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Abstract

In this paper, we document a study that involved applying a multiple imputation
technique with chained equations to data drawn from the 2007 iteration of the
TIMSS database. More precisely, we imputed missing variables contained in the
student background datafile for Tunisia (one of the TIMSS 2007 participating
countries), by using Van Buuren, Boshuizen, and Knook’s (SM 18:681-694,1999)
chained equations approach. We imputed the data in a way that was congenial with
the analysis model. We also carried out different diagnostics in order to determine if
the imputations were reasonable. Our analysis of multiply imputed data confirmed
that the power of multiple imputation lies in obtaining smaller standard errors and
narrower confidence intervals in addition to allowing one to work with the entire
dataset.

Background
Missing data are a part of almost all research. Scrutiny of data from the iterations of

TIMSS (Trends in International Mathematics and Science Study) makes clear that the

survey participants, whether students, teachers, or school principals, fail to complete

all of the items of their respective questionnaires. Because TIMSS data offer a rich

array of information about the major factors thought to predict student achievement

in mathematics and science, the incomplete cases mean not only a loss of power of the

analyzed data but also the potential to bias the estimates of interest (Little, 1992; Little

& Rubin, 2002).

Our aim in this paper is to apply the multiple imputation technique introduced by

Rubin in the early 1970s (see Rubin, 1987) to a TIMSS dataset and thereby explore its

possibility as a solution to the problem of survey nonresponse. We begin by examining

the theoretical underpinnings of multiple imputation and then briefly describe trad-

itional imputation approaches. Next, we use Van Buuren, Boshuizen, and Knook’s

(1999) multiple imputation by chained equations approach to provide an illustration of

imputing student background data missing from the TIMSS 2007 datafile for Tunisia.
Multiple imputation: a review of the literature
Among the traditional methods developed to enable investigators to make statistical

inferences when data are incomplete are listwise deletion or complete case analysis,

pairwise deletion, mean substitution, regression imputation, and inclusion of an indica-

tor variable.a Over the last two decades, investigators have used these methods, despite
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their drawbacks, extensively in their empirical research. The drawbacks include further

loss of data, biasing the sample statistics, and reducing the variance of the variable in

question (Acock, 2005; Little & Rubin, 2002; Peugh & Enders, 2004; Rubin, 1987).

More statistically principled methods for handling missing data also exist. They include

the maximum likelihood estimation via the expectation maximization algorithm (EM)

(Dempster, Laird, & Rubin 1977) and multiple imputation (Little & Rubin, 2002; Rubin,

1978, 1987, 1996; Schafer & Graham 2002). These methods produce estimates that are su-

perior to those of the older methods, but for many researchers, multiple imputation is the

general solution to missing-data problems in statistics (Rubin, 1996; Schafer, 1997). Cer-

tainly, multiple imputation is an innovative approach over the traditional ones. On the

one hand, researchers in many fields can use it. On the other hand, because its implemen-

tation is becoming easier (thanks to the existence of statistical software packages), re-

searchers are tempted to use it despite the problems associated with it.b
What is multiple imputation?

Before explaining what multiple imputation is, we consider it useful to study the mech-

anisms and patterns associated with missing data.

Exploring missing-data mechanisms

The missing-data mechanism has three classifications (Rubin, 1976): missing at random

(MAR), missing completely at random (MCAR), and missing not at random (MNAR).

Data are said to be missing at random (MAR) if other variables in the dataset can be

used to predict missingness on a given variable. For example, in surveys, men may be

more likely than women to refuse to answer some questions. Here, data will be missing

completely at random (MCAR) because the process that causes missingness does not

depend on the values of variables in the dataset subject to analysis (Little, 1988; Rubin,

1976; Zhang, 2003).

MCAR is a fairly strong assumption, and tends to be relatively rare. For instance, in

the context of survey data, MCAR data might occur when a respondent simply skips

an item or a question, perhaps because of neglecting to turn the page of a question-

naire booklet. MAR is a less restrictive assumption than MCAR. Finally, data are said

to be missing not at random (i.e., MNAR, also called nonignorable missing data) if the

value of the unobserved variable itself predicts missingness. A classic example of this is

income. Individuals with very high incomes generally refuse to answer questions about

their earnings. This is not the case for individuals with more modest incomes.c

Careful consideration of the missing-data mechanism is important because different

types of missing data require different treatments (Allison, 2000; Schafer, 2003). When

data are MCAR, the complete cases analysis will not result in biased parameter estimates.

The only cost is a reduction in the sample size and the statistical power of the analysis be-

cause MCAR leads to larger standard errors. In contrast, analyzing only complete cases

for data that are either MAR or MNAR can lead to biased parameter estimates. Because

multiple imputation generally assumes that the data are, at the least, MAR, this approach

can also be used on data that are MCAR (Marchenko & Eddings, 2011).

Exploring missing-data patterns

In order to choose an adequate imputation method, we must first look at the missing-

data pattern. Two possible patterns can be identified: monotone pattern and arbitrary
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pattern. With a monotone pattern, X2 is observed only on a subset of subjects on

whom X1 is observed. X3 is observed only for a subset of those on whom X2 is ob-

served, and so on (Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001). With

the arbitrary pattern, missingness is widespread. Figure 1 provides an example of a

monotone, arbitrary-patterned dataset containing four variables—V1 to V4, where 1 s

indicate observed values and 0 s indicate missing values.

Monotone imputation requires a specific order of the prediction equations. X1 is im-

puted using all of the complete variables as predictors, and X2 is then imputed using

the observed and imputed values of X1 and the other predictor variables. Thus, with
Figure 1 Shapes of the missing data pattern.
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this process, the previously imputed variables are added sequentially to the prediction

equations of the other imputation variables.d

Overview of multiple imputation

Multiple imputation is a statistical technique for handling incomplete data and for de-

livering an analysis that makes use of all possible information (Rubin, 1977, 1978). It

was derived using the Bayesian paradigm (Rubin 1987, 1996). Multiple imputations are

repeated random draws from the predictive distribution of the missing values. More

precisely, multiple imputations are drawn from a posterior predictive distribution of

the missing data conditional on the observed data.

When seeking a Bayesian imputation model, we need to take all sources of variability

and uncertainty in the imputed values into account in order to yield statistically valid

inferences (Rubin, 1987). The process of substituting the predicted values for the miss-

ing ones is performed M times (M > 1). (We discuss choice of imputation models and

the number of imputations later in this paper.)

Imputing the missing data leads to the database, called the “imputed database”,

appearing to be complete, and allows researchers to apply complete-data-based

methods on each of the M imputed datasets. The parameter estimates, usually known

as the regression coefficients, are averaged using rules established by Rubin (1987) to

produce a single set of results (see the Appendix to this paper). Multiple imputation

thus requires the building of an imputation model in which predictor variables have to

be specified. For discussions of the theoretical and statistical foundations of multiple

imputation, see Nielsen (2003), Rubin (1987), and Zhang (2003).

Building an imputation model

In order to implement multiple imputation in practice, we first need to specify the pre-

dictor variables. Having done that, we can then construct a predictive model.
Specification of the predictor variables The first task that needs to be accomplished

when carrying out multiple imputation is selection of the predictor variables. We dis-

cuss several approaches to determining which variables to include.

Meng (1994), Rubin (1996), Taylor et al. (2002), and White, Royston, and Wood

(2011) advocate including all variables associated with the probability of missingness,

along with the variables contained in the dataset. From a practical perspective, deciding

which variables to include can be accomplished by establishing the correlations be-

tween each variable to be imputed and the predictors. If the magnitude of a correlation

exceeds a certain level, then the applicable variable is included (Van Buuren et al.,

1999). Allison (2002), Moons, Donders, Stijnen, and Harrell (2006), and White et al.

(2011) all highlight the need to include the dependent variable of the analysis model in

the imputation model.

According to several investigators, among them Enders, Dietz, Montague, and Dixon

(2006), Graham (2009), and Jolani, Van Buuren, and Frank (2011), the imputation

model should be more general than the analysis model in order to capture more associ-

ations between the variables. Also, in situations where there are too many variables,

Graham (2009) recommends using principal component analysis in order to detect the

variables that have high correlations with the dependent variable.
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In the same spirit, and in order to have a rich imputation model compatible with the

analysis model, Stuart, Azur, Frangakis, and Leaf (2009) argue for the necessity of in-

cluding in the regression models those variables that lead to some minimum additional

R-squared. Another alternative is to use the variables that will be used in the analysis

model in the imputation model (Schafer, 1997, Raghunathan et al., 2001). However, as

Raghunathan and his colleagues (2001) have shown, the inclusion of more and more

variables leads to the standard errors of the estimates for the analysis model becoming

smaller and smaller.
Specification of the imputation modelc The next step in multiple imputation is speci-

fication of the imputation model. Two distinct approaches are used—the multivariate

normal model and the chained equations approach.
Imputation using the multivariate normal model
The multivariate normal model was introduced by Rubin (1987; see also Little & Rubin

2002). This approach involves drawing from a multivariate normal distribution of all

the variables in the imputation model, and it assumes that the variables are continuous

and normally distributed. However, many datasets, especially those in international

large-scale assessment databases, contain several different types of variable—categor-

ical, binary, and skewed continuous. As such, the inclusion of nonnormally distributed

variables in an imputation model that assumes normality may introduce bias. A prag-

matic approach here is to transform these variables in order to obtain approximate nor-

mality (Sterne et al., 2009; White et al., 2011).

Schafer (2001, p. 7) discusses several ways to manage nonnormally distributed vari-

ables. For instance, he explains that nominal variables can be modeled in a way to ap-

proximate normality, and the continuous imputed values can be rounded off to the

required category. Skewed continuous variables can be transformed by standard func-

tions such as the logarithm, the square root, or the reciprocal square root, and after im-

putation transformed back to the original scale. Other variables with problematic

distributions can be transformed by a method based on the empirical cumulative distri-

bution function.

Shafer (2001) used this imputation model to impute the NHANES III dataset after

modeling nonnormally distributed variables. Peugh and Enders (2004) demonstrated

the use of multiple imputation using the multivariate normal model in the context of

the Longitudinal Study of American Youth. Enders et al. (2006) also used this approach

to impute missing data in the Longitudinal Study of Adolescents at Risk for the Devel-

opment of Emotional or Behavioral Disorders. Schafer’s (1999b) NORM program was

used to conduct all of these illustrative analyses.e

One drawback of imputing variables by assuming normality is that the distribution of

the imputed values may not resemble that of the observed values (White et al., 2011).

Although this approach has stronger theoretical underpinnings and some better statis-

tical properties, the chained equations approach works well in practice (Raghunathan

et al., 2001; Van Buuren et al., 1999; Van Buuren, Brand, Groothuis–Oudshoorn, &

Rubin, 2006).f



Bouhlila and Sellaouti Large-scale Assessments in Education 2013, 1:4 Page 6 of 33
http://www.largescaleassessmentsineducation.com/content/1/1/4
Imputation using the chained equations approachg

This approach is sometimes referred to as ICE or MICE (i.e., multiple imputation by

chained equations). It is also known as the fully conditional specification and sequential

regression multivariate imputation (White et al., 2011). MICE is a practical approach

for imputing missing datasets based on a set of imputation models, given that there is

one model for each variable with missing values. MICE has been described in the con-

text of medical research conducted by Royston and White (2011), Van Buuren et al.

(1999), and White et al. (2011), and it is seen as a suitable approach for imputing in-

complete large, national, public datasets. Work conducted by Oudshoorn, Van Buuren,

and Van Rijckevorsel (1999) provides an illustration of this approach. They used MICE

to obtain a complete version of the Dutch National Services and Amenities Utilization

Survey of 1995 (AVO-95). The MICE procedure requires development of the MICE al-

gorithm, a description of which follows.

Because the ICE approach involves a series of univariate models rather than a single

large model, the MICE approach imputes data on a variable by variable basis by speci-

fying an imputation model per variable. Suppose we have a set of variables X1……Xk.

Of this set of variables, some or all have missing values. If X1 has missing values, it will

be regressed on the other variables X2 to Xk. The estimation is thus restricted to indi-

viduals with observed X1. The missing values in X1 are then replaced by the predictive

values, which are simulated draws from the posterior predictive distribution of X1. The

following variable with missing values, X2, is regressed on all the other variables X1, X3

to Xk. Estimation is thus restricted to individuals with observed X2 and uses the im-

puted values of X1. Here again, the missing values in X2 are replaced by simulated

draws from the posterior predictive distribution of X2.

This process is repeated for all the other variables in turn for n cycles in order to

stabilize the results and to produce single imputed datasets. Royston and White (2011)

and Van Buuren et al. (1999) have all suggested that more than 10 cycles are needed

for the convergence of the sampling distribution of imputed values, whereas the entire

procedure is repeated independently M times, yielding M imputed datasets.
Selecting the number of imputations

It is important to know the number of imputations needed for a good statistical infer-

ence. Multiple imputation theorists suggest that small values of M, on the order of

three to five imputations, yield excellent results (Rubin, 1987; Schafer & Olsen, 1998).

Schafer (1999a) suggests that no more than 10 imputations are usually required.

Graham, Olchowski, and Gilreath (2007) recommend that researchers using multiple

imputation should perform many more imputations than previously considered suffi-

cient. They reached this conclusion after using a Monte Carlo simulation to test

multiple-imputation models across several scenarios in which the fraction of missing

informationh for the parameter being estimated and M were varied.

White et al. (2011) offer another argument in favor of increasing M. Their approach

is based on calculating the Monte Carlo error of the results, with the latter defined as

the standard deviation across repeated runs of the same imputation procedure with the

same data. White and his colleagues showed, using UK700 data,i that Monte Carlo

error tends to zero as M increases. The three investigators also advanced a rule of
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thumb, although they qualified it as not universally appropriate, which states that M

should be at least equal to the percentage of incomplete cases in the dataset. If, for ex-

ample, 70% of cases have complete data, this rule would suggest M = 30.

Imputation models for different types of variables

In general, datasets contain several types of variables that do not necessarily follow a

normal distribution. An interesting feature of MICE is that it can handle different vari-

able types (continuous, binary, unordered categorical, ordered categorical) by building

different MICE algorithms (Royston & White 2011; White et al., 2011). Table 1 sets out

the models that are used for different types of variable. Sometimes, continuous vari-

ables are either positively or negatively skewed. White et al. (2011) discuss two main

ways of dealing with such variables: transformation towards normality and predictive

mean matching.

Advantages of MICE and comparison of it with the multivariate normal model (MVN)

Despite lacking a theoretical rationale and despite the difficulties encountered when

specifying the different imputation models, MICE has several practical advantages

(Marchenko, 2011; Van Buuren et al., 2006; Van Buuren & Oudshoorn, 2011; White

et al., 2011). The particularly interesting feature of MICE is its flexibility: each variable

can be modeled by using a model tailored to its distribution. In addition, MICE can

manage imputation of variables defined only on a subset of the data (e.g., pregnant

women). MICE can also incorporate variables that are functions of other variables, and

it does not require monotone missing-data patterns.

Brief mention of a number of comparisons between MICE and MVN is relevant here

(see, in particular, Lee & Carlin, 2010; Marchenko, 2011; Van Buuren, 2007). To begin

with, the multivariate normal model has theoretical underpinnings whereas MICE does

not. Secondly, MICE imputes data on a variable by variable basis, but MVN uses a joint

modeling approach based on a multivariate normal distribution (Schafer, 1997). MICE

can also handle different types of variables while the variables imputed under MVN

need to be normally distributed or transformed in order to approximate normality

(Schafer, 1997). Finally, MICE can include restrictions within a subset of the data,

whereas MVN imputation cannot.
Methods
Implementing MICE in the TIMSS datafile for students’ background: a case study

Since their launch in the 1960s by the International Association for the Evaluation

of Educational Achievement (IEA), international large-scale assessments such as
Table 1 Imputation models for different types of variables

Type of variable The model used for imputation

Continuous variable Linear regression

Binary variable Logistic regression

Ordinal variable Ordinal logistic regression

Nominal variable Multinomial logistic regression
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the Trends in Mathematics and Science Study (TIMSS) and the Progress in Inter-

national Reading Literacy Study (PIRLS) have become increasingly attractive to

countries wanting to assess their students’ achievement in mathematics, science,

and reading literacy. IEA studies focus on student achievement and the factors re-

lated to it. They provide high-quality data for evidence-based educational policy

and reform.

TIMSS was first conducted in 1994/1995, in 45 countries, at five grade levels (3, 4, 7,

and 8, and the final year of secondary school). The second assessment, conducted in

1999, involved 38 countries and surveyed only one grade, Grade 8. The third iteration,

in 2003, assessed students in Grades 4 and 8 in 50 countries. Fifty-nine countries par-

ticipated in the fourth survey, in 2007. The students tested this time round were fourth

and eighth graders. Just over 60 countries took part in the fifth and most recent TIMSS

survey, conducted in 2011 and again surveying fourth and eighth graders. A number of

these countries today have at hand data spanning over two decades, that is, from 1995

to 2011. The next TIMSS survey is scheduled for 2015.j

The central aim of TIMSS is to assess students’ achievements in mathematics and

science. Another equally important purpose is to produce data that allow investigators

to explore and identify factors relating to student learning, such as students’ home

backgrounds, as well as other factors arising out of policy changes relating to, for ex-

ample, curricular emphases, allocation of resources, and instructional practices. These

dual purposes are accomplished by administering questionnaires to participating stu-

dents, their mathematics and science teachers, and the principals of the sampled

schools.

The TIMSS assessments use a two-stage, clustered sampling design. During Stage 1,

school selection is based on a probability proportional to size sampling approach,

whereby there is a higher probability of choosing larger schools. The second stage con-

sists of randomly choosing one or two intact classes at Grade 8 level. All students in

the selected classes are then assessed, except for students excluded for specified reasons

(e.g., intellectual disability) and students absent on the day of assessment. TIMSS also

employs school stratification in order to improve the efficiency of the sample design.

Both explicit and implicit stratifications are used. However, even in the absence of

stratification, the TIMSS samples represent, on average, the different groups found in

the wider population (Olson, Martin, & Mullis, 2007, p. 84).

TIMSS researchers use sampling weights to accommodate the fact that the probabil-

ities associated with selecting some units, such as schools, teachers, and students, will

differ. It is therefore necessary to consider the purpose of analysis when choosing sam-

pling weights (Rutkowski, Gonzalez, Joncas, & Von Davier, 2010; Schafer, 2001). The

inclusion of weights for each individual imputation makes it easier to ensure that the

imputation model is appropriate (Rubin, 1996). Our advice regarding imputation of

missing data is to use the total student weight when imputing missing values in the stu-

dent datafile, to use the weight for mathematics/science teacher data when imputing

missing values in the mathematics/science teacher file, and to use school weight when

imputing nonresponse in the school datafile.

As is the case with data obtained from any other survey, the TIMSS database has

missing values. According to Rubin (1987), survey nonresponse includes all the situa-

tions in which missing data arise from processing information provided by individuals



Bouhlila and Sellaouti Large-scale Assessments in Education 2013, 1:4 Page 9 of 33
http://www.largescaleassessmentsineducation.com/content/1/1/4
and the failure of individuals to provide information. “Omitted”, “not administered”,

and “don’t know responses” are all considered to be missing values and hence in need

of imputation.

� Omitted responses: These occur when a student, teacher, or school principal skips a

question. Invalid answers in the background questionnaires, such as when the

respondent selects two or more response options in a categorical variable, are

considered to be omitted and thus missing (Foy & Olson, 2007).

� Not administered: The not administered code is used in the TIMSS background

questionnaire datafiles when a respondent fails to complete a questionnaire or when a

question is not administered because of, for example, having been left out, misprinted,

removed from the questionnaire, considered not applicable in some countries,k

mistranslated, or deemed not internationally comparable (Foy & Olson, 2007).

� Don’t know responses: As Little and Rubin (2002) point out, deciding what to do

with individuals who respond with “don’t know” is especially challenging. The don’t

know response occurs in questions that, for example, ask students about the

highest education level of either parent or about the level of education they

themselves expect to complete. In order to consider this subpopulation as part of

the population under study, we need to tag the don’t know response as missing and

therefore requiring imputation.
Types of variables in TIMSS

TIMSS datafiles contain different variable types: continuous, binary, nominal, and or-

dinal. Continuous variables are those that have an infinite number of possible values,

such as age, plausible values in mathematics and in science, minutes spent teaching

mathematics per week to a class, and total school enrollment. Binary variables are nom-

inal variables that have two categories, for example, gender, whether or not students

were born in the participating country, and possessions at home, such as a calculator.

Nominal variables are those that have more than two categories, such as whether or

not the students’ parents were born in the participating country. Finally, ordinal vari-

ables, although similar to nominal variables, differ from the latter because the variables

are clearly ordered. Examples of ordinal variables include the highest level of education

attained by either parent and the amount of time the student spends watching televi-

sion or video within a specified time period (e.g., weekly). Rating scales is another cat-

egory of variables that can be considered ordinal. They include the customary four-or

five-point Likert scale variables of, for example, strongly disagree, disagree, agree, or

strongly agree (with a statement or proposition).
Illustrative analysis

So far we have mainly discussed the approaches used to generate multiply imputed

datasets. We have also addressed how MICE could potentially be used in relation to

TIMSS background files. In this section, we focus on implementing MICE to missing

values of variables contained in the files encompassing background data from the stu-

dents who participated in TIMSS in Tunisia.l We begin by defining our analysis model.

We then use all the variables of the analysis model in the imputation model, and follow
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this by assessing the missing data in order to determine their pattern and the “mechan-

ism” producing that pattern. We also discuss the different diagnostics we used to deter-

mine whether the imputations were reasonable or whether the procedure needed to be

modified. Finally, we present our analysis of the multiply imputed data.

The analysis model

We decided to apply our MICE approach to a study examining the relationship be-

tween mathematics performance and science performance of the Grade 8 Tunisian stu-

dents as well as their socioeconomic status and their respective schools’ resources.

Since the Coleman report of 1966 (Coleman et al., 1966), an extensive body of litera-

ture has built up that explores and identifies the factors associated with students’

achievement in developing and developed countries.

Socioeconomic status and school resources are the variables most discussed in the lit-

erature. We therefore decided that our analysis model should be as follows:

Tics ¼ α0 þ α1Fics þ α2Rcs þ εics:

Here, Tics is the first plausible value in mathematics (or in science) provided by
TIMSS 2007. Fics reflects the socioeconomic status of the student i in class c and school

s, and ε is the error term that has a school-level element and a class-level element in

addition to the individual-student element (Moulton, 1986). Rcs is the index of availabil-

ity of school resources for mathematics instruction in class c at school s. Table 2 de-

scribes the variables used in our analysis. We included all of these variables in our

imputation model.

Assessing missing data

This step can be accomplished by examining the pattern of missing data as well as ex-

ploring the missing-data mechanism. Scrutiny of our data revealed an arbitrary missing

pattern, as can be seen in the Appendix (Figure 9) to this paper. Sample statistics indi-

cated that only 76% of observations were complete; the remaining 24% of the data thus

contained missing values. The output of the misstable nested presented immediately

below clearly shows that the missing values of the different variables were not nested

because 10 statements describe the missing value pattern, thereby confirming the arbi-

trary nature of the missing data pattern (see Misstable nested).

Misstable nested

1. Index_math_ress (23)

2. Calculator (70)

3. Parents_born_country (77)

4. Desk (78)

5. Dictionary (84)

6. Books (109)

7. Internet_connection (172)

8. Work_paid_job (180)

9. Computer (240)

10.Parents_highest_ed_level (364)



Table 2 Description of the different variables

Variable Type of variable Description

Age Continuous

Number of books (Books) Ordinal Five categories:

1 Less than one shelf

2 One shelf

3 One bookcase

4 Two bookcases

5 Three or more bookcases

Possessing calculator (Calculator) Binary Two categories:

1 Yes

0 Otherwise

Possessing computer (Computer) Binary Two categories:

1 Yes

0 Otherwise

Possessing study desk (Desk) Binary Two categories:

1 Yes

0 Otherwise

Possessing a dictionary (Dictionary) Binary Two categories:

1 Yes

0 Otherwise

Possessing internet connection
(Internet_connection)

Binary 2 Two categories:

1 Yes

0 Otherwise

Parents’ highest education level
(Parents’_highest_ed_level)

Ordinal Five categories:

1 University degree

2 Completed postsecondary but not
university

3 Completed upper-secondary
education

4 Completed lower-secondary
education

5 Less than lower-secondary education

Parents born in country (Parents_born_country) Nominal Three categories:

1 Both parents born in country

2 Only one parent born in country

3 Neither parent born in country

Gender of student (Female) Binary Two categories:

1 Female

0 Male

Spend time work on paid jobs (Work_paid_job) Ordinal Five categories:

1 No time

2 Less than one hour

3 One to two hours

4 More than two hours but less than
four/

5 Four or more hours
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Table 2 Description of the different variables (Continued)

Index of availability of mathematics resources
(Index_math_ress)

Ordinal Three categories:

1 High

2 Medium

3 Low

First plausible value in mathematics (BSMMAT01) Continuous

First plausible value in science (BSSSCI01) Continuous
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It is pertinent to note at this point that imputation using chained equations does not

require the variables to be imputed in a specific order. The prediction models do not

follow a specific order because, by default, the software imputes variables from the

most observed to the least observed.

Having determined the pattern of missingness, we next needed to determine the

mechanism driving it. The reason for this step relates to the fact that multiple imput-

ation relies on certain assumptions. One assumption is that the data are MAR. How-

ever, the missingness at random assumption is not testable. Nevertheless, we can test

the assumption of MCARm data against MAR data (Marchenko & Eddings, 2011a) by,

for example, creating a new dummy variable for each existing variable, which takes the

value of 1 if a given observation is missing that variable and of 0 if it is not.

The next step is to run a logistic regression analysis, with the missing data dummy as

the dependent variable, over the number of completely observed variables. If the ob-

served variables predict missingness, then the data are MAR rather than MCAR. Fur-

thermore, if there are no strong associations between missingness and the observed

values, then the data are MCAR rather than MAR (Marchenko & Eddings, 2011). Our

data showed no strong associations between missingness and the observed values, so

we assumed that the data were MCAR.n

Multiple imputation diagnostics

Imputation techniques require some diagnostics to help determine whether or not the

imputations are reasonable. Recent research by a number of investigators has led to

the development of important diagnostics that can be utilized before and after the im-

putation process (Abayomi, Gelman, & Levy, 2008; Carpenter & Kenward, 2008; Gra-

ham, 2009; Marchenko & Eddings, 2011; Raghunathan & Bondarenko, 2007; Stuart

et al., 2009; Su, Gelman, Hill, & Yajima, White et al., 2011; 2011; Van Buuren &

Oudshoorn, 2011).

Testing individual models before imputing A strength of MICE is that it allows

modeling of each variable via a model tailored to its distribution. A good imputation

model depends on the success of all the individual models. If a single model fails to

converge, the imputation process as a whole fails. Checking the imputation models en-

compasses the following steps:

1. Checking for convergence: The imputation model must run successfully.

Sometimes, complex models such as mlogit fail to converge if the number of
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categorical variables used is large. The reason why is because the large

number can lead to small cell sizes. Pinning down the cause of the problem

requires dropping some variables and then added them in, in small groups,

until the model runs successfully. Although this method is time consuming,

it does result in a workable model. Another alternative is to study the

correlations between the nominal variable to be imputed and the predictors,

and to choose only those that correlate significantly with the variable in

question.

2. Handling problems of perfect prediction: Checking the model is a crucial step in the

process of detecting perfect prediction. Perfect prediction occurs in regression

models for categorical outcomes. Such models include logistic, ordered logistic, and

multinomial logistic. Perfect prediction occurs whenever the outcome of any

predictor variable within a category is always 0 (or always 1). It usually leads to

infinite coefficients with infinite standard errors, and it often causes instability

during estimation.

When endeavoring to resolve this problem, we have two options, one of

which consists of discarding the variables responsible for perfect prediction.

However, by doing this, we may defeat the whole purpose of multiple

imputation, unless we have no intention of using the variables in further

analyses. The second option is to handle perfect prediction directly during

imputation via the augment option. This option, suggested by White,

Daniel, and Royston (2010), is available for all categorical imputation

methods (logit, ologit, and mlogit), and it allows us to add to the data extra

observations with small weights during estimation of model parameters so

that no prediction is perfect (White et al., 2010). For further details of this

approach, see the section titled “The Issue of Perfect Prediction During

Imputation of Categorical Data” in the STATA 12 multiple imputation

documentation provided by the software STATA 12.

3. Adding interaction terms: Sometimes, imputing on subsamples is required for

two reasons. The first is to ensure we have at hand the correct functional

form of the imputation model, and the second is to preserve higher-order

dependencies (Collins, Schafer, & Kam, 2001; Rubin, 1996; Schafer, 2001).

For instance, we can investigate various interaction effects with respect to

gender, race, income, age, and location (i.e., urban/rural). Thus, one way to

check for misspecification is to add these interaction terms to the models in

order to determine if they are important (Graham, 2009). However, we cannot include

a large number of interactions in the imputation models because of computational

limitations (Stuart et al., 2009). Also, in “clustered data”, the members of the same

cluster can share characteristics. In this situation, we can include the cluster variable

(either the strata or the primary sampling units) in the imputation model as an

indicator variable (Graham, 2009).

To ensure that each of our imputation models were appropriate, we thoroughly

checked them by using the total student weight to weigh each observation in each

model. Our conditional models were therefore as follows (See the conditional

models below):
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Imputation process and convergence check We used MICE to draw five multiple

imputations per missing value,o and repeated the process through 100 cycles. As is clear

from the output below, we successfully imputed all the incomplete values (Figure 2).

Our next step involved using frequency tables to check if the imputed data of the cat-

egorical variables fitted the observed variable.p The frequency tables that follow are

from the first and the last imputation (m = 1 and m = 5), as well as from the observed

data (m = 0) of some of the selected variables. Note that the observed and the imputed

values are relatively similar (Figures 3, 4, 5, 6, 7 and 8).
Results
In this section, we focus on our analysis of the imputed datasets. We used standard statistical

procedures for this work. We began by using the survey regression technique to compute the

estimation on the complete data. We then used this technique to compute the five imputed



Figure 2 Imputation of the incomplete values.

Figure 3 The frequency table of the variable Books from the observed data.
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Figure 4 The frequency table of the variable Books from the first imputation.
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datasets. After that, we performed 30 imputations and reanalyzed the estimation results, all

of which appear in the Appendix (Figures 11, 12, 13, 14, 15, 16 and 17) to this paper.

As we mentioned earlier, our goal was to study the impact of SES variables and

school resources on students’ performance in mathematics and science. Although our

analysis was conducted over the first plausible values in mathematics and the first

plausible value in science, we report here only the results of the first plausible value in

mathematics because the difference between the two results was minor.q The listwise

deletion of the original data is reported in Figure 11 in the Appendix.

We next generated five imputed datasets (Figure 12 in the Appendix) running the

analyses separately on each dataset, and combining, by using Rubin’s (1987) rules, the

parameter estimates and standard errors into a single inference.r The resulting esti-

mates accounted for both within- and between-imputation uncertainty, reflecting the

fact that the imputed values were not observed values.

On looking at Figure 12 we observe first that the multiple imputation estimates are quite

similar to those obtained from the complete case analysis. However, after imputation, we

can see that the standard errors are smaller and the confidence intervals narrower. Three

statistics require interpretation at this point. They are the average relative variance increase

(RVI), the largest fraction of missing information (FMI), and the degrees of freedom (DF).s

The average relative variance increase (RVI) due to nonresponse is small: 0.0407. It indi-

cates the increase in variance of the estimates because of the missing values: the closer

the number is to zero, the less effect missing data have on the variance of the estimate.

The largest fraction of missing information (FMI), also called the rate of missing informa-

tion (Graham et al., 2007; Schafer, 2001; Schafer & Olsen, 1998), reports the largest of all

the FMI on coefficient estimates due to missingness. This statistic is particularly relevant

because it lets us know whether or not the standard errors are affected by the variability

of the imputed values across (in our case) the five datasets (Schafer, 2001).
Figure 5 The frequency table of the variable Books from the last imputation.



Figure 6 The frequency table of the variable Work_paid_job from the observed data.
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When comparing the estimated FMI (see Figure 14) to the percentage of missing data

(Table 3), we can see that the estimated percentage rate of missing information is sub-

stantially lower than the actual percentage of the imputed values (or missing data). This

outcome tells us that the imputation procedure is making effective use of other infor-

mation to predict the missing data (Schafer, 2001).

We can also use FMI to judge if the number of imputations is sufficient or not for

analysis (White et al., 2011). A rule of thumb with respect to FMI is that the number of

imputations M > = 100*FMI. In our case, FMI was 0.1565 and the number of imputa-

tions was five. Therefore, according to this rule, we need to increase M.

As shown in Figure 13 degrees of freedom (DF) could be obtained for each coefficient.

Averaging out at 131.99, the degrees of freedom are large. The reason is that multiple

imputation degrees of freedom not only depend on the number of imputations but also

inversely relate to the RVI. Also, and again as evident in Figure 13 the degrees of freedom

were obtained under a small sample-assumption adjustment, which was determined by

the type of reference distribution used for inference. The model F test assumes that the

fractions of missing information of all coefficients are equal (equal FMI) and thus rejects

the hypothesis that all coefficients are equal to zero.

Finally, we used the Taylor linearization variance estimation method to compute the

variance estimates in each completed data analysis. Here we can see, in Figure 13 that the

smallest degrees of freedom correspond to the coefficient for parents’_highest_ed_level

(2, 3, 4, and 5) (parents’ highest attained level of education) because it contains the

highest share of missing values. The largest degrees of freedom can be observed for

the coefficient age, indicating that the loss of information due to nonresponse is the

smallest for this coefficient. Figure 13 also displays, as a percentage, the increase in
Figure 7 The frequency table of the variable Work_paid_job from the first imputation.



Figure 8 The frequency table of the variable Work_paid_job from the last imputation.
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standard errors of the parameters due to missingness. Apparent is the increase from

0.03% (though negligible) to 8.20% in the standard errors for the coefficients.

In order to provide information about the variance specific to each parameter, Figure 14

displays the within-imputation variance and the between-imputation variance (see Rubin’s

rules in the Appendix). It also sets out RVI, FMI specific to each parameter, and the relative

efficiency of the overall imputation, which can be also used as an approximation when en-

deavoring to determine the number of imputations (Graham et al., 2007; White et al., 2011).

What we notice first in Figure 14 is that the between-imputation variability is very

small relative to the within-imputation variability. The second aspect of interest is that

age and female have the smallest within-imputation and between-imputation variances.

As expected, parents’ highest level of education has the highest RVI and FMI. The

reported relative efficiencies are high for all the coefficient estimates, suggesting the

need to increase the number of imputations. These estimates are useful in indicating

whether or not we should increase the number of imputations. However, we could also

compute the Monte Carlo errors (MCE) of the estimates in order to help us reach this

determination (White et al., 2011).

We accordingly again conducted the regression over the five imputed datasets involv-

ing the computation of the MCE. White et al. (2011) suggest the following guidelines

for determining an acceptable amount of MCE:

1. The Monte Carlo error of a coefficient should be less than or equal to 10% of its

standard error.

2. The Monte Carlo error of a coefficient’s T-statistic should be less than or equal to 0.1.

3. The Monte Carlo error of a coefficient’s P-value should be less than or equal to

0.01 if the true P-value is 0.05, or 0.02 if the true P-value is 0.1.

A look at the estimates in Figure 15 makes clear that these guidelines were not met

for the following variables: computer, internet-connection, work on paid job (2, 3, and

4), and parents’_highest_ed_level (2, 3, 4 and 5). Increasing the number of imputations

therefore seemed necessary.

In our example, 24% of the data were missing. Given the recommendation by White

et al. (2011) that the number of imputations should be at least equal to the percentage

of incomplete cases, we decided to perform 30 imputations. Figure 16 displays the re-

sults of this stage of our analysis.t We can see that the Monte Carlo errors now satisfy

the guidelines. In addition, the estimates are quite similar to those obtained from the



Table 3 Number and percentage of missing data

Variable Missing Total Missing (total %)

Books 109 4,080 2.67

Calculator 70 4,080 1.71

Computer 240 4,080 5.88

Desk 78 4,080 1.91

Dictionary 84 4,080 2.05

Internet_connection 172 4,080 4.21

Parents’_highest_ed_level 364 4,080 8.92

Parents_born_country 77 4,080 1.88

Work_paid_job 180 4,080 4.41

Index_math_ress 23 4,080 0.56

Age 0 4,080 0.00

Female 0 4,080 0.00

First plausible value in mathematics (BSMMAT01) 0 4,080 0.00

First plausible value in science (BSSSCI01) 0 4,080 0.00
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complete case analysis: the standard errors are smaller (Figure 17), and the confidence

intervals are narrower. Increasing the number of imputations has thus led to more pre-

cision in computing the p-values, standard errors, confidence intervals, and fractions of

missing information (Bodner, 2008).

Discussion
In this paper, we have described and evaluated the MICE procedure that can be used to

impute missing values of different categories of variables. Although this approach lacks

formal theoretical justification, it has the strong advantage of flexibility. Presumably,

MICE can be used for TIMSS missing-data problems, given that most variables with miss-

ing data in the TIMSS background datafiles are not normally distributed.

The difficulty in implementing MICE lies in the choice of predictor variables and

interaction terms. To avoid bias and gain precision, researchers recommend that the

imputation models contain—at the least—every variable included in the analysis

model. However, the inclusion of interaction terms is a tedious process. A way to

determine an interaction is to think of one of the variables as a grouping variable,

such as gender (Graham, 2009), and then to carry out separate imputations for

females and males.

Another matter associated with implementation of MICE is the issue of weights.

TIMSS datafiles contain different kinds of weights, so before imputing the missing data

we need to ask ourselves this question: Which weight should I use? As Rutkowski et al.

(2010) point out, choice of weights depends on the purpose of the analysis and the re-

search question. The inclusion of weights for each individual imputation makes it easier

to ensure that the imputation model is appropriate. The appropriate weight to use

when imputing students’ missing data is total student weight. The weight to use when

imputing missing values in the mathematics teacher file is the weight for the mathematics

teacher data, and the one to use for nonresponse in the school datafile is the school

weight.
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In general, careful modeling is required when using MICE to obtain valid statistical in-

ferences (Marchenko, 2011). Another important point to remember concerns the order in

which the imputation models should be imputed. Imputation using chained equations

does not require us to specifically order the variables that must be imputed because the

software imputes, by default, the variables from the most observed to the least observed.

In this paper, we also focused on the diagnostics of multiple imputation. The object-

ive of this procedure is to identify those imputations that markedly differ from the ob-

served values and then to pin down the cause of the problem. This process should

determine if the imputation model should be remodeled or tested, for example, by means

of sensitivity analyses, if there is a serious violation of the missingness assumptions. Also,

because MICE is an iterative imputation method, its convergence needs to be evaluated.

Deciding on the number of imputations to conduct (especially if the number is likely

to exceed the number theoretically considered sufficient—i.e., 5 to 10) is most easily

done by computing FMI, the relative efficiency, or Monte Carlo errors (MCE). Studies

show that computing MCE is a particularly suitable way of determining the number of

imputations. When establishing the fraction of missingness, we can impute almost any

fraction of missing data, provided that we do the imputation correctly and do not vio-

late the assumption of MAR. However, if the fraction of missing data is large, say in the

order of 30% to 50%, imputation methods must be applied with great caution (White

et al., 2011).

In our illustrative analysis, we applied MICE to the student background data in the

TIMSS 2007 datafile for Tunisia. We included all the variables used for imputation in

the analysis model, and then performed five imputations, followed by another 30 impu-

tations, after which we compared the results with the complete case analysis. The re-

sults showed that the estimates were relatively similar to those obtained from the

complete case analysis. However, after imputation, the standard errors were smaller

and the confidence intervals narrower.
Conclusion
In this paper, we reviewed two approaches to multiple imputation—the multivariate nor-

mal model and the chained equations approach. Multiple imputation is becoming easier

and more tempting to use thanks to the existence of different software packages. It is re-

ceiving growing attention from researchers in various fields, some of whom consider it

to be “the-state-of-the art” missing-data technique (Schafer & Graham, 2002, p. 173) be-

cause it provides unbiased parameter estimates, does not reduce the variance of the vari-

able in question, and preserves the entire dataset. The outcomes of our application of

MICE to TIMSS data exhibiting nonresponse suggest that empirical research can be

conducted effectively with whole datasets, thereby leading to more accurate conclusions

about the information contained not only in the TIMSS databases but also in the data-

bases of other large-scale educational studies and surveys.
Endnotes
a See Acock (2005) and Schafer and Graham (2002) for descriptions of each of these

approaches and for a point-by-point analysis of situations in which they are

problematic.
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b Different software packages are available to implement the multiple imputation

technique. See, for instance, Acock (2005), Horton and Kleinman (2007), and Mayer,

Muche, and Hohl (2012).
c http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt1.htm (IDRE,

2013a).
d See STATA 12 documentation.
e This program can be downloaded free of charge at http://sites.stat.psu.edu/~jls/

misoftwa.html. NORM offers the user a number of normalizing transformations that

can be implemented prior to the implementation phase and variables can be restored

to their original metrics prior to analysis.
f See also Van Buuren and Oudshoorn (2011) for a list of studies in which MICE has

been used.
g http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm (IDRE,

2013b).
h This quantity figures prominently in multiple imputation. Also called the rate of miss-

ing information, it differs from the percentage of missing data. See Graham et al. (2007)

and Schafer and Olsen (1998) for its formula and more discussion on it.
i The UK700 data was a multi-center study conducted in four inner-city areas. Partic-

ipants were between the ages of 18 and 65, had a diagnosed psychotic illness, and expe-

rienced two or more psychiatric hospital admissions, the most recent within the

previous two years. See White et al. (2011).
j See the TIMSS website: timss.bc.edu.
k Check whether the question is applicable or not to the country under study. If it is

not applicable, then it cannot be considered as missing and should be removed from

the analysis model.
l Recently, Reiter and Si (2013) applied a different methodology (a fully Bayesian joint

modeling approach) to impute missing background TIMSS 2007 data. They claim this ap-

proach offers advantages over MICE because it can capture complex dependencies and be

applied effectively to nonresponse within large-scale assessments.
m It is also possible to test whether the MCAR assumption is plausible by using the

multivariate test proposed by Little (1988).
n Because testing the assumption of MAR against MNAR is impossible, it is always

necessary to think about how the data being analyzed were collected (Marchenko &

Eddings, 2011; Stuart et al., 2009).
o It took roughly one hour to draw five multiple imputations.
p The convergence of imputed continuous variables can be assessed using trace plots

(see Marchenko, 2011).
q Science results can be provided upon request from the authors.
r See the Appendix to this paper.
s We also referred to STATA 12 documentation when discussing the output.
t It took us roughly six hours to draw 30 imputations.

Appendix
A) Rubin’s rules

After the creation of M imputed datasets, the M sets of parameter estimates and standard

errors are combined into a single inference following rules established by Rubin (1987).

http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt1.htm
http://sites.stat.psu.edu/~jls/misoftwa.html
http://sites.stat.psu.edu/~jls/misoftwa.html
http://www.ats.ucla.edu/stat/stata/seminars/missing_data/mi_in_stata_pt2.htm
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Let Q̂1… ::Q̂M be the parameter estimates of Q obtained from M imputed datasets.

Combine these parameter estimates into a single point estimate by taking the arith-

metic average of the parameter across the M analyses as follows:

�Q ¼ 1
M

X
i ¼ 1

M
Q̂i:

The standard errors combine in a similar way. Note, however, that they require the

calculation of two components: the within-imputation variance and the between-

imputation variance. The within-imputation variance is computed by taking the arith-

metic average of the M squared standard errors as follows:

�Q ¼ 1
M

X
i ¼ 1

M
Û i:

where, Û i is the squared standard error from the ith dataset. The between-imputation

variance is the variance of the parameter estimate itself across the M imputations:

B ¼ 1
M

X
i ¼ 1

M
Q̂i−�Q
� �2

:

The total variance is:

T ¼ �U þ 1þ 1
M

� �
B:

The overall standard error is:
S:E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U þ 1þ 1

M

� �
B

s
:

A significance test of the null hypothesis Q = 0 is performed by comparing the ratio
t ¼ �Q
S:E to the same t-distribution.

B) the missing data pattern

Figures 9 and 10.

C) Outputs

Output A.1

Figure 11.

Output A.2

Figure 12.

Output A.3

Figure 13.

Output A.4

Figure 14.

Output A.5

Figure 15.

Output A.6

Figure 16.

Output A.7

Figure 17.



Figure 9 The missing-value pattern.
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Figure 10 The missing-value pattern.
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Figure 11 The results of the survey linear regression.
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Figure 12 The results of the survey linear regression after five imputations.
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Figure 13 Percentage increase in standard errors after five imputations.
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Figure 14 Imputation variance and relative efficiency.
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Figure 15 Monte Carlo error estimates after five imputations.
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Figure 16 Multiple imputation estimates after 30 imputations.
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Figure 17 Percentage increase in standard errors after 30 imputations.
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