the intermediate score categories. Respondents with moderate estimated θERS use a

mix of categories. One advantage of using a statistical modeling approach is that it be-

comes possible to quantify the biasing effects of ERS, and therefore also make correc-

tions for the effects of bias at the scale score level. Bolt & Johnson (2009) suggest

evaluating the biasing effects by examining the expected score on the survey for a

hypothetical respondent with the same θ1 and a θERS level of 0, and refer to this ex-

pected score as a bias-corrected score. As shown in Table 3, once taking θERS into ac-

count, the differences between the original and bias-corrected total scores can be quite

substantial. Using simulated data based on PISA scales, Bolt and Newton (2011) also

showed that the model yields improved estimates of θ1 when simultaneously estimating

θERS. The modeling approach provides a general framework within which it may be

possible to examine whether controlling for ERS effects changes the unexpected

attitude-achievement correlations seen across countries in PISA.

Bolt & Newton (2011) also showed how this general approach can be extended to

take into account multiple scales that use the same response format but measure differ-

ent substantive traits. The extension makes the assumption that the ERS tendency is

constant across traits, an assumption that appears plausible based on prior work

(Weijters et al., 2010; Wetzel, Carstensen, & Böhnke, 2013) and is also consistent with

a theory that extreme response style underlies the paradoxical country-level correla-

tions between achievement and multiple attitudinal scales. In this paper, we extend the

Bolt & Newton (2011) approach in additional ways to examine the attitude-achievement

paradox. First, we extend the approach to include additional scales. As noted, the PISA

2006 administration included seven such scales using the same four-point rating scale.

Second, and more importantly, we generalize the model to include a multilevel structure

(i.e., students within countries) and include an external variable (achievement) so as to sim-

ultaneously study the covariance structure of the attitudinal scales, achievement, and ERS

both within and between countries. This generalized model is discussed in the next section.

It is important to acknowledge that the model in (1) represents just one way in which

ERS has been conceptualized in the research literature. As noted, the model emphasizes

the simultaneous influence of both the substantive trait and response style on a respon-

dent’s selection of extreme versus less extreme categories. Several alternative models (e.g.,

mixture models—Rost, Carstensen, & von Davier, 1997, or latent class factor models—

Moors, 2003) adopt a similar conceptualization but use a latent class representation of the

substantive and/or response style traits. Still other methods, including that of Bockenholt
Table 3 Example of item response patterns

Respondent Item responses θ̂1 θ̂ERS Total score Bias-corrected total score

1 1414414414 0.84 2.05 53 41

2 2421322131 −0.45 0.00 32 32

3 2332322322 0.34 −1.89 29 35
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(2012) and Khorramdel and von Davier (2014), separate the item response into “pseudo

items” such that the selection of extreme versus non-extreme categories only

reflects a response style tendency. The latter approach is attractive from a

measurement standpoint in that it allows for a clearer separation between, and

thus better measurement of, the substantive and response style traits; however, it

comes at the expense of assuming that the extremity of response is not reflective

of the substantive trait, which may not be consistent with prior beliefs in adopting

the Likert rating scale format. It is not our intent in this paper to explore differences in

these alternative conceptualizations of ERS, although this represents a clear area for

further methodological investigation.

The current approach also differs substantially from the approach considered by Buckley

(2009), who focused on the paradox in relation to two of the PISA attitudinal subscales,

the Enjoyment and Value subscales, in analyzing the PISA 2006 data. Following Baumgart-

ner and Steenkamp (2001), Buckley (2009) used ad hoc measures of response style based

on the counts of extreme responses in measuring response style tendencies. Similar to

Greenleaf (1992), the indices in Buckley’s analysis were defined from a subset of items

across the remaining attitudinal scales so as to yield indices that are more likely indicative

of response style than of the substantive attitudinal traits. Further, the correction for re-

sponse style used by Buckley (2009) entailed a linear regression of attitudinal scale scores

on the response style indices (implying linear biasing effects of response style). Import-

antly, such a correction assumes that the biasing effects of response style are constant

across levels of the substantive trait, an assumption that, as seen below, is sharply at odds

with the current model based approach. Using this approach, Buckley (2009) found rather

substantial changes in the country-level attitude/achievement relationship, such that a

strong linear association became replaced by a substantially weaker nonlinear relationship.

Buckley (2009) acknowledged the need for additional conceptualizations of response style

in order to better understand this result.

As indicated above, the approach in this paper differs significantly from Buckley (2009)

both in its measurement of ERS and in the nature of the bias correction applied. Specific-

ally, the model in (1) assumes the substantive trait will demonstrate more influence over

the selection of extreme response categories, similar to approaches such as Rost et al.

(1997) and Moors (2003). As such, it accounts for the possibility that respondents and/or

countries that are selecting a large portion of extreme responses may be doing so in large

part because they have extreme levels on the substantive trait. Second, and perhaps

more importantly, the current approach accounts for the likely result that the na-

ture of ERS bias will be different depending on the level of the substantive trait.

Intuitively, one might expect the bias to be negative when substantive trait levels

are low (as ERS leads to selection of more extreme lower scores than otherwise ex-

pected) but positive when substantive trait levels are high (as ERS lead to selection

of more extreme higher scores). The nature of such biasing effects are looked at in

more detail later in the paper.

Methods
In this paper, the methods section is illustrated in terms of proposing a multilevel IRT

(MMIRT) model for ERS, applying of the MMIRT model to PISA 2006, and detecting

country level bias under the MMIRT.
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A multilevel MIRT model for ERS
The multilevel structure of PISA data allows for examination of how a characteristic

such as ERS can introduce bias in survey scores observed at both the student as well as

country levels. In this context, we can extend the Bolt & Newton (2011) approach to

address ERS effects within a multilevel multidimensional IRT (MMIRT) model. Assume

country is indexed by g, and that i(g) denotes a student i nested within country g. For

simplicity of notation, we will denote student by i, recognizing that each student be-

longs to one and only one country g. Then the model can be specified as

P Y ij ¼ kjθis; θi;ERS
� � ¼ h ajk1θis þ ajk2θi;ERS þ cjk

� � ð2Þ

where θis denotes an attitudinal trait corresponding to the one of seven attitudinal

scales assessed by item j, which includes science enjoyment (ENJ), science value (VAL),

environmental responsibility (ENV), usefulness for science career (USE), science in fu-

ture A (FUTA), science in future B (FUTB), and science learning (LRN). Further, h(⋅) is
a multinominal logistic function with the same representation as in Equation (1), and

the slopes for the substantive and ERS traits are specified as a
0
j1 ¼ −3; −1; 1; 3½ � and

a
0
j2 ¼ 1; −1; −1; 1½ �; respectively, for all items j, reflecting the four category scoring

of the PISA attitudinal items. Each attitudinal item is therefore modeled with respect to

a substantive trait underlying the scale to which it belongs (denoted as θs = θENJ , θVAL ,

θENV , θUSE , θFUTA , θFUTB , or θLRN) and the extreme response style trait (denoted as

θERS). We assume θERS remains constant for a given respondent across subscales. The

advantage of modeling all attitudinal scales simultaneously when making this assump-

tion is that it provides more reliable estimation of θERS, and thus better control of ERS

with respect to measurement of the substantive traits (see Bolt & Newton, 2011). As

for the model in (2), the cjk parameters are freely estimated subject to the constraintX
k

cjk ¼ 0 for all j. The second level of the model, the country level, associates with

each country a mean vector, μg and covariance matrix Σ 1ð Þ
g , representing the mean and

covariance matrix across the substantive traits and ERS. Each country mean vector is

assumed to be an observation from a multivariate normal distribution, with a multivari-

ate mean of 0 and covariance matrix Σ(2), representing the between-country covariance

matrix among traits. For simplicity, we assume the within country covariance matrices,

Σ 1ð Þ
g , are constant across countries, i.e., Σ 1ð Þ

g = Σ(1) for all g. Although the model permits

the introduction of country-level variables as covariates, for all analyses in this paper,

such variables are not included.

Applying the MMIRT model to examine the attitude-achievement paradox in
PISA 2006
As the primary interest of the current paper is to address the between-country correl-

ation between mean attitudes and mean achievement, we expand the model in the pre-

vious section to also include a student-level achievement variable. The PISA 2006

dataset provides student achievement scores in the form of plausible values. Given the

complexity of the proposed model, we use the mean of the plausible values as an indi-

cator of student achievement. This approach seemed reasonable in the current applica-

tion as we are less concerned with the precision of individual country estimates than

with the general direction of country-level correlations with attitudes. This simplifying

approach was also used in Buckley (2009). However, procedures for analysis using
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plausible values have been presented (von Davier, Gonzalez & Mislevy, 2009), and we

later apply a sensitivity check to examine the likely consequences of this decision, The

resulting student achievement variable can then be introduced to the model as a single in-

dicator observed variable, thus expanding each of μg, Σ
(1), and Σ(2) to include an additional

variable, observed once per student. Our primary interest focuses on those elements of Σ(2)

that reflect the relationship between the country-level mean achievement, and country-

level mean attitudes, as reflected by the seven different attitudinal scales.

The resulting model is still complex, which combined with the large size of the data

matrix, make the resulting analyses very computationally demanding. Thus, we simplify

the analysis in a couple of fundamental ways, neither of which would appear to sub-

stantially influence the findings of interest. First, rather than using the full dataset, we

randomly sampled 200 students from each country to create a subsample of the data

for analysis. To evaluate whether use of 200 students provided a sufficiently representa-

tive sample, we correlated the attitudinal scores and achievement scores for the sub-

sample and compared them to those observed with the full sample. The statistics in

Table 4 suggest that the subsample provides a good approximation to the full sample in

reproducing approximately the same between-country correlation observed in the full

data. Second, to address computational challenges related to the complexity of the

model, we adopted a two-stage estimation procedure for the multilevel model. Specific-

ally, in the first stage, we focus on estimating just the category intercepts associated

with each item. Using the Latent Gold software (Vermunt & Magidson, 2005, 2008),

we estimated the category intercepts for each item (a total of 41 science attitudes items)

by fitting separate models to the individual attitudinal subscales. Each of these analyses

entailed specification of a two-dimensional model (with one substantive trait, and one

ERS trait) in which all items within the subscale tapped both dimensions, with each di-

mension having category slopes as specified for the model as in Equation 1. The result-

ing category intercepts, which effectively define the relative propensities toward each

score category when both the substantive and ERS traits are at their respective means

(in both case 0), were then used in the second stage.

In the second stage, we treated the item category intercept estimates as known and

estimated person- and country-level parameters related to the latent traits. The use of

fixed, as opposed to estimated, category intercepts was not anticipated to be of substan-

tial consequence to the proposed question of interest, which concerned the direction

and magnitude of the between- country correlations observed. This second stage was

implemented using Markov chain Monte Carlo (MCMC) methods through the
Table 4 Correlations between science achievement and attitudes

Correlation
w/ACH
(full sample)

Correlation
w/ACH
(subsample)

Enjoy (ENJ) .73 .74

Value (VAL) .66 .67

Environment (ENV) .32 .30

Use (USE) .52 .47

Future A (FUTA) .80 .77

Future B (FUTB) .76 .75

Learning (LRN) .74 .73
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software WinBUGS (Spiegelhalter, Thomas, & Best, 2004). The goal of this analysis was

to obtain the within- and between-country covariance estimates, focusing in particular

on those elements involving achievement. As noted above, for a given country g, the

nine element trait vector for each student i is assumed multivariate normally distrib-

uted with mean μg and covariance matrix Σ(1). Thus, in a fully Bayesian estimation

framework, student parameters are sampled as

θi;ENJ ; θi;VAL;…; θi;LEA; θi;ERS;ACHi
� �eMVN μg ;Σ

1ð Þ
� �

ð3Þ

where θi,ENJ, θi,VAL, … , θi,LRN are the student’s trait levels on the attitudinal traits,

θi,ERS is the student’s level of ERS, and ACHi is the student achievement score. In order

to make results comparable across countries, we assume the same category intercept

parameters apply for all countries. To draw inferences concerning the μgs, we assigned

a multivariate normal prior to the μgs and denoted the between-country covariance

matrix as Σ(2), such that,

μgeMVN μ;Σ 2ð Þ
� �

: ð4Þ

We arbitrarily assign μ ¼ 0; 0;…; 0; �ACHð Þ for the mean attitudinal latent traits
and the mean achievement measure, where the overall grand mean achievement score

for the subsample was 4.64. The within- and between-country latent variable covari-

ance matrices are each assigned non-informative inverse Wishart priors, using a scale

parameter of 10 and an identity matrix as the scale matrix, i.e.,

Inv Σ 1ð Þ
� �

eW v;V Σð Þ ð5Þ

Inv Σ 2ð Þ
� �

eW v;V Σð Þ ð6Þ

To fit the MMIRT model to the PISA subsample in WinBUGS, MCMC runs of

10000 iterations (500 iterations burn in) were used. Such chain lengths appeared ad-

equate according to multiple criteria for evaluating convergence. We used the means of

the posterior distributions from the MCMC simulations (expected a posteriori esti-

mates) as estimates of all model parameters.

The accuracy of this general two-stage approach was investigated using simulation

analyses as reported in Lu (2012). The simulation analyses were based on sample sizes

corresponding to our reduced sample and assuming items with psychometric character-

istics that were the same as those included in PISA 2006. Results suggested that the

two-stage approach returned estimates of both the within- and between-country covari-

ance matrices that closely resembled the generating matrices. Further details are pro-

vided in Lu (2012).

Detecting country level bias due to ERS in attitudinal scale scores
To better understand ERS-related bias on the estimation of country means for the atti-

tudinal traits, we generalized an approach presented by Bolt and Johnson (2009). Rela-

tive to Bolt and Johnson, country level bias in total test scores is evaluated with respect

to ERS trait distributions (as would correspond to a country) as opposed to individual

levels of ERS (as would correspond to individuals). Using the seven-item Environment
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(ENV) subscale as an example, the country level expected mean sum score based on

the MMIRT item parameter estimates and country level trait distribution (i.e., μENV ;

μERS; σ
2
ENV ; σ

2
ERS; σENV ;ERS ) for a hypothetical country of interest, we define an expected

mean score (EMS) for the country as:

EMS μENV ; μERS; σ
2
ENV ; σ

2
ERS; σENV ;ERS

� �
¼

Z
θENV

Z
θERS

X7

j¼1

X4

k¼1
k � P Yj ¼ kjθENV ; θERS

� �
f θENV ; θERSð Þ dθERSdθENV

ð7Þ

where P(Yj = k|θENV, θERS) is defined by the MMIRT model in Equation (2), with item

category intercepts estimated from Stage 1 of the estimation procedure (shown in

Table 5), and f(θENV, θERS) is a bivariate normal probability density function. Equation

(7) can be estimated through discrete approximation of the bivariate integral. The re-

sult is an expected mean score based on both the fixed item characteristics as well as

the relevant distributional characteristics of both the Environment subscale and ERS

for a hypothetical country.

To quantify bias, we consider a reference country identical in all respects to the

hypothetical country above, except now having μERS = 0. We apply the same procedure

as above to determine an expected mean score on the Environment subscale. Then bias

can be estimated as the difference between the two expected scores, i.e.,

BIAS ¼ EMS μENV ; μERS; σ
2
ENV ; σ

2
ERS; σENV ;ERS

� �
−EMS μENV ; μERS ¼ 0; σ2

ENV ; σ
2
ERS; σENV ;ERS

� �
ð8Þ

Although there is naturally no “correct” mean level of ERS, using μERS =0 provides a
natural reference as 0 corresponds to the overall mean on ERS. Naturally, for a given

subscale with fixed category intercepts, it becomes possible to display bias in relation to

different levels of μERS as a function of μENV to better illustrate how between-country

variability in response style will introduce bias in the mean scale score estimate of ENV

for that country.

Finally, in order to evaluate the effects of ERS control on the estimated between-

country correlations between achievement and attitudes, we apply the same multilevel

model represented in Equations 2–6, but now excluding the ERS trait at both the indi-

vidual and country levels. The resulting between-country correlations between mean at-

titudes and mean achievement represent the baseline correlations between these means

when ignoring the potential effects of ERS. The same estimation procedure as for the

full model was applied. The resulting achievement/attitude correlations provide a more
Table 5 Environment subscale item category intercept estimates

Item Category

1 2 3 4

1 2.29 2.81 0.04 −5.15

2 0.82 1.93 0.84 −3.58

3 0.66 1.84 0.91 −3.41

4 1.45 2.26 0.53 −4.23

5 2.71 2.54 −0.19 −5.06

6 2.94 2.46 −0.31 −5.08

7 1.10 2.08 0.65 −3.83
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meaningful reference against which to evaluate the effects of response style control as

they are evaluated using a common latent trait metric to that used in the full MMIRT

model.

Results and discussion
While various aspects of the results could be discussed in detail, we focus in particular

on the estimated within- and between-country covariance matrices, as well as the esti-

mated country level mean vectors observed from the multilevel IRT model. Under the

MMIRT model, the results suggest that there is detectable variability in ERS across the

PISA countries. Figure 3 displays a plot of the country-level μERS estimates and their

95 % credible intervals by country, ordered from least ERS to most ERS. It is apparent

from these estimates, for example, that Thailand (THA) displays on average the least

amount of ERS (μERS= − .69), while Tunisia (TUN) the most (μERS=.55). Importantly, a

large proportion of countries display non-overlapping credible intervals, suggesting dis-

tinctions across countries in the distributions of ERS. Such differences open the possi-

bility that ERS may differentially bias mean scale scores with respect to the attitudinal

scales. The between-country variance associated with ERS is estimated at .24 (95 %

CI = .16, .34). The meaningfulness of the country-level μERS estimates is further sup-

ported by the rather strong positive correlation (r = .672, p < .01) between the μERS esti-

mates and the country-level mean number of extreme responses (i.e., pseudo “e-items”

following Bockenholt, 2012 and Khorramdel & von Davier, 2014). A less than perfect

correlation is expected to the extent that the current model assumes extreme responses

are in some cases caused by the level of the substantive trait.

As noted above, given these country-level μERS estimates, combined with estimates of

the item category intercepts, as well as other estimates of the distribution of the
Fig. 3 Plot of mean ERS estimates, MMIRT analysis, PISA 2006 data
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substantive and ERS traits for a respective country, we can apply Equation 7 to con-

sider the potential for bias in the mean attitudinal scale score at the country level.

Again taking the Environment (ENV) subscale as an example, based on Equation (7)

and Equation (8), and the category intercept estimates for the Environment subscale

shown in Table 5, Fig. 4 illustrates how ERS introduces bias into the sum score on the

country level based on the category intercepts observed for the Environment subscale.

Such curves are based also on estimates of the estimated within-country variance of

ERS, the within-country variance of Environment, and the within-country covariance of

Environment and ERS, all of which are assumed constant across countries, and in this

case returned estimates of .47, .54, and .23, respectively.

In Fig. 4, the curves illustrate bias at levels of μERS= 1, .5, 0, −.5, and −1, respectively.
Figure 4 clearly shows that, for a fixed level of μERS, the magnitude and direction of bias

varies quite substantially as a function of μENV. It should be noted that in Fig. 4 all the

curves intersect approximately at a common location, where the bias is basically 0 for

all levels of μERS. In the current analysis, this common location is approximately

μENV=1; this is also the μENV level where the average expected scores across items is

approximately 2.5, the midpoint of the response scale. As μENV moves in either direc-

tion away from 1, bias is introduced. As shown in Fig. 4, a high ERS mean introduces

positive bias on the total score of the Environment subscale as μENV moves above 1 and

negative bias as μENV moves below 1. For example, when μENV is larger than 1, countries

with high ERS are more likely to select 4 s than 3 s on the items; when μENV is smaller
Fig. 4 Plot of country level bias in sum score as a function of mu environment
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than 1, high ERS countries are more prone to select 1 s than 2 s on the items. Such curves

play a useful role in understanding why controlling for ERS introduces larger changes in

the mean estimates of the substantive traits for some countries but not others.

Figure 5 illustrates the implications of the bias correction across all 56 countries. In

this plot, the mean Environment (ENV) scale score is shown as the x-axis and the bias-

corrected score (i.e., the estimate of μENV from the MMIRT analysis) as the y-axis. The

countries circled are described for illustrative purposes. Notice for example, that

Tunisia (TUN) and Thailand (THA), which show approximately the same mean ENV

scale scores, appear quite different with respect to the μENV estimates, reflecting the

nature of the bias correction applied within the MMIRT model. Interestingly, for

Thailand and Tunisia, the μENV estimates were -.67 and .06, respectively, both of which

according to Fig. 5 represent locations with significant potential for bias in the mean

ENV scores due to ERS. In the case of Thailand, the bias should be positive, implying

the mean ENV score reflects a more negative attitude than is actually the case, while

for Tunisia, the bias should be negative, implying the scale mean reflects a more posi-

tive attitude than is actually the case. Many other countries, however, appear rather un-

affected by the ERS control. The Netherlands, for example, which showed the highest

mean scale score on the ENV scale, is rather moderate in terms of ERS (μERS =−.17),
and thus retains its relatively high ranking on the μENV metric.

We have noted how Buckley (2009) used not only a different definition of response

style than is considered in this paper, but also a different method of correcting for bias.

At the country level, we find our estimates of μENJ, μVAL, and μERS to correlate at levels

of .446, .679, and .756, respectively, with Buckley’s (2009). Thus, while there is some

consistency in how countries are identified with respect to ERS, there are substantial

differences from Buckley’s approach in terms of the bias correction.
Fig. 5 Scatter plot of country level subscale mean by posterior mean on environment
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Examining the estimated within- and between-country covariance matrices
While the above results make clear that there is a potential for meaningful bias correc-

tion due to ERS, the primary objective of the paper was to evaluate whether ERS can

explain the attitude/achievement paradox. To this end, we are interested in estimates

of the within-country (Σ(1)) and particularly, the between-country (Σ(2)) covariance

matrices from the MMIRT analysis. Table 6 reports these estimates. The variance be-

tween countries with respect to the attitudinal traits would appear to vary somewhat

across scales, with the largest variability occurring for the Future A (FUTA) scale, and

the lowest for the Environment (ENV) scale; moreover the variances within country are

also noticeably different across scales, with the same scales occupying the extremes. As

expected, the attitudinal scales consistently positively covary with each other, both

within and between countries. Moreover, ERS appears rather modestly correlated both

with the attitudinal scales (both within- and between-country), but even more import-

antly, with the achievement variable, both within- and between- countries. In particular,

the very weak association between ERS and achievement at the country level suggests

it is unlikely to have much of an effect as a control variable in evaluating the attitude/

achievement correlations. Finally, the last row/column of each of the within- and

between-covariance matrices illustrate the remaining paradox, in that the attitudinal

scales consistently show a remaining positive correlation with the achievement metric

between countries, but a negative correlation within countries. To better evaluate

whether control of ERS nevertheless had some effect on the correlations, Table 7 illus-

trates the estimated correlations between achievement and attitudes at the between-
Table 6 Estimated between-country and within-country covariance matrices

(a) Between-country covariance matrix

ENJ VAL ENV USE FUTA FUTB LRN ERS ACH

ENJ .42 .13 .06 .12 .20 .21 .15 .02 .17

VAL .13 .29 .06 .08 .13 .14 .08 .04 .09

ENV .06 .06 .25 .03 .04 .07 .01 .03 .02

USE .11 .08 .03 .31 .09 .14 .10 .03 .07

FUTA .20 .13 .04 .09 .52 .22 .21 -.00 .24

FUTB .21 .14 .07 .14 .22 .45 .17 .02 .19

LRN .15 .08 .01 .10 .21 .17 .42 -.01 .19

ERS .02 .04 .03 .03 -.00 .02 -.01 .24 -.02

ACH .17 .09 .02 .07 .24 .19 .19 -.02 .47

(b) Within-country covariance matrix

ENJ VAL ENV USE FUTA FUTB LRN ERS ACH

ENJ 1.55 .64 .34 .59 1.10 .94 .91 .14 -.29

VAL .64 .60 .31 .44 .55 .58 .45 .21 -.16

ENV .34 .31 .47 .31 .25 .31 .21 .23 -.16

USE .59 .44 .31 1.10 .55 .66 .48 .22 -.08

FUTA 1.10 .55 .47 .55 1.67 1.16 .88 .10 -.18

FUTB .94 .58 .31 .66 1.16 1.54 .84 .16 -.16

LRN .91 .45 .21 .48 .88 .84 1.47 .07 -.25

ERS .14 .21 .23 .22 .10 .16 .07 .54 -.01

ACH -.29 -.16 -.16 -.08 -.18 -.16 -.25 -.01 .71



Table 7 Between-country correlations between attitudes and science achievement, with and
without ERS controlled

w/out ERS control w/ERS control

Corr(ENJ,ACH) .44 .39

Corr(VAL,ACH) .26 .25

Corr(ENV,ACH) .08 .05

Corr(USE,ACH) .22 .19

Corr(FUTA,ACH) .45 .48

Corr(FUTB,ACH) .41 .42

Corr(LRN,ACH) .45 .47

Corr(ERS,ACH) -.07
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country level when the ERS trait is included in the model versus when it is not. As seen

from the correlation estimates in both columns, the estimates change only minimally.

The largest decrease appears to be observed for the Enjoyment subscale, although that

change is small, and all of the correlations are in fact positive. As implied above, one clear

cause of these minimal effects is the very weak correlation between ERS and achievement,

which, while in the anticipated direction, is clearly too small to explain the moderate corre-

lations between attitudes and achievement. In addition, it is apparent from Table 6, that the

ERS variable displays more variance within (estimate = .54) than between (estimate = .24)

countries, yielding an intraclass correlation estimate of .31. Consequently, an expectation of

dramatic changes due to country-level bias correction would seem unlikely given the

relatively lower amount of variability in ERS that exists between countries.

Finally, as a way of evaluating the potential consequences of using the average of the

plausible values for achievement (in place of the plausible values themselves) we con-

ducted an analysis using the 9-dimensional model including ERS in which the five

plausible values were used to account for the uncertainty of the examinee achievement

estimates. We observed very similar correlations between achievement and the attitu-

dinal measures in the new analysis, in all cases within .03 of those reported in Table 7.

The country-level mean estimates for achievement for the new analysis also correlated

.98 with those of the earlier analysis, and the corresponding between- and within-

country variances for achievement were unchanged (.47, .71, respectively). So it would

appear that the use of the average achievement measure was not consequential with re-

spect to the primary findings of the paper.

Conclusions
Our application of a two-level multidimensional IRT model toward investigating the

attitude-achievement paradox in PISA 2006 suggests cross-cultural differences in ex-

treme response style (ERS) are not a likely cause of the paradox. This conclusion is

largely based on the observation of nearly identical between-country correlations across

attitudes and achievement when controlling for, versus not controlling for, country dif-

ferences in ERS. Application of the model also provides some indication as to why the

between-country correlations are largely unchanged. First, although country level differ-

ences in ERS are detectable, they are relatively small compared to within-country vari-

ability in ERS. Our intraclass correlation estimate related to ERS is approximately .31,

suggesting that even in countries that are extreme in either direction on ERS, there
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remains a fair amount of within-country heterogeneity. Second, the correlation between

achievement and ERS at the country level, while in the expected direction (i.e., higher

mean achievement is associated with less ERS), is rather weak (−.07). Consequently,
controlling for country effects with respect to ERS is unlikely to result in meaningful

effects on correlations with achievement.

Of course, such conclusions may be affected by the nature of the method being used

to study and control for the effects of ERS. We find the use of the proposed model,

however, to be attractive relative to other approaches that have been used to look at

the paradox. Unlike earlier studies (e.g., Buckley, 2009), for example, the proposed

model accounts for the biasing effects of ERS in a nonlinear (as opposed to linear fash-

ion), as would seem intuitively to make sense. If ERS is viewed as an effect unrelated to

the intended to be measured substantive trait, its biasing effects should in fact be non-

linear, with more positive bias (in terms of the scale score) occurring at higher trait

levels, and negative bias at lower trait levels. The example provided in Fig. 4 shows that

such nonlinear effects are present at the country level in the same way as they emerge

at the individual level (Bolt & Johnson, 2009).

As noted earlier, an alternative approach to modeling ERS presented by Bockenholt

(2012) and also applied by Khorramdel & von Davier (2014) provides a competing

method that also differs in its definition of ERS and could also be generalized to a

multilevel framework. While we did not develop such a generalization in this

paper, we can get a sense as to whether this alternative approach will likely yield

different results by aggregating the pseudo d-items to the country level and

inspecting the correlation with mean country-level achievement. Such correlations

likewise were approximately equal to the original uncorrected correlations, ranging

from .270 for the Environment subscale to .810 for the Future A subscale, in all

cases statistically significant.

While these overall findings seem to lend additional credibility to alternative explana-

tions for the attitude-achievement paradox (e.g., Marsh et al., 2008), there of course also

remains a possibility that alternative forms of response style (e.g., ARS, DRS) to those ex-

amined in this study still provide an explanation. In a cross-cultural study of response

style using related methods to those studied in this paper (Bolt, Lu & Kim, 2014), it was

seen that different countries can make differential use rating scales in ways that do not

conform to traditionally studied response style types. Thus, there would seem to be value

in additional methodological study of cross-cultural differences in response style as

possible sources of the attitude-achievement paradox. Along these lines, there may also

be value in alternative design considerations for better measurement of response

style tendencies. For example, the use of anchoring vignettes (e.g., King, Murray,

Salomon & Tandon, 2004) may provide greater value in identifying and controlling

for response styles of different kinds and with greater precision than can be

achieved using only self-report ratings. Another alternative is the simultaneous

administration of other self-report scales involving heterogeneous content, making

ad hoc indices of response style less susceptible to influence of the substantive

trait. Including reverse-worded items would likely make it easier to detect response

styles such as ARS or DRS. Our interest in ERS, specifically, was motivated by

several considerations, including (1) the frequent observation in the literature that

ERS varies cross-culturally, (2) the tendency for ERS to be associated with
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educational achievement, and (3) the ability to measure ERS with greater precision

than alternative response styles (e.g., ARS, DRS) using the currently available self-

report data for PISA. The use of alternative data collection designs would make it

easier to measure and thus control for the influence of response style types such as acqui-

escent response style (ARS), which has also been observed to vary cross-culturally

(Johnson et al., 2005).
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