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Abstract

Background: When studying student performance across different countries or
cultures, an important aspect for comparisons is that of score comparability. In other
words, it is imperative that the latent variable (i.e., construct of interest) is understood
and measured equivalently across all participating groups or countries, if our inferences
regarding performance can be regarded as valid. Relatively fewer studies examined an
item-level approach to measurement equivalence, particularly in settings where a large
number of groups is included.

Methods: This simulation study examines item-level differential item functioning (DIF)
in the context of international large-scale assessment (ILSA) using a generalized logistic
regression approach. Manipulated factors included the number of groups (10 or 20),
magnitude of DIF, percent of DIF items, the nature of DIF, as well as the percent of
affected groups with DIF.

Results: Results suggested that the number of groups did not have an effect of the
performance of the method (high power and low Type I error rates); however, other
factors had impacted the accuracy. Specifically, Type I error rates were inflated in
non-DIF conditions, while they were very conservative in all of the DIF conditions.
Power was generally high, in particular in conditions where DIF magnitude was
large, with one exception – in conditions where DIF was introduced in difficulty
parameters and the percent of DIF items was 60.

Conclusions: Our findings presented a mixed picture with respect to the
performance of the generalized logistic regression method in the context of large
number of groups with large sample sizes. In the presence of DIF, the method was
successful in distinguishing between DIF and non-DIF, as evidenced by low Type I
error and high power rates. On the other hand, however, in the absence of DIF, the
method yielded increased Type I errors.
Background
When studying student performance across different countries or cultures, an import-

ant aspect for comparisons is that of score comparability. In other words, it is impera-

tive that the latent variable (i.e., construct of interest) is understood and measured

equivalently across all participating groups or countries, if our inferences regarding

performance can be regarded as valid. The psychometric property that typically must

hold for scores to be comparable is known as measurement invariance (Meredith 1993),
2014 Svetina and Rutkowski; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly credited.

mailto:dsvetina@indiana.edu
http://creativecommons.org/licenses/by/4.0


Svetina and Rutkowski Large-scale Assessments in Education 2014, 2:4 Page 2 of 17
http://www.largescaleassessmentsineducation.com/content/2/1/4
absence of differential item functioning (Hambleton et al. 1991; Mellenbergh 1994;

Swaminathan & Rogers 1990), or lack of bias (Lord 1980). Regardless of the term

used, the literature on scale score equivalence in large-scale achievement tests has received

considerable attention (e.g., Ercikan 2002; Hambleton 2002; Oliveri et al. 2012). Many of

these investigations have focused on pairwise comparisons of countries (Oliveri et al. 2012;

Oliveri 2012), the latter of which uses both empirical and simulated data. In the context

of international attitude and behavior scale development, researchers have also used

multiple-group confirmatory factor analysis (MG-CFA, Jöreskog 1971; OECD 2010).

Under an MG-CFA framework, researchers evaluate hypotheses of configural, metric, and

scalar invariance and conduct difference tests to evaluate which level of invariance is sup-

ported by the responses.

Relatively fewer studies examined an item-level approach to measurement equiva-

lence, particularly in settings where a large number of groups is included. One promin-

ent exception includes the Programme for International Student Assessment (PISA),

which uses an ANOVA-like approach to examine item-by-country interactions (OECD

2012). This general paucity might stem from the fact that, until recently, methodolo-

gies that would allow for simultaneous examination of a large number of groups for

comparisons were not available. As we note below, generalized versions of some

methodologies used for the two group comparisons are now available to researchers

for conducting comparisons across more than two groups; however, little information

on the performance of these methods exists, in particular in the context of large-

scale studies such as PISA or the Trends in International Mathematics and Science

Study (TIMSS). Also, to our knowledge, relatively little literature exists that questions

the current practices of measurement invariance via MG-CFA framework in such

settings.

A recent study by Rutkowski and Svetina (2014) provides some evidence that typic-

ally recommended criteria for evaluating invariance in MG-CFA (e.g., change in fit sta-

tistics; chi-square difference tests) may not always be appropriate when large numbers

of groups are compared, as is typically the case in an international assessment or survey

context. More specifically, Rutkowski and Svetina studied the performance of MG-CFA

and associated fit criteria when the number of groups are relatively large and found

that as a measure of overall model fit, the chi-square statistic was not useful, as it sug-

gested strong model-data misfit across all studied conditions. Furthermore, the chi-

square difference test (as typically applied) was also too conservative in the studied

context. While results for the chi-square test were not surprising, fit indices results

were unexpected to some extent. Namely, in examining the overall fit indices (RMSEA,

CFI, TLI, and SRMR), the authors found that currently accepted cutoffs for the CFI,

TLI, and SRMR as an overall fit indicators were generally suitable (although SRMR in

isolation produced somewhat conservative results). However, when considering the

relative fit (i.e., change in a fit index from configural to metric or metric to scalar) via

changes in CFI and RMSEA, the authors found that the change in RMSEA associated

with the metric invariance hypothesis to be increased or larger than a typically accepted

difference of .010.

As mentioned above, there has been little research in DIF settings for multiple groups

scenarios despite large interest in cross-cultural and multilingual research (Fidalgo &

Scalon 2010). This may be partly due to the availability of methods that allow for more
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than two group comparisons simultaneously, given that a more common alternative

approach is somewhat tedious and it requires several steps; namely, it involves pair-

wise comparisons among all group pairs. In practice, this pairwise comparisons

method has been adopted by several researchers, and several variations on this ap-

proach exist. For example, as outlined in Ellis and Mead (2000), one way to conduct

pairwise comparisons and multiple group DIF analysis is to consider in the first step

fitting a separate item response theory (IRT) model to obtain item parameters for

each group or country (of course, stringent IRT assumptions are assumed here to

have been met prior to model fitting). Choice of software may depend on the ana-

lyst’s skill or software availability, but typical choices include BILOG-MG (Zimowski

et al. 1996) or MULTILOG 7.03 (Thissen et al. 2003). Then, an analyst would link

the parameters using a linking software, for example, EQUATE 2.1 (Baker 1993).

After a successful linking procedure, item parameters would be compared among

the groups.

Versions of this approach have been adopted in literature on cross-cultural phenom-

ena, including translation of surveys measuring personality (e.g., Ellis & Mead 2000),

global employee attitudes (e.g., Ryan et al. 2000), dominance (e.g., Kulas et al. 2011),

emotional functioning (e.g., Petersen et al. 2003), health/quality of life (e.g., Scott et al.

2006 2007), and reading (e.g., Glas & Jehangir 2013; Oliveri & von Davier 2011, 2014),

to name a few. Specifically, Oliveri and von Davier (2011, 2014) have provided empir-

ical evidence that allowing a subset of item parameters to be uniquely estimated offers

one way to improve model-to-data fit and reduces problems with comparability across

heterogeneous populations and associated parameter estimate bias. Additionally, Glas

and Jehangir (2013) proposed using a Lagrange multiplier (LM) test to identify poorly

fitting (polytomous) background items where one country serves as the reference coun-

try and all other countries are pooled together to serve as the focal country. The single

worst fitting item is identified and allowed to be freely estimated; the process is re-

peated until 95% of the residuals are sufficiently low or four items have been freely esti-

mated for any given country. This approach is to some extent similar to the Oliveri and

von Davier method in that some items are freely estimated, although Glas and Jehangir

considered background questionnaire items and the process is iterative and, possibly,

time intensive.

In the current study, emphasis is given to the investigation at an item-level, rather

than a scale level but where achievement (rather than background) items are estimated

simultaneously rather than using a multi-step process adopted in the above mentioned

studies. The emphasis here on item-level is given based on the following reasons. First,

as noted above, typical cut-off criteria within the framework of MG-CFA may not be

appropriate for comparing large numbers of groups, hence the item-level analysis may

prove more suitable. Second, motivated by invariance research in language testing and

translations, Zumbo (2003) investigated whether item-level DIF manifested itself in the

scale-level analysis. Findings indicated that limiting investigations to the scale-level only

is often not sufficient since item-level DIF may be obscured in a scale-level analyses

(p. 146). In other words, item-level DIF should also be examined in conjunction with

scale-level investigations because additional insights may be gained. As such, the current

paper investigates the performance of one method of DIF detection – generalized logistic

regression – under conditions that closely follow international assessments.
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The current research attempts to contribute to the literature on DIF when a large

number of groups is considered and the analyses are conducted at an item-level. Specif-

ically, using a Monte Carlo study, we are interested in answering the following research

question: How does a generalized linear logistic regression method perform in identify-

ing DIF when a large number of groups is considered? The remainder of the paper is

organized as follows. In the next section, we introduce methods appropriate for item-

level DIF analysis, with a particular focus on the approach used in the current study –

the generalized logistic regression method. Next, we describe the methods and provide

a rationale for the choices of the study design. Results, presented separately for 10- and

20-group conditions, follow. Lastly, we conclude with a summary and a discussion of

limitations.

Methods to examine item-level DIF
Several methods exist to investigate item-level DIF, including the Mantel-Haenszel

approach (Holland & Thayer 1988), logistic regression (Swaminathan & Rogers 1990),

which conditions on the observed scores, or methods rooted in item response theory

(IRT), where item characteristic functions are estimated for each group and then com-

pared to investigate DIF, such as Lord’s chi-square test (Lord 1980) or Raju’s method

(Raju 1988, 1990).

Several factors likely influence any analysts choice of DIF method, including a prefer-

ence for one of the aforementioned frameworks or methodological approaches (IRT vs.

non-IRT), the type of DIF effect of interest (uniform, nonuniform, or both), underlying

assumptions (parametric or nonparametric), the number of groups under comparison

(two or more), and data characteristics (e.g., dichotomous or polytomous scoring; miss-

ing data). Over the last several decades, the literature has featured many DIF methods

suitable for two groups (one reference and one focal) and reviews of the methods suit-

able for dichotomous or polytomous items (e.g., Camilli & Shepard 1994; Millsap &

Everson 1993; Penfield & Lam 2000; Potenza & Dorans 1995). Furthermore, perform-

ance of different DIF methods have been examined (e.g., Li et al. 2012; Penfield 2001),

including those that allow for multiple groups (i.e., > 2), such as generalized Mantel-

Haenszel (e.g., Fidalgo & Madeira 2008; Fidalgo & Scalon 2010; Penfield 2001), general-

ized Lord’s test (e.g., Kim et al. 1995) and generalized logistic regression (Magis et al.

2013; Magis et al. 2011).

Given our study design, discussed subsequently, and our goal of studying item-

level DIF when the number of groups compared is greater than two, we consider the

performance of the generalized logistic regression method (Magis et al. 2011). The

method is an extension of the well-known logistic regression approach to investigate

DIF between two groups, as proposed by Swaminathan and Rogers (1990). Our

choice of the generalized logistic regression as the method of choice to study DIF

was based on the following. As suggested by Magis et al., the method allows for sim-

ultaneous estimation of group parameters, hence it avoids multistep, pairwise com-

parisons process (and it eliminates the necessity to use multiple software packages).

In addition, its flexible framework allows for investigation of uniform, nonuniform,

or both types of DIF within subgroups, which is an attractive feature since in inter-

national settings, it is likely that either type of DIF is plausible, given the inherent

diversity and complexity of the studied context. And more so, it is an improvement
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over other generalized methods, such as the generalized Mantel-Haenszel method,

which only tests for uniform DIF. Lastly, no merging of the focal groups is

necessary.

As noted in the Methods section below, for our analysis, we used the generalized

logistic regression approach implemented as a function in difR package (Magis et al.

2013) in R (R Development Core Team 2012). It is an appropriate method when

data are dichotomously scored and where more than two groups are considered. Fur-

thermore, this method allows for studying both uniform and nonuniform DIF and it

investigates one item at the time, such that in the process, the remaining items not

under consideration are assumed to be non-DIFa. As the method of analysis in this

study, we briefly highlight the main components of the generalized logistic regres-

sion. Interested readers are directed to the original work by Magis et al. (2011) for

complete details.

The generalized logistic regression DIF model, as presented by Magis et al. (2011),

has the following form:

logit πig
� � ¼ αþ βSi þ αg þ βgSi; ð1Þ

where πig is the probability of examinee i from group g correctly responding to an
item, logit is the natural log of the odds of correctly answering an item, α and β are

common intercept and slope parameters (i.e., for all groups), αg and βg are group-

specific slope and intercept parameters, and Si is the total test score for examinee i,

which serves as a matching variable and a proxy for the ability level of the examinee.

For model identification purposes, group-specific parameters for the reference group

(denoted as g = 0), α0 and β0, are set to zero. In other words, if g = 0 (i.e., reference

group), logit(πig) = α + βSi, and if g ≠ 0 (i.e., focal groups, g = 1, 2, … , F), logit(πig) =

(α + αg) + (β + βg)Si. An item is said to contain DIF if the probability πig varies across

the groups of examinees (i.e., there is an interaction between the group membership

and the item response). This occurs when at least one of the group parameters, αg or

βg, is different from zero. If all group-specific parameters equal zero, an analyst

would conclude that no DIF is present.

According to Magis et al. (2011), three types of DIF can be investigated using

this framework: a) uniform DIF (UDIF), b) nonuniform DIF (NUDIF), and both

types of DIF effects together (DIF). Tested null hypotheses for these three types

include:

H0 : α1 ¼ … ¼ αF ¼ β1 ¼ … ¼ βF ¼ 0 DIF ð2Þ

H0 : β1 ¼ … ¼ βF ¼ 0 NUDIF ð3Þ

H0 : α1 ¼ … ¼ αF β1 ¼ … ¼ βF ¼ 0 UDIF
�� ð4Þ

Statistically, DIF is assessed by an examination of the model parameters. Let τ repre-

sent a vector of model parameters, τ = (α, α1… αF, β, β1… βF)
T for DIF and NUDIF

and τ = (α, α1… αF, β)
T for the UDIF, and τ ̂ be the maximum likelihood estimator of τ.

Using maximum likelihood, we can test the null hypotheses in (2) to (4) by different

methods, such as the Wald test or the likelihood ratio test (LRT). In the current study,
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we utilized LRT as a criterion to detect DIF, where the null (M0) and alternative (M1)

models were given by:

M0 ≡ logit πig
� � ¼ αþ βSi þ αg in NUDIF

αþ βSi in DIF and UDIF

�

ð5Þ

and

M1 ≡ logit πig
� � ¼ αþ βSi þ αg þ βgSi in DIF and NUDIF

αþ βSi þ αg in UDIF

�

ð6Þ

L0
� �
DIF is then tested by the lambda statistic (Wilks 1938), where Δ ¼ −2 log L1
, L0 and

L1 are the corresponding maximum of the likelihoods for the M0 and M1, respectively,

which follows an asymptotic chi-square distribution with degrees of freedom of the

asymptotic null distribution of Δ equal to 2 F for DIF and F for both the UDIF and

NUDIF. In other words, an item would be flagged as DIF when the lambda statistic is

sufficiently large, or stated alternatively, when the alternative model is preferred.

Methods
Study design

As stated above, our study is situated within the context of ILSAs; hence, we designed

our simulation study as follows. First, we follow the practice of test design and adminis-

tration by adopting a rotated booklet design (see Table 1). In operational testing, such

as in the TIMSS 2007 assessment in grade 4, 10 to 14 items per block were adminis-

tered and each student received a total of four blocks (two for mathematics and two

for science). In our booklet design, we aimed to achieve a similar set up for only one

content assessment.

As Table 1 shows, for purposes of our study, each booklet contained three blocks,

where each simulee received a single booklet. An approximately equal number of simu-

lees received any one of the seven booklets within a group (with random assignment),

and each group was administered all seven booklets. Each block contained 15 items,

resulting in 45 items per simulee. The remaining items (those in blocks not adminis-

tered to any one simulee at the time) were treated as missing by design in the analysis.
Table 1 Block and booklet design for the study for one group

Block (15 items per block)

Booklet 1 2 3 4 5 6 7

A x x x

B x x x

C x x x

D x x x

E x x x

F x x x

G x x x

Note. Any one booklet contained a total of 45 items and a total of 105 items were simulated for each group (15 items
per block × 7 booklets).
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Our study design choices were motivated by what is typically observed in practice

with ILSAs. To examine the impact of various factors on DIF detection, we manipu-

lated several variables (see Manipulated factors). To generate the data, we used empir-

ical approximations of item and person parameters from an existing dataset (see Data

generation). In what follows, we offer rationale for the choices made in the study de-

sign, including manipulated factors (and respective levels) of the simulation study and

the process of the selection/modification of item and person parameters.

Manipulated factors

Several factors were manipulated in the study, including

a) number of groups (10 or 20);

b) percent of groups affected by DIF (40% or 70%)

c) percent of DIF items (20%, 40%, or 60%);

d) nature of DIF (difficulty or discrimination); and

e) magnitude of DIF (small or large).

The number of groups examined in the study was set at 10 or 20. One of our goals

was to examine the performance of generalized logistic regression model as imple-

mented in the difR package (Magis et al. 2013) in a relatively large group setting; these

group sizes approximate more closely the operational context of large-scale surveys.

For example, the Teaching and Learning International Survey typically has 20–30 par-

ticipating educational systems, depending on the grade level (OECD 2010). We do,

however, recognize that other assessments, such as PISA or TIMSS, may have 60 par-

ticipating educational systems or more. One of the primary reasons we focused on what

might be considered lower bounds of the number of groups is the computing time re-

quired per analysis. In the preliminary analysis of conditions with 30 and 60 groups

(with other design choices remaining the same), analysis of one replication required

over 3 and 5.5 hours respectively on an IBM e1350 high-performance computing sys-

temb. We further recognize that the computing time is not necessarily an issue in real-

ity when only one dataset is considered. However, for the purposes of our simulation

study, with multiple replications within any one condition, it was necessary to choose a

smaller number of groups.

The number of groups affected by DIF was set to be 40% or 70% of total groups. This

meant that in conditions with 10 groups, either 4 or 7 groups contained some items

with DIF, and in conditions with 20 groups, 8 or 14 groups were affected by DIF. For

all conditions, the same arbitrarily selected reference group was used, while the

remaining groups were treated as focal. The assignment of groups affected by DIF was

made randomly. The reference group had a moderate sample size (N = 6370 in 10-group

and N = 5341 in 20-group conditions), was the same reference group across all conditions,

and its non-DIF item parameters were similar to those of focal groups.

The percent of items that were modeled as DIF-items was set to be 20%, 40%, or

60%, which resulted in 21, 42, or 63 DIF items for selected groups (a total of 105 items

were administered for any one group – see more detail below on how these parameters

were selected and manipulated). The assignment of DIF items was also drawn at ran-

dom, and was kept consistent across groups and levels of DIF (i.e., nature of DIF). Our
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choice for selecting a wide percent of items to be affected by DIF was primarily moti-

vated by research on large-scale assessments in language or cross-cultural studies,

where it is not uncommon to see a large number (percent) of items flagged as DIF-

items. For example, Stubbe (2011) investigated DIF in the German-language versions of

an international reading assessment, where he found an overall percentage of signifi-

cant DIF items to be over 74%; percent of DIF items ranged from 71.4% to 77.4% for

multiple-choice and constructed responses item types, respectively (2011). Further,

Dorans and Middleton (2012) cogently argue, using well-established literature and em-

pirical support, that language is a condition of measurement and as such, typical as-

sumptions that identical items translated into testing languages are not necessarily

equivalent. These “extreme assumptions” underpinning what the authors term “pre-

sumed” linking (in contrast to empirical linking) should be subjected to falsifiable tests

as a means of building support for a presumed linking across potentially non-

equivalent groups. The authors argue that invariance of relationships among test forms

should be examined. Further, necessary conditions for score-scale comparability include

a set of equivalent anchor items. As such, our design, even at the extreme, includes a

set of non-invariant as well as invariant “anchor” items.

The nature of DIF was examined by changing the value of the difficulty or discrimin-

ation parameters for DIF-items in affected groups. This is akin to the investigation of

uniform and nonuniform DIF, respectively. The generalized logistic method used in the

analysis allows for investigation of both types of DIF; hence, in our analysis, we opted

for DIF investigation of both types of DIF across all conditions. Focal groups that did

not contain DIF items had difficulty and discrimination parameters equal to those of

the reference group.

The magnitude of DIF was examined at two different levels. In conditions with small

DIF, values for difficulty parameters for affected items differed from non-DIF items by

.50 and discriminations varied by .40. In conditions with large DIF, differences were

1.00 and .80 for difficulty and discrimination parameters, respectively. Across all of the

conditions, differences in value of item parameters was made at random, either in favor

of the reference or focal group in question (i.e., differences in parameter values were

either added or subtracted from the non-DIF item in question by a random draw). A

note should be made regarding our choice of the difference values in introducing DIF.

Within typical DIF investigations, some authors suggest that differences of .50 in diffi-

culty, for example, might be considered large DIF (c.f., Goodman et al. 2011). In our

study, we used descriptors of small and large only to differentiate different levels of

DIF, not necessarily the classification of the DIF magnitude. More importantly, we

wanted to use values that can be found in examining difference in item parameters in

large-scale assessments. Specifically, in a study of 21 countries in PISA 2009, Rutkowski

and Rutkowski (2014) found that differences in estimates of item difficulties between

any two countries could be as large as 6.22 and as small as 1.95, with an absolute aver-

age of difficulty difference of .90 and absolute maximum mean difference across all

items of 2.96c (Rutkowski, L., & Rutkowski, D. One size does not fit all: The impact of

item parameter differences and estimation methods on cross-cultural achievement

comparisons, submitted manuscript). Similarly, the authors found that the discrimin-

ation differences for the same data were found to be in range of .55 and 2.19, respect-

ively, with an average maximum difference of 1.32.
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Data generation

In order to simulate our data, we used existing released item parameters that could be

found on typical ILSAs. Specifically, for non-DIF conditions, we estimated item parame-

ters from the 2007 TIMSS grade 4 assessment. On 2007 TIMSS, a total of 179 items were

released for grade 4 across all content areas, of which 174 were scored dichotomously

(i.e., either multiple-choice or constructed response items with only two categories;

Olson et al. 2008). From this pool of 174 released items (i.e., their parameters), we ran-

domly drew without replacement a total of 105 items. The 105 items represented the total

number of items used in our study, where each of the seven blocks contained 15 items.

Once the 105 item parameters were selected at random, they were treated as non-

DIF and were assigned to non-overlapping blocks at random for the reference group

and any focal group(s) selected to be non-DIF. Table 2 shows the average, minimum,

and maximum value of the difficulty and discrimination item parameters for non-DIF

items across the seven blocks. For example, as shown in Table 2, item 1 had an average

difficulty of .27 across the seven blocks, and its difficulty parameter ranged from -.23 to

1.06. As Table 2 suggests, item parameters drawn from the released 2007 TIMSS grade

4 assessment varied in both difficulty and discrimination, although these values would

be considered typical in such assessments.

Person parameters for each group were drawn randomly from a normal distribution

with some mean and standard deviation (see Table 3). The means and standard devia-

tions varied across groups; the differences in population means (standard deviations)

were purposefully introduced to resemble parameters likely to be found in large-scale

assessments. Values found in Table 3 were obtained by random sampling with replace-

ment of the “standardized” plausible values from 44 participating countries from grade

4 mathematics on TIMSS 2007. Note that for 10-group conditions, every other value

for 20-group conditions was used. Although these values are based on plausible values

provided by TIMSS, they should not be used as estimate of countries’ abilities. Rather,

we use them here only as an approximations in order to introduce group differences.

Table 3 also shows that the sample size varied across the groups. These sample sizes

were chosen to resemble current large-scale assessments, where group sample sizes are

typically large and vary per participating country. Values for sample sizes were ran-

domly drawn from ~N(5000, 1000) for 20 groups; every other sample size from the 20-

group pool was assigned to the 10-group. Within each group, approximately the same

number of simulees received each of the booklets, also assigned at random.

We simulated binary responses to items according to a 2-parameter logistic (2-PL)

model via the sim function implemented in irtoys package (Partchev 2012) in R. The

2-PL specifies the probability of person i endorsing an item j (Xij = 1) as:

P Xij ¼ 1jθi; aj; bj
� � ¼ eaj θi−bjð Þ

1þ eaj θi−bjð Þ ; ð7Þ

where θi is the person parameter for person i, bj is the location parameter (difficulty)

for item j, and aj is the discrimination parameter for item j. A fully factorial design

yielded a total of 50 conditions; 2 (number of groups) × 2 (percentage of DIF-affected

groups) × 3 (percent of DIF items) × 2 (nature of DIF) × 2 (magnitude of DIF) + 2

(non-DIF conditions), each replicated 100 times.



Table 2 Item difficulty and discrimination parameters used for generation of non-DIF items

Item �b bmin bmax �a amin amax

Item 1 .27 -.23 1.06 1.00 .57 1.33

Item 2 -.40 −1.58 .35 .97 .66 1.28

Item 3 .31 -.49 .85 .92 .50 1.17

Item 4 -.14 -.94 .45 1.04 .74 1.56

Item 5 .24 -.44 1.04 1.00 .73 1.19

Item 6 .08 -.63 .92 1.06 .80 1.73

Item 7 .12 −1.21 .93 .97 .70 1.63

Item 8 .06 −1.37 .97 .98 .78 1.23

Item 9 .03 -.55 .95 1.08 .55 1.76

Item 10 -.28 −1.23 .73 1.05 .92 1.18

Item 11 -.23 −2.00 1.09 .97 .65 1.23

Item 12 .09 −1.21 .68 .83 .46 1.23

Item 13 .22 -.46 .79 .82 .46 1.39

Item 14 -.04 -.62 .64 1.03 .76 1.55

Item 15 -.35 −1.38 .76 .92 .51 1.31

Note. These are the averages of item parameters across the seven blocks within a country that contains only non-DIF items.

Table 3 Descriptive statistics for group proficiency parameters

Group M SD N M SD N

1 .32 .56 5460 .32 .56 5460

2 .26 .55 6328 −1.15 .72 5733

3 .25 .58 5481 .26 .55 6328

4 .86 .56 5236 .79 .63 5474

5 .29 .69 5362 .25 .58 5481

6 -.30 .69 5537 .26 .64 4179

7 .40 .58 5362 .86 .56 5236

8 -.24 .74 6370 .52 .71 5341

9 −1.47 .74 6545 .29 .69 5362

10 .11 .58 4494 −1.34 .81 5117

11 -.30 .69 5537

12 -.80 .71 5187

13 .40 .58 5362

14 -.30 .69 3983

15 -.24 .74 6370

16 .45 .62 5845

17 −1.47 .74 6545

18 .60 .68 3297

19 .11 .58 4494

20 .50 .51 4571

Note. The means (M) and standard deviations (SDs) here represent distributional parameters from which N samples for
each group were drawn.
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Analysis

Generated data were analyzed within the framework of generalized logistic regres-

sion as implemented in the difR package under genDichoDif (method=“genLogistic”)

function (Magis et al. 2013) in R (R Development Core Team 2012). The refer-

ence group (group 8) was used across all conditions in both 10- and 20-group

cases, while remaining groups were treated as focald. Default options were used

for the analysis, including the test of both uniform and non-uniform DIF, LRT

was used as the criterion to detect DIF items, and the method was not used

iteratively to purify the set of anchor items. Items not administered per any one

record were treated as missing in the analysis, although no missingness was

introduced in the group membership (i.e., every simulee had a group membership

designation).

Performance criteria

In order to evaluate the performance of the generalized logistic regression, as imple-

mented in difR, we report Type I error and power rates. Type I error rates are

reported as the proportion of items within a replication that were generated as non-

DIF items but which are flagged as DIF in the analysis. Similarly, power rates are

computed as the proportion of items that are simulated as DIF items that are also

flagged as having DIF. Rates are averaged across 100 replications for each condition

separately.

Results
For the purpose of organization, we present our results for the 10-group conditions

first, followed by the 20-group conditions. Type I error rate for the NONDIF condition

(where data for all 10 groups was modeled using the same set of item parameters) was

inflated across the 100 replications; the mean (standard deviation) for the NONDIF

condition was .20 (.02), which deviates from a typically used .05 or .01 levels. For the

10-group DIF conditions, regardless of the level or nature of DIF introduced, the Type

I error rates were all .00. Given the consistency across all studied conditions, we only

mention the Type I error rates of zero and do not present these results in a table. Our

finding, with respect to Type I error rates, suggests that the generalized logistic method

was accurate in all DIF conditions by not flagging non-DIF items as having DIF.

Table 4 shows the average power rates (and standard deviations) for DIF conditions

for the 10-group cases. Rates were generally moderate to high across the studied condi-

tions, with a few exceptions. The highest power rates were noted in conditions where

the difference in item parameters for both the discrimination and difficulty were large.

This is not unexpected, but it should also be noted that this difference was mostly

noted in conditions where discrimination parameters varied (panel (a)); as panel (b)

showed, uniform DIF was quite constant across different DIF levels. It was also noted

that, generally, the power rates were higher in conditions where the percent of groups

affected by DIF was at 40% compared to 70%. This seemed to be the case for DIF con-

ditions where either discrimination or difficulty was invariant.

Several patterns were also noted. For example, in panel (a), where DIF was intro-

duced in the discrimination parameter, the percent of DIF items within an affected

group did not exhibit a clear pattern. For example, when discrimination DIF was .40



Table 4 Average power rates across studied conditions for 10 and 20 groups

Panel (a) Invariance in Discrimination Item Parameters

Difference in Parameters for DIF Items

% of DIF items Δa = .40% of Groups with DIF Items Δa = .80% of Groups with DIF Items

40 70 40 70 40 70 40 70

10 Groups 20 Groups 10 Groups 20 Groups

Discrimination 20 .70 .51 .70 .55 1.00+ .99 1.00 1.00

(.08) (.07) (.07) (.07) (.01) (.02) (.00) (.01)

40 .65 .57 .64 .61 .99 .98 .99 .98

(.05) (.04) (.03) (.04) (.01) (.01) (.01) (.01)

60 .71 .63 .72 .68 .97 .97 .97 .97

(.04) (.04) (.03) (.03) (−) (.01) (.01) (.01)

Panel (b) Invariance in Difficulty Item Parameters

Difference in Parameters for DIF Items

% of DIF items Δb = .50% of Groups with DIF Items Δb = 1.00% of Groups with DIF Items

40 70 40 70 40 70 40 70

10 Groups 20 Groups 10 Groups 20 Groups

Difficulty 20 .97 .92 .95 .95 1.00 1.00 1.00 1.00

(.03) (.03) (.01) (.03) (.00) (.00) (.00) (.00)

40 .98 .96 .98 .96 .98 .98 .98 .98

(.02) (.02) (.02) (.02) (.01) (.01) (.01) (.01)

60 .20 .20 .18 .18 .20 .19 .18 .18

(.02) (.02) (.02) (.02) (.02) (.02) (.01) (.01)

Note. Values in () represent SDs per condition; (−) SD was rounded to zero (actual value .004); + = rounded to 1.00.
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and 40% of groups were impacted by DIF, increasing the percent of DIF items did not

necessarily result in higher power rates. For example, with 20% of DIF items, the esti-

mated power rate was .70, while further increases in the percent of DIF items per group

resulted in power rates of .65 and .71, respectively. In conditions with 70% of groups

being impacted by DIF, more expected results were noted. Namely, power rates in-

creased as the number of items with DIF increased, from .51, .57, and .63 for the 20%,

40%, and 60%, respectively. Interestingly, when discrimination DIF was .80, power

rates slightly decreased as the percent of DIF items increased; this was the case for

conditions with 40% and 70% of groups affected by DIF. It should be noted, however,

that when discrimination differences were .80, all power rates were very high (ranged

from .97 to 1.00).

Panel (b) shows the results for the conditions where DIF was introduced in the item

difficulty parameter. It was noted that for all but four conditions, power rates were very

high (ranged from .92 to 1.00). However, in conditions where the percent of DIF items

was 60%, power rates are unacceptably low (~.20). This result was found regardless of

the amount of DIF or the percent of groups that were affected by DIF items. Across all

10-group conditions, standard deviations were very small, suggesting that across the

100 replications within any one condition, power rates were quite homogeneous.

Similar to the 10-group conditions, Type I error rates were zero in all studied condi-

tions in the 20-group cases. Power results for the 20-group conditions are presented in

Table 4. Based on these results, there are clear parallels between the 10- and 20-group

cases. Similar to the 10-group setting, the non-DIF condition had a Type I error rate
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much higher than would normally be expected. In particular, we estimated an oper-

ational error rate of 0.18. In other words, 18% of items, on average across replications,

were identified as differentially functioning under the condition where items were

invariant across groups. Further, and commensurate with the findings for the 10-group

case, the Type I error rates were zero to at least the third decimal place under all

considered conditions, regardless of DIF location (difficulty or discrimination), magni-

tude of DIF, percent of items with DIF, or percept of groups with DIF items. Collect-

ively, these findings suggest that the generalized logistic regression method has good

specificity when some items have DIF and poorer specificity when no items have DIFe.

Next, Table 4 indicates that, somewhat surprisingly, power to detect DIF items was

similar to the 10-group case, suggesting that the number of groups does not matter

much for detecting DIF items. Rates of DIF detection were mostly moderate to high,

with exceptions similar to the 10-group case. In particular, when 60% of difficulty pa-

rameters vary across groups, the power to detect DIF is just .18. And this finding was

consistent, regardless of DIF magnitude or the proportion of groups with DIF items.

These results suggest that when high proportions of items function differently, the

method considered does not do well at detecting these items. According to panel (a),

we also found that when the DIF magnitude in the discrimination was small, detection

rates were somewhat low (.55 to .72) and that detection rates were the lowest among

these (.55 to .68) when a higher percentage of groups (70 compared to 40) had items

with DIF in the discrimination parameters. In contrast, the magnitude of DIF in the

discrimination was large, detection rates were very high, from .97 when 60% of discrim-

inations had DIF to 1.00 when just 20% of discriminations had DIF. The findings were

very consistent across both the 40% and 70% of DIF-group conditions, suggesting that

the percentage of groups with DIF items matters little.

With respect to the findings for the 20-group case when DIF was located in the diffi-

culty parameter, Table 4, panel (b) indicates largely very similar findings to the 10-group

case. That is, detection rates are high (.96 to 1.00), with the exception of the condition

where 60% of items have DIF. And there are slight differences between the 40% and 70%

of groups conditions when 40% of items have a small magnitude of DIF. Specifically,

the proportion of DIF items detected as having DIF is slightly higher when a lower

proportion of groups have DIF (.98 versus .96); however, this is a small difference.

And there are no differences in detection rates between the 40% and 70% of groups

conditions when 20% of items have DIF in the difficulty parameter, regardless of DIF

magnitude. Similar to the 10-group conditions, standard deviations were very small,

again indicating relatively homogenous results for power rates across the 100 replications

within any one condition.

Discussion and conclusions
As a whole, these findings present a mixed picture with respect to the performance of

the generalized logistic regression method when conditions are similar to those found

in many ILSA settings. On one hand, it seems that general logistic regression tended to

detect DIF well in most cases (see remark on surprising results below). In the presence

of DIF, the method was successful in distinguishing between DIF and non-DIF, as evi-

denced by low Type I error and high power rates. On the other hand, however, in the

absence of DIF, the method yielded increased Type I errors.
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More specifically, when there are some differentially functioning items in any of the

considered conditions, generalized logistic regression does well at ignoring items that

are invariant across groups, whether the parameter of interest is the discrimination or

difficulty. Further, group size did not appear to be predictive of performance. That is,

the findings across the two group sizes (10 and 20) were quite consistent. This finding

is in contrast to previous research that used a multiple-groups confirmatory factor

analytic approach to detect measurement invariance in large numbers of groups

(Rutkowski & Svetina 2014). Specifically, performance of the considered methods

depended on the number of groups evaluated, with generally poorer performance con-

nected to larger numbers of groups. Given that international surveys and assessments

often feature dozens of system-level participants, a lack dependency on group size is a

strength of the method considered here, at least where detection rates were high. And

in many cases, power or detection rates were quite high, with more than 90% of DIF

items being flagged in 28 of 48 considered conditions. In contrast, power rates were

low in 20 of 48 conditions and surprisingly so in 8 of these conditions. Specifically, de-

tecting DIF in discrimination was a challenge for this method when the DIF magnitude

was small, with rates ranging from .55 to .72. But perhaps most surprising were the ex-

ceedingly low power rates when DIF was located in 60% of difficulty parameters, with

rates that ranged from 18% to 20%. One possible explanation for this finding could be

that with such a high proportion of DIF items, the method could not accurately identify

a set of invariant items against which to compare the non-invariant items – in other

words, the presence of DIF items masked the presence of other DIF items; however, it

is puzzling that this finding was limited to the difficulty parameter. Nonetheless, uni-

form DIF is clearly not as easily distinguishable as non-uniform DIF in this particular

condition. Lastly, it should be noted that in NONDIF conditions, regardless of the

number of groups, Type I error rates were quite inflated. This result is consistent with

previous research, which suggested that differences in group means (i.e., impact) may

contribute to the inflated Type I error rates (DeMars 2010; Jiang & Stout 1998). As

DeMars (2010) suggested, methods such as logistic regression that match groups based

on their observed score may not result in well matched examinees on true proficiency.

This may lead to false DIF detection due to inaccurate matchingf.

As with any study, our study has limitations due to the study design and the method-

ology used. With respect to the study design, the generalizability of our conclusions are

limited by the selection of manipulated factors in the study. Although we aimed to de-

sign our study to closely resemble the context of ILSAs (e.g., rotated booklet design,

large and varying sample size, released item parameters), due to space and time con-

straints, we did not investigate all potential scenarios that ILSAs may occupy in a real

context. For example, our focus was only on dichotomously scored data, such that data

were generated using a 2-PL IRT model. It is often the case that on large-scale assess-

ments, several item types are present, including items scored dichotomously and poly-

tomously. Further, in the current study, we did not allow for a lower-asymptote

parameter, which may be justified for some item types, such as in multiple-choice

items. Also, in cases where the effect is rather small (i.e., discrimination or difficulty pa-

rameters vary only by a very small amount), a question of the method’s performance re-

mains unanswered. These limitations present an opportunity for further research,

including a comparison between using the rotated booklet design with planned missing
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and conditions where no missingness is present. Additional research should consider

this method and its suitability of its use in the context of ILSA studies, as high Type I

error rates were observed in the absence of DIF. One avenue of exploration could be to

invoke an iterative process called item purification to investigate whether Type I error

rates stabilizeg. Further research should also examine the performance of the studied

method in conditions where large amounts of uniform DIF is present, as our results

pointed to a rather surprising phenomenon in conditions with 60% of DIF items and

difficulty parameter as variant. Namely, power rates in those situations dropped consid-

erably to unacceptable levels, thus further investigations regarding the “breaking point”

of the method may be warranted.

From a methodological or practical view, a limitation is that only detection of DIF

was investigated in the current study. In practical applications, once DIF is detected in

an item or set of items, it is crucial to examine the underlying reasons as to why DIF

occurred. As Ferne and Rupp (2007) suggested within the context of language testing,

use of expert panels has historically been underutilized, citing reasons of cost and time.

Even further, an important consideration by the analyst/testing developers should be

made with regards to what is done with items that are flagged as DIF. Although not the

focus of the current study, we advocate that detecting DIF in items on assessments is

only the first, albeit important, step in testing. Once items are identified as functioning

differentially (among the studied groups), substantive analysis should be implemented –

for example, use of cultural or linguistic experts may be useful in shedding light on why

DIF occurred. With that information, test developers could make more informed deci-

sions to revise and/or remove the flagged items in order to ensure score comparability

and appropriate inference regarding groups’ performance.

Endnotes
aIn this paper, we use the term non-DIF to suggest that the item is modeled as having

measurement invariance or that no DIF is present in the item (sometimes referred to

in the literature as DIF-free).
bPreliminary analysis run in Mplus (Muthén, & Muthén 1998–2010) for testing con-

figural and metric invariance using similar design choices resulted in a single replica-

tion taking almost 24 hours.
cThe authors studied a total of 27 items; averages and maximums of item parameter

differences here were based on 26 items because one item seemed to have provided es-

timates that were extremely rare (i.e., difficulty parameter estimates between two coun-

tries that differed up to 17 points). In order to provide a more general idea of how

different item parameters between the countries could be, we eliminated this outlier in

our reporting.
dThis group was chosen as a reference group because it was one of the groups not

chosen at random to be impacted by DIF. The selection of this reference group was in

that respect at random. This might be slightly different from ILSAs, where the host

country of interest may serve as a reference group. Nonetheless, in DIF studies, the

choice of reference and/or focal group(s) is often made by the analyst’s purpose and

goals.
eWe calculated specificity as 1 – P(item is flagged as DIF | item is non-DIF) or 1 −

Type I error rate.
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fMagis and De Boeck (in press) recently found inflated Type I error rates in Mantel-

Haenszel approach, and similarly attribute the inflation to the item impact and differ-

ence in item discriminations. Although not the same approach as used in the current

study, Magis and De Boeck study found potential sources of Type I error rate inflation

as found in DeMars (2010) and the current study.
gItem purification is an iterative process, which removes the items currently flagged

as DIF from the test scores in order to obtain purified sets of items, unaffected by DIF.

Process stops until two consecutive runs yield the same selection of the items. Cur-

rently, literature is unclear as to whether item purification controls the Type I error

rate to some nominal value and/or maintains higher power (e.g., Magis & Facon 2013).
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