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Abstract 

Large-scale assessments are rich sources of data that can inform a diverse range 
of research questions related to educational policy and practice. For this reason, 
datasets from large-scale assessments are available to enable secondary analysts 
to replicate and extend published reports of assessment results. These datasets include 
multiple imputed values for proficiency, known as plausible values. Plausible values 
enable the analysis of achievement in large-scale assessment data with complete-
case statistical methods such as t-tests implemented in readily-available statistical 
software. However, researchers are often challenged by the complex and unfamiliar 
nature of plausible values, large-scale assessments, and their datasets. Misunder-
standings and misuses of plausible values may therefore arise. The aims of this paper 
are to explain what plausible values are, why plausible values are used in large-
scale assessments, and how plausible values should be used in secondary analysis 
of the data. Also provided are answers to secondary researchers’ frequently asked ques-
tions about the use of plausible values in analysis gathered by the authors during their 
experience advising secondary users of these databases.

Keywords:  Plausible values, Large-scale assessments, Group-score assessments, 
Multiple imputation

Introduction
Large-scale assessments are administered to representative probability samples from 
a population with the intention to report group-level statistics, and not results for the 
individual participants.1 The National Assessment of Educational Progress (NAEP) is a 
large-scale assessment that reports on what students in the United States know and can 
do in a variety of subject areas. The Trends in International Mathematics and Science 
Study (TIMSS), the Programme for International Student Assessment (PISA), and the 
Progress in International Reading Literacy Study (PIRLS) are international large-scale 
assessments that report on the knowledge and skills of students in countries around the 
world. Another international large-scale assessment, but for adults, is the Programme 
for the International Assessment of Adult Competencies (PIAAC), which provides 
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international comparisons of adults’ skills and competencies. Large-scale assessments 
are also classified as either school-based or household-based, depending on the popu-
lation and subpopulations of interest and how individuals from that population will be 
selected. School-based assessments are those that select participants from the within-
school population (e.g., NAEP, PISA, TIMSS), and household-based assessments are 
those that select participants directly from households (e.g., PIAAC, Early Childhood 
Longitudinal Study [ECLS]).

In addition to assessing what participants know and can do in domains such as read-
ing, mathematics, science, literacy, and problem solving, large-scale assessments also 
collect extensive demographic information about the participants and administer con-
textual questionnaires to the participants and persons associated with them (e.g., teach-
ers, principals, or parents). The purpose of collecting these data is two-fold: to classify 
participants into reporting groups (e.g., based on gender, socioeconomic status, lan-
guage, migration status, participation in school programs, or employment status), and to 
study the distribution of achievement within these reporting groups. As an example, in 
the case of school-based assessments, questionnaire responses from teachers and school 
leaders become rich sources of information about what students know and can do and 
the contexts in which learning takes place.

Detailed reports describing the assessment results are published periodically by the 
organizations that administer the assessments, and together with these reports, support-
ing databases are also published. The databases allow researchers and secondary users 
not only to replicate the results as a measure of transparency and quality control of the 
assessment program, but also to allow users to conduct additional analyses of the data 
in support of their own research questions. Thus, with the availability of databases for 
secondary research, policymakers and practitioners can use large-scale assessment data 
to inform a wide range of issues of interest.

The published databases contain one record per participant and include their 
responses to the contextual questionnaires, demographic and other group classification 
information, sampling weights, and multiple imputed proficiency estimates, also known 
as plausible values. Secondary researchers can use these plausible values, along with the 
provided sampling weights, to obtain appropriate achievement estimates and associated 
uncertainties for reporting groups in the population.

Analyzing multiply imputed data such as plausible values is not straightforward. And 
despite a relatively large collection of technical documentation and guidance publicly avail-
able to support secondary analysts (e.g., Beaton et  al., 2011; Rutkowski et  al., 2010; von 
Davier et al., 2009), there are lingering doubts and questions about the need for plausible 
values and how to use them properly during analysis of large-scale assessment data.

With secondary analysts as our intended audience, this paper has two main goals. 
First, we will explain why and how plausible values are useful. Second, we will present 
guidelines and recommendations for using plausible values during secondary analysis. 
This paper attempts to supplement and reinforce previous efforts to clarify misunder-
standings about using plausible values in secondary research.

We have organized the body of this paper in several sections. In the following section 
on Goals and Designs of Large-scale Assessments, we describe and characterize large-
scale assessments and their goals. This is followed by the section on Score Estimation for 
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Large-scale Assessments, in which we describe the methodology to generate scores that 
was designed to best suit the goals and design of large-scale assessments. The descrip-
tion is rather technical, but as there are technical reasons supporting the use of plausible 
values, this is unavoidable. In the final section on Using Plausible Values in Secondary 
Research, we present guidelines and recommendations for working with plausible values 
in secondary analysis. We conclude with a set of recommendations and list of resources 
available for secondary users of the data and respond to an extensive list of frequently 
asked questions in the Appendix.

Goals and designs of large‑scale assessments

Broadly stated, the purpose of a large-scale assessment is to measure and report on 
groups of participants’ knowledge and skills, or what they know and can do, in one or 
more domains. For example, the purpose of NAEP is to report on what students in the 
United States know and can do in a variety of subject areas (e.g., reading, mathematics, 
and science).

The assessments most familiar to the public are college admissions tests (e.g., uni-
versity entrance exams such as the SAT and ACT in the United States, the Gaokao in 
China, or the A-levels in the United Kingdom), K-12 standardized tests (e.g., national 
curriculum assessments), and exit examinations such as end-of-course or graduation 
assessments. These assessments share a common goal: to report accurate and compa-
rable scores for individuals. Students taking those assessments receive individual score 
reports. Scores from these assessments may be used to make potentially high-stakes 
decisions affecting an individual, such as college admissions, graduation, or assignment 
to a course. These scores are also meant to be directly comparable for the individuals 
within and between administrations. These types of assessments are known as individ-
ual-score assessments, even if large in scale.

Large-scale assessments, on the other hand, aim to accurately report on what groups 
of participants know and can do. Because of this, large-scale assessments are at times 
referred to as group-score assessments (Beaton & Barone, 2017; Mazzeo et al., 2006) to 
explicitly distinguish them from individual-score assessments. Participants in a large-
scale assessment do not receive individual score reports, and no action that specifically 
affects them are expected to be taken based on their performance on the assessment. 
Their responses to the assessment items contribute to the estimation of the proficiency 
distribution for the groups to which they belong and represent (e.g., eighth graders 
nationwide). The main goal of large-scale assessments is to report on the distribution 
of knowledge and skills between and within groups of interest (e.g., groups defined by 
categories of gender, race and ethnicity, socioeconomic status, immigration status or 
country).

An assessment design is a comprehensive plan that guides all aspects of the develop-
ment and administration of an assessment. The ideal assessment design varies based 
on the specific reporting goal one aims to optimize. The assessment design contains 
specifications for the content to be measured, types and difficulty range of the test ques-
tions, length and timing of the test, administration procedures, the analysis methodol-
ogy used to estimate test scores, and how results will be reported. This careful tailoring 
of all aspects of the assessment in pursuit of the intended reporting goals explains why 
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large-scale assessment designs differ, often markedly, compared to designs for individ-
ual-score assessments.

There are three key aspects that distinguish the assessment designs of large-scale 
assessments from those of individual-score assessments: sampling of individuals, sam-
pling of items, and collection of contextual information.

Sampling of individuals

Typically, assessing all members of a target group to report on what they, in the aggre-
gate, know and can do is impractical and unnecessary, much in the same way that tasting 
an entire pot of stew to assess its quality or drawing all the blood from a person for a 
platelet count would also be impractical and unnecessary. Therefore, large-scale assess-
ments are designed to be administered to representative samples of participants. Select-
ing a representative sample requires a carefully defined sampling design that specifies, 
among many other details, an unambiguous definition of the population and the demo-
graphic characteristics or population subgroups that must be represented in the sample. 
Again, as in the case of tasting a stew, we want to make sure all the major ingredients are 
tasted before forming a judgment about its quality.

Depending on the characteristics of the population of interest, sampling designs 
for large-scale assessments can be complex, often making use of stratified and multi-
stage procedures to select the sample. The goal of sampling of individuals is to ensure 
proper representation of the different groups that make up the population, as well as the 
internal composition of the groups on which scores will be reported. Comprehensive 
accounts of sampling designs used in large-scale assessments are provided by Rust and 
Johnson (1992) and Rust (2013).

Sampling of items

To adequately cover the broad range of contents and topics in a subject domain, and 
adequately cover subdomains for which results will be reported, a large pool of test ques-
tions, also referred to as assessment items, is needed. For instance, the grade 8 NAEP 
mathematics assessment, which measures and reports on students’ knowledge and skills 
across five mathematics content strands,2 typically comprises about 150 items. Admin-
istering all 150 items to each student to be able to report on the overall domain and each 
of the five content strands would require about five hours of testing time. Such a lengthy 
test would be far too burdensome for participating students and schools and, hence, 
untenable for a large-scale assessment. And as is the case for sampling individuals, 
administering all items to any one individual is unnecessary when the goal of the assess-
ment is to report aggregate results for groups of participants, and not to individuals.

Therefore, a significant concern for large-scale assessments is covering the entire 
assessment domain across the different reporting groups without significantly increasing 
the burden on the individuals participating in the assessment. Consequently, large-scale 
assessment designs reflect the need to minimize the burden on participating schools and 

2  The five mathematics content strands assessed at grade 8 are number properties and operations; measurement; geom-
etry; data analysis, statistics, and probability; and algebra. Results are reported separately for these five content subscales 
and for an overall mathematics scale.
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individuals as a means of maximizing participation when there is no direct personal ben-
efit to their participation. Additional benefits accrue from a shorter testing time, such as 
the potential for participants to remain more engaged and experience less fatigue while 
responding to the assessment.

Given that reducing burden on participants is integral to keeping participation rates 
high, as there are no individual consequences for the participants, and because the goal 
is to report results aggregated at the group level and not for individuals, large-scale 
assessments are not required to have all participants attempt to respond to all items, or 
even items in all the reported domains. Instead, each person assessed is asked to respond 
to only a relatively small portion—a sample—of the total item pool, which requires much 
less of the participant’s time.3 Selecting and administering subsets of items from an over-
all item pool in this manner is known as a matrix item sampling design.

Determining which items are administered to any participant can be done a priori, by 
assigning a fixed set of items either in the form of a printed booklet, a predetermined 
sequence of items pre-programmed on a computer delivery system, or by influencing the 
selection of items based on information about the individual obtained prior to or during 
the assessment period. In any of these contexts, participants are tasked with responding 
to a subset of the items in the assessment. Applications of matrix sampling designs in 
large-scale assessments are discussed in detail by Gonzalez and Rutkowski (2010) and 
Frey et al. (2009).

Collection of contextual data

Large-scale assessments collect contextual data that is then used to group participants, 
and report on the proficiency distribution within these groups. Some of the contextual 
data may be obtained from external sources, such as demographic information about the 
participants (e.g., gender) and where they are located (e.g., school location and region of 
the country), whereas some is collected via contextual questionnaires administered to 
participants, their school administrators, teachers, or parents.

Score estimation for large‑scale assessments

The designs of large-scale assessments, while optimized to efficiently collect and report 
information at the group level, introduces several technical challenges in the analysis of 
the data. As individuals only receive a subset of the entire assessment under the matrix 
item sampling design, the set of items each participant receives may differ in terms of 
properties and content (e.g., content domain distribution, item difficulty, and reliabil-
ity), and we have relatively little cognitive information on the reported domains from 
individuals compared to individual-score assessments. These differences in the psycho-
metric properties of the assessments, and the sparsity of the information we have from 
each individual, precludes the applicability of conventional methods of aggregating the 
response data from individuals. An analysis methodology that is capable of accounting 

3  The exact length of the assessment administration varies across large-scale assessments but is usually less than two 
hours. NAEP administrations typically require less than 90 min of students’ time, spending 60 min to answer the assess-
ment questions and another 15 min to complete survey questionnaires.
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for both of these challenges is required to ensure data from large-scale assessments can 
yield comparable and reliable assessment results.

Item response theory

In education assessment and research, the most common methods to estimate scores 
while accounting for differences in the assessment design are latent trait models. Latent 
trait models assume that test takers receive an assessment with items that relate to a 
common construct, but account for differences in the psychometric properties of the 
assessments, such as differences in difficulty and reliability of the assessments.

Large-scale assessments typically use latent trait models within the framework of item 
response theory (IRT), which are suited for the item types used in these assessments. 
IRT models typically assume that the construct within a given domain can be character-
ized by a single dominant dimension. The items can be ordered along this dimension 
going from easy to difficult, depending on how much proficiency is required to be likely 
to answer the item correctly. Participants can also be ordered along this dimension going 
from less proficient to more proficient, depending on how likely they are to answer the 
items correctly.

Within IRT, different item types may be modelled with different item response func-
tions. For example, the two-parameter logistic (2PL) model is commonly used for 
dichotomously-scored items where the correct answer cannot be guessed without the 
knowledge or skills being measured. Under the assumptions of this model, the response 
to an item is a function of how much of the latent trait (e.g., mathematics or reading 
proficiency) the participant possesses, how difficult the item is, and how differences in 
performance on the item reflects differences in proficiency of the test taker. Under the 
2PL model, the probability of a correct response is defined as:

where Yj is the response variable for item j scored as 1 (correct) or 0 (incorrect), θi is the 
latent proficiency for participant i, β j = {aj,bj} is the item parameters for item j, aj is the 
discrimination for item j, bj is the difficulty of item j, P(·|·) is a conditional probability 
and logistic() is the standard logistic function.4

For other item types, other models such as the three-parameter logistic (3PL) model 
and the generalized partial credit model (GPCM; Muraki, 1992) can be used.

To model the full pattern of a participant’s item responses on the assessment, the item 
responses are assumed to be locally independent, that is,

where Y =
{
Yj
}J
j=1

 is the vector of response variables for all items, yi =
{
yij
}J
j=1

 is the 

vector of responses for participant i on all items, yij is the response for participant i on 

P
(
Yj = 1|θi,β j

)
= logistic

(
aj
(
θi − bj

))

P
(
Y = yi|θi,β

)
=

J∏

j=1

P(Yj = yij|θi,β j)

4  The standard logistic function is defined as logistic(k) = 1
1+e−k

 . In many large-scale assessments, there are multiple 
latent proficiencies associated with different subscales or domains. Here, one latent proficiency is assumed to simplify 
the presentation.
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item j, β =

{
β j

}J

j=1
 , and J is the total number of items. That is, the probability of a 

response to an item is a function of the underlying proficiency of the participant ( θi ) and 
is otherwise independent of responses on all other items in the assessment.

When IRT is used to summarize or aggregate large-scale assessment response data, 
the matrix item sampling design becomes a missing data problem: for each individual, 
responses to most items are missing, as those items are not presented to the individual. 
The assignment of items is usually randomized to ensure this missing data for the item 
responses can be classified as Missing Completely at Random (MCAR; Rubin, 1976), but 
that is not always the case.

More recently, assignment of items that are adaptively targeting at students’ perfor-
mance estimated on their responses to items administered and scored on-the-fly during 
the assessment have been implemented by some large-scale assessment programs. The 
adaptive assignment of items can be classified as Missing at Random (MAR), provided 
that an appropriate IRT model is used for the design (e.g., Jewsbury & van Rijn, 2020, in 
press).

To estimate the parameters of the IRT model in the presence of missing data from 
matrix item sampling, the following likelihood is maximized:

where L(·|·) is a likelihood, µ is the mean of the latent variable, σ 2 is the variance of 
the latent variable, y =

{
yi
}N
i=1

 , N is the total number of participants, wi is the sampling 
weight for participant i, si is the set of items that participant i received, and f (·|·) is a 
density function.

Finally, the metric of the latent proficiency is set to ensure the comparability of scores 
between assessments administered in different years or with different administration 
modes with linking methods. These linking methods can usually be classified as either 
common-item or common-population linking (for more detail, see Jewsbury, 2019; 
Jewsbury et al., 2020; Jewsbury, Jia & Xi, in press; Yamamoto & Mazzeo, 1992).

IRT‑latent regression

While IRT enables the scoring of large-scale assessment data and reporting results on 
a common scale, another challenge is the optimal estimation of the characteristics of 
the proficiency distribution for a population and each subpopulation. A general problem 
in statistics is that the optimal estimator for one level of inference may not be optimal 
for another level (e.g., Efron & Morris, 1977; Stein, 1956). In the context of IRT, this 
trade-off manifests itself in the observation that aggregating optimal individual-level 
scores may not result in optimal estimation of the mean or standard deviation of the 
proficiency distribution for a subpopulation (Mislevy et  al., 1992), where optimality is 
defined as minimum bias or mean squared error. For example, when the maximum like-
lihood estimate (MLE) is calculated for each participant’s proficiency, taking the mean 
or variance of these MLEs for a group of participants does not produce the maximum 
likelihood estimate of the mean or variance of the group (Mislevy et al., 1992; von Davier 
et  al., 2009; Wu, 2005). Instead, this estimated mean from MLEs of the participants 

L
(
β ,µ, σ 2|y

)
=

N∏

i=1

wi

∫ ∏
j∈si

P
(
Yj = yij|θi,β j

)
f (θi|µ, σ

2)dθi
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tends to be outwardly biased towards more extreme values, and the variance tends to be 
overestimated.

Because large-scale assessments are focused on reporting group estimates, such as the 
mean and variance of proficiency within a population or subpopulation, methods that 
produce optimal group-level inference are preferred over methods that produce opti-
mal individual-level inference. In the context of IRT, IRT-latent regression models (IRT-
LRM; Mislevy, 1984, 1985) can be used to obtain optimal group-level estimates.

In large-scale assessments, IRT-latent regression models are estimated by maximizing 
the following marginal likelihood,

where x = {xi}
N
i=1 , xi is the vector of contextual information for participant i , Ŵ is the 

vector of regression coefficients, and σ2 is the residual variance.5

Based on the IRT-latent regression, estimators for group-level parameters of interest 
may be defined for any group g, where a dummy-coded variable indicating member-
ship in group g is included in x . For example, the IRT-latent regression estimator for the 
mean of proficiency in group g is

where Ŵ̂ is the maximum likelihood estimator for Ŵ , and xg is the mean of x within group 
g.

The IRT-latent regression estimator for the variance of proficiency within group g is,

where Sxg is the variance–covariance matrix for x within group g.

Multiple imputations

The statistical inappropriateness of using estimators designed for optimal individual-
level inferences presents a challenge for secondary users of large-scale assessment data 
to conduct research and to replicate official results. While IRT-latent regression mod-
els yields estimators for group-level parameters of interest, not all researchers have the 
sophistication or computational resources available to directly estimate and interpret 
IRT-latent regression models, which presents a challenge for secondary users to repli-
cate official results or conduct their own analyses with the data.

To aid in secondary user analysis and allow for official results to be easily repli-
cated by secondary users, large-scale assessments use imputation methods to produce 
imputed values for latent proficiency. The intention underlying the use of imputed val-
ues is to allow secondary users to calculate estimates for group-level parameters that 

L
(
Ŵ, σ2|x, y,β

)
=

N∏

i=1

wi

∫ ∏
j∈si

P
(
Yj = yij|θi,β j

)
f (θi|Ŵ, σ

2, xi)dθi

µ̂g = Ŵ̂
′
xg

σ̂ 2
g = Ŵ̂

′
Sxg Ŵ̂ + σ̂ 2

5  Usually, θi conditional on x i is assumed to be normally distributed, with a mean of Ŵ′x i and a variance of σ2 . Note that 
in practical and operational applications the item parameters are usually estimated prior to the IRT-latent regression 
analysis, and the estimates of the item parameters are treated as the known and fixed values of β when estimating the 
latent regression parameters {Ŵ, σ2} (see Jewsbury, 2023).
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are consistent with the IRT-latent regression estimators described above, but with more 
familiar statistical methods.

While methods to produce a single imputed value for latent proficiency for each par-
ticipant are available, methods involving multiply imputed values are generally recom-
mended when there is substantial uncertainty in the imputation (Sinharay et al., 2001). 
Specifically, the method of multiple imputation (Rubin, 1987) is commonly recom-
mended as a statistically principled approach for dealing with missing data (e.g., Schafer 
& Graham, 2002), enabling consistent estimation of parameters in data with missingness 
under the assumption that the missing data is missing at random (MAR; Rubin, 1976).

Multiple imputation has two benefits over many other imputation methods. First, 
multiple imputation is justified by statistical theory, in contrast to some common meth-
ods that are ad hoc and generally produce invalid inferences, such as mean substitu-
tion (Rässler et  al., 2013). Relatedly, these common methods produce estimates that 
are inconsistent with the IRT-latent regression estimators. Second, the use of multiple 
imputations, instead of a single imputation, both reduces the uncertainty in estimates 
associated with the imputation process, as well as enables the uncertainty due to impu-
tation to be accounted for in the standard errors (Rubin, 1976; Sinharay et  al., 2001). 
As a result, the institution sponsoring the large-scale assessment program creates the 
imputed data for both official and secondary user analysis and reporting (e.g., Martin 
et al., 2020; NCES, 2024; OECD, 2019a, 2019b, 2023; von Davier et al., 2023). The insti-
tution packages the imputations in data products for secondary users to replicate pub-
lished reports and create new ones of their own. This practice provides transparency to 
the officially reported results and allows for external quality control and verification of 
the reports.

A key concept in multiple imputation is congeniality, where the analysis models 
applied to the imputed data must correspond to the imputation model used to gener-
ate the imputed values (Meng, 1994). For example, consider a regression analysis where 
some values on the dependent variable are MAR, as is the case for the proficiency 
scores from the assessment. Multiple imputation may be used to impute values for 
these missing values, allowing an institution to provide a completed dataset to second-
ary users. While the imputed values are generally not the results that would have been 
observed had all responses been obtained, nevertheless, the secondary user may con-
duct the regression analysis with the imputed values and obtain valid regression param-
eter estimates as-if the data matrix were complete. In this context, congeniality would 
be guaranteed if the independent variables used by the secondary user were used in a 
regression-based imputation model (Meng, 1994).

Plausible values

While multiple imputation is usually applied to impute values for missing responses on 
observed variables (Rubin, 1987), the multiple imputation method was generalized for 
use in latent trait models and IRT by Mislevy (1991). Mislevy’s (1991) insight was that 
the latent variable in IRT representing proficiency may also be considered a variable 
missing for all participants. As missingness on the latent variable in IRT is guaranteed to 
be MAR, the assumption underlying multiple imputation, values may be imputed on the 
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latent variable for all participants. Here, we defined plausible values as multiply imputed 
values for latent variables.

With values imputed for the latent variable, secondary users can then use standard 
statistical routines and programs that require complete data to calculate estimates that 
are consistent with the IRT-latent regression estimators. However, some additional steps 
are required to analyze the plausible values, as described in the section Using Plausible 
Values in Secondary Research, below. The analysis challenges associated with the latency 
of proficiency and the massive amount of missingness in the item responses are thus 
eliminated for the secondary user.

Specifically, plausible values are generated as random draws from an approximation to 
each participant’s conditional proficiency distribution,

In the case of large-scale assessments, multiple plausible values are drawn for each 
participant to account for uncertainty in the estimate of each participant’s proficiency. 
The specific procedure to approximate the conditional proficiency distribution and draw 
plausible values can differ between large-scale assessment programs. Specific details are 
provided in the technical documentation for each study (e.g., Martin et al., 2020; NCES, 
2024; OECD, 2019a, 2019b, 2023; von Davier et  al., 2023) or in technical publications 
(e.g., Jewsbury, 2023; von Davier & Sinharay, 2013; von Davier et al., 2007).

In the context of large-scale assessments, the requirement of congeniality implies that, 
in order to support a potential secondary user’s analysis involving estimating the mean 
proficiency for a given group of participants, a variable indicating membership in the 
group should be accounted for in the IRT-latent regression model (Mislevy, 1991). To 
account for the group membership variable, it may be included as a predictor in the 
regression (within x ). If the variable is independent of proficiency conditional on the 
predictors included in the regression, the variable does not need be included (Meng, 
1994; Mislevy, 1991). Note that the amount of bias that may be introduced by a non-
congenial analysis is not only dependent on the strength of the relationship between 
proficiency and that variable unaccounted for by the other variables included in the 
regression model, but also the reliability of the assessment (Marsman et al., 2016).

Anticipating a large number of potential secondary user analyses, and to avoid inad-
vertently excluding important variables, a large number of predictors are typically 
included in the IRT-latent regression model (Mislevy, 1991). This follows generally rec-
ommended practices in the multiple imputation literature that support being as inclu-
sive as possible in constructing the imputation model (Collins et al., 2001).

To reduce model overfitting while maximally accounting for variance in the contex-
tual variables, a principal components analysis is typically applied to the full set of con-
trast-coded6 contextual variables as a data reduction technique. Using contrast-coded 
data allows also for easy inclusion of non-linear and interaction effects in the model, and 
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6  Contrast-coding in this context refers to the replacement of a K-category discrete variable with K-1 dichotomous 
dummy variables. For example, a three-category variable would be replaced with two dummy variables, where the first 
category is coded as (0,0), the second category is coded as (0,1), and the third category is coded as (1,1) on the dummy 
variables.
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using principal components addresses issues of collinearity among the predictor vari-
ables. The predictors used in the regression are typically the smallest subset of principal 
components that account for a large proportion of the variance of the contextual varia-
bles, usually between 80 and 90% of the variance (von Davier et al., 2006). In some large-
scale assessments, when samples are relatively small, the maximum number of principal 
components may be restricted as a function of the sample size (OECD, 2019a, 2019b).

While large-scale assessments may have been the earliest use of multiple imputation 
for latent variables (see Rubin, 1996), these methods have been applied more recently 
and more widely in other latent variable contexts (e.g., Boeschoten et al., 2018; Carlin, 
1992; Dicke et al., 2015; Gorter et al., 2015; Joinson et al., 2012; Rhee et al., 2013). The 
popular structural equation modelling software Mplus, for example, enables research-
ers to use plausible values for a wide range of latent variable models (see Asparouhov & 
Muthén, 2010). Many of these applications employ plausible values for the purpose of 
missing data treatment in primary user analysis, as is recommended by some authors 
(Bray et al., 2015; Graham, 2003), similar to how multiple imputation is often used as a 
general-purpose missing data treatment with observed variable missingness (Schafer & 
Graham, 2002; Sinharay et al., 2001).

Summary
In summary, plausible values are imputations of individuals’ abilities based on their cog-
nitive and contextual data, where the relationships between proficiency with cognitive 
response and contextual data has been estimated via IRT-latent regression. By imputing 
proficiency values and adding them to the rectangular matrix containing the contextual 
data, users of the data are then able to analyze the database with readily available statisti-
cal software, eliminating the need for complex or specialized programming and comput-
ing skills. As an added advantage, different users of the database can replicate the results 
obtained by other users and those of the sponsoring organization.

A simple step-by-step description of this analysis process for the generation of plausi-
ble values follows:

•	 Step 0: Estimate the dependency of the item responses on latent proficiency with the 
use of the IRT model.

•	 Step 1: Estimate the IRT-latent regression parameters (regression coefficients and 
residual variance–covariance matrix) that characterize the relationships between the 
contextual data and proficiency.

•	 Step 2: Using the estimates from steps 0 and 1, calculate the distribution of profi-
ciency for each participant, based on their item responses and contextual data.

•	 Step 3: Generate imputed proficiency data for participants, or plausible values, from 
the calculated individual proficiency distributions.

•	 Step 4: Analyze the plausible values. For example, compute group-level summary sta-
tistics with the imputed data.

This process is sometimes misunderstood as circular, as if Step 4 informs or affects 
Step 1. But the agreement between the summary statistics in Step 4 and the regression 
coefficients in Step 1 used to impute the data simply confirms that steps 2 and 3, the 
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imputation process, were successful and that the results reflect the estimates used for 
imputing the data.

One clarification to this process worth mentioning here is that in Step 1, each regres-
sion parameter estimate has an associated standard error. This error reflects the uncer-
tainty due to sampling of individuals from the population of interest. In Step 2, rather 
than using the point estimate for each of the regression parameters, or the same set of 
values for all  plausible values, the set of regression parameter estimates used for the 
imputations are drawn from the distribution of regression parameter estimates, thus 
accounting for the uncertainty associated with them. Consequently, the plausible val-
ues simultaneously reflect the combined measurement and sampling variance associated 
with the IRT-latent regression model.

This paper emphasizes the history of plausible values as a generalization of Rubin’s 
multiple imputation methodology for missing data to situate plausible values within the 
wider research literature. However, plausible values may also be understood within a 
Bayesian framework without reference to missing data. In the latter context, plausible 
values are random draws from each participant’s posterior distribution of proficiency, 
conditional on their item responses and contextual information. The IRT model defines 
the likelihood, and latent regression defines the prior.

Within the Bayesian framework, the distinction between plausible values in large-scale 
educational assessments and conventional scores used in individual-score assessments is 
clarified:

•	 Plausible values are random draws from each participant’s proficiency distribution, 
which may be associated with greater bias and random error in individual-level infer-
ence than the mean or mode (expected a priori, EAP, or maximum a posteriori, MAP, 
respectively; Mislevy et al., 1992).

•	 Plausible values in large-scale educational assessments are drawn from proficiency 
distributions conditional on both item responses and contextual information, 
while scores in individual-score assessments usually only directly depend on item 
responses. As the contextual information is not part of the domain being measured 
by the assessment, individual-level inference with plausible values in large-scale 
assessments may be inappropriate and unfair.

Consequently, while plausible values may be alternatively understood within a mul-
tiple imputation or a Bayesian interpretation, both interpretations motivate the same 
guidelines in the analysis of plausible values. Specifically, plausible values should be used 
to estimate group-level parameters following the guidelines outlined in the next section 
and are not appropriate for making inferences about any individual participant.

Using plausible values in secondary research

Large-scale assessments are rich sources of data that are used to inform many policy-rele-
vant topics. Large-scale assessment data are intended be used to describe different groups 
within the population of interest based on their performance on an assessment of skills and 
knowledge. These descriptions can entail ranking the different groups against each other 
and establishing an interpretable distance between the means of these groups to determine 
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whether the observed group mean differences are statistically significant, at one point in 
time and over time. The data can also be used to test the hypothesized relationship between 
performance on the assessment and a wide range of demographic and contextual data 
about groups of participants.

In addition to the sponsoring institution, stakeholders, policymakers, and applied 
researchers may also be interested in analyzing the large-scale assessment data to address a 
wide range of research questions. This type of data use is commonly referred to as second-
ary analysis or secondary research.

Users of large-scale assessment data analyze published databases with various statistical 
software and programming languages, including SPSS, SAS, STATA, and R. Most statistical 
tools, commercially or freely available, work with what are called rectangular data matrices. 
These rectangular data matrices are characterized by having rows for each participant in 
the assessment and columns for each variable collected in the assessment, as well as many 
other combinations of the original response variables. Plausible values are created and 
included in large-scale assessment databases so that the data can be analyzed with readily 
available statistical programs that expect data in rectangular form. However, working with 
plausible values requires special treatment and consideration. In this section we will cover 
these special considerations and how they affect secondary analysis with plausible values.

Calculating point estimates

Point estimation involves the use of sample data to calculate a single value for a statistic, 
which is to then serve as a “best estimate” of an unknown population parameter. A point 
estimate could be a mean, a standard deviation, a regression coefficient, a group difference, 
or the percentage of students reaching a benchmark or proficiency level. Calculating point 
estimates with imputed data, such as plausible values, requires the calculation of the statis-
tic, separately, with each set of plausible values, and then reporting the average for the sta-
tistic as the point estimate. This means that the analysis needs to be repeated as many times 
as there are plausible values in the database.

A user might be tempted to work with the average of the plausible values instead, and 
perform the calculations once, thus saving processing time. While this approach will yield 
the correct point estimate for means and mean differences, it does not work with other sta-
tistics that would be influenced by the dispersion of the data, such as percentiles, correla-
tions and the percentage reaching achievement benchmarks. And even if the correct point 
estimate could be obtained, a second disadvantage of working with the average of the plau-
sible values is that the proper interval estimate, also known as the standard error for the 
statistic, could not be calculated. Without the interval estimate for the statistic, significance 
could not be properly tested, as we demonstrate in the next section.

The point estimate, or ε , is then calculated using the following formula, where εp is any 
point estimate calculated from each of the P plausible values.

ε̄ =
1

P

P∑

p=1

(
εp
)
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Note that although the point estimate will be valid regardless of how many plausible 
values are used; using fewer plausible values than available in the data will likely yield a 
different and nosier point estimate than would be estimated by using all plausible values.

Calculating interval estimates

Interval estimation is the use of sample data to estimate an interval of possible values 
of a parameter of interest. The most prevalent form of interval estimation is a con-
fidence interval, which is calculated using the standard error of the statistic. When 
working with large-scale assessment data, and more specifically with plausible val-
ues, there are two components to the estimation of the standard error of the statistic. 
These are the within- and the between-imputation variance components. Note that in 
much of large-scale assessment literature, these components are traditionally referred 
to as “sampling” and “measurement” variance, respectively. However, as noted ear-
lier, the plausible values are generated using random draws of the latent regression 
coefficients themselves, thus reflecting uncertainty from the sample selection of indi-
viduals, as well. Because of this, we prefer to follow the conventions in multiple impu-
tation literature that apply more generally (e.g., Rubin, 1976), referring to the variance 
components used to calculate the interval estimates as within- and between-imputa-
tion variances.

The within-imputation variance component is computed in a manner analogous 
to calculating the variance of a point estimate. This typically involves estimating the 
variance separately for each set of plausible values and, subsequently, averaging the 
results. To achieve this, conventional methods for standard error variance calcula-
tion are employed for each set of plausible values, treating the plausible values as if 
they were observed scores. The resulting average is the within-imputation variance 
component.

Large-scale assessments typically have a complex multistage sampling design, so some 
common conventional procedures to calculate standard errors that assume a simple ran-
dom sampling design do not apply and would generally underestimate standard errors 
(Rust, 2013). Instead, there are two alternative procedures commonly used in large-scale 
assessments: the jackknifing procedure and balanced repeated replicates procedure, or 
BRR. Under the jackknifing procedure, members of the sample are systematically deleted 
from the sample and their contribution effectively replaced by that of others within the 
same sample. Under the BRR procedure the relative contribution of some elements in 
the sample is systematically increased while that of others is decreased by the same fac-
tor. In the end, by altering the composition of the original sample, we obtain multiple 
samples that are referred to as replicate samples. The sampling variance is then calcu-
lated by accumulating the squared differences between the point estimates calculated 
using each of the replicate samples, and the point estimate calculated using the origi-
nal sample. This sum is then multiplied by a factor (f), reflecting the specific replication 
approach used to rearrange the composition of the sample. Details of the specific imple-
mentation of the procedures in international large-scale assessments can be found in 
the corresponding technical report (e.g., Martin et al., 2020; NCES, 2024; OECD, 2019a, 
2019b, 2023; von Davier et al., 2023).
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The within-imputation variance WIε is then calculated using the following formula:

where εp,r are the point estimates calculated from each of the replicate samples using 
plausible value p. The value of the factor f depends on the replication method (e.g., jack-
knife, BRR, or bootstrap). Details on the value of this factor can be found in the tech-
nical documentation for the relevant large-scale assessment study (e.g., Martin et  al., 
2020; NCES, 2024; OECD, 2019a, 2019b, 2023; von Davier et al., 2023). Some large-scale 
assessments, such as NAEP, approximate the within-imputation variance term using 
only the sum of squared differences calculated from the first plausible value, rather than 
the mean of all P calculations (NCES, 2024). Note that while the most well-known large-
scale assessments currently use a replicate-samples method conforming to this para-
graph, there are alternative valid methods for complex samples, such as Taylor series 
linearization and sandwich variance estimators that could also be used (Binder, 1983; 
Kish & Frankel, 1974).

While the within-imputation variance can be calculated by taking the average of the 
estimates from each set of plausible values, this estimate does not capture all uncer-
tainties associated with the point estimate. The uncertainty between each set of plau-
sible values, or the between-imputation variance component, must be calculated as 
well.

The between-imputation variance BIe is related to the variability of the estimate cal-
culated from each of the plausible values. The following formula is used:

It is also important to note here that using fewer plausible values than available in 
the data will likely yield a different interval estimate than would be estimated using 
all plausible values available in the data. See the Appendix for discussions and recom-
mendations on how many plausible values to use in secondary analysis.

Once these two variance components have been calculated, they are combined to 
obtain the standard error SEe for the point estimate. The following formula is then 
used:

These calculations are generalizable to the calculation of the standard error for any 
point estimate that involves plausible values, whether they are means, differences 
between means, percentages, correlations, or regression coefficients.

For example, if we want to calculate the standard error for the difference between 
two groups, where d = a− b , and a and b involve the use of plausible values, the cal-
culation will be as follows:
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Combining plausible values from different domains in the same analysis

It is often the case that a user wants to use plausible values from different domains in 
the same analysis. For example, using the PISA data, calculate the correlation between 
mathematics, science, and reading literacy. Or using the PIAAC data, calculate the likeli-
hood of an adult being employed based on their literacy and problem-solving skills.

To understand how to use plausible values from different domains in the same analy-
sis, it is helpful to briefly review how plausible values are created. Recall that the first 
step is estimation of a latent regression, and in the second step, the latent regression 
coefficients are used to create the imputed scores, or plausible values. When multiple 
domains are involved, the latent regression and subsequent imputation is carried out 
assuming the multiple domains are part of a multidimensional space, and therefore, the 
latent regression and subsequent imputation for the different domains is done simulta-
neously across all domains. As a result, the first imputation is for all domains simulta-
neously, then the second one, and so on. Because of this, the correlation between the 
first plausible values of two domains provides an unattenuated estimate of the relation-
ship between the domains, whereas the correlation between the first plausible value for a 
domain and any other plausible value will be attenuated.

Therefore, when using plausible values from different domains in the same analysis, 
the recommended procedure is to do the calculations using the first plausible value from 
across the domains in the analysis, then the again using the second plausible value across 
all domains, and so on. The average of the statistics from across all the analysis will be 
the statistic to report, and the standard error is calculated as described earlier.

Combining plausible values with non‑plausible values in the same analysis

In the interest of making different analysis scenarios explicit, we present an example. 
When combining plausible values with non-plausible values in the same analysis, the 
principles and recommendations described earlier apply. That is, conduct the analysis 
separately with each plausible value, treating the non-plausible value variable as con-
stant for each case across the different analyses. Then, calculate the point estimates and 
interval estimates as described earlier.

Conducting analysis with model based selection of variables and cases

The analysis using plausible values can involve the selection of variables, such as when 
conducting multiple linear or logistic regression, or the selection of cases, such as discri-
minant analysis of assigning individuals to proficiency groups.

It can be somewhat confusing for the secondary user to run a linear regression using 
an automated variable selection procedure (i.e., backwards, forward, or stepwise selec-
tion) and obtain seemingly contradictory or unreconcilable results. Following the pre-
scribed procedure for calculating statistics using each set of plausible values separately 
and then using the average of those statistics, the user could end up with a different 
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selection of variables depending on which plausible value was used. In this case, the user 
should keep in mind that many of these selection procedures are not always directly 
applicable to data collected with complex sampling designs or imputations.

Users might be tempted to rely on a single plausible value for this analysis, which 
would provide a consistent estimate, but no information about the between-imputa-
tion error variance component. Furthermore, the estimate from a single plausible value 
would be less precise than the mean across the estimate for each set of plausible values. 
Users might also be tempted to use the average of the plausible values, but this would 
lead to underestimating variances and the relationship between the variables, not to 
mention not being able to calculate the between-imputation variance.

Instead, the recommended procedure is to run the regression analysis separately 
with each of the plausible values and report the average of the coefficients. The stand-
ard errors for the coefficients used in the selection of variables will come from combin-
ing the standard errors related to the sample selection, calculated using the replication 
method described earlier, and the standard error related to the imputation by using the 
variance of the coefficients computed with each of the plausible values.

The decision to include or exclude a variable in a model could defensibly be based on 
a more thought-out and theory-based approach to the inclusion of variables in an equa-
tion. The fact that a variable is included in a model with some plausible values and not 
included when other plausible values are used is not an indication of a problem with the 
method, but rather an indication that there is uncertainty about whether the variables 
should be included in the model, and the imputed scores reflect that.

On the flip side, when selecting cases into groups, the same principle applies of run-
ning the analysis separately with each plausible value and summarizing the resulting 
coefficients and calculating the errors of the coefficients using the prescribed formula. 
When the classification of cases is used in a subsequent analysis, the classification 
should also be treated as an imputed classification, and the classification should be done 
separately with each plausible value; then the analysis with the classified data would fol-
low the same rules described earlier, that is, run the analysis with each classification and 
summarize the results accordingly. As with the selection of variables, when the classi-
fication of the cases varies depending on which plausible value is used, this reflects the 
uncertainty about where individuals should be classified or categorized.

Automated procedures for variable and case selection with multiply imputed data-
sets, such as plausible values, is an active and current area of research. Interested readers 
are directed towards recent methodology reviews and comparison studies (Gunn et al., 
2023; Thao & Geskus, 2019; Zhao & Long, 2017). However, more research is needed, 
particularly in the context of large-scale assessments, to identify the optimal approach.

Considerations for analysis using standard statistical analysis tools (e.g., SPSS, SAS)

Analyzing data from large-scale assessments requires special treatment of the data dur-
ing the analysis. The special treatment relates to obtaining consistent point estimates 
and their corresponding standard errors. Most standard analysis tools, such as SPSS, 
SAS, and STATA, are not readily capable of performing these operations automatically. 
These analysis tools require additional programming to properly treat the data and com-
pute the correct statistics and standard errors according to the design.
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However, there are several tools currently available that allow users to work with plau-
sible values while using these statistical programs. For users of R, SPSS, or SAS, there 
is the IEA’s IDB Analyzer, which was developed by the International Association for 
the Evaluation of Educational Achievement (IEA). The IDB Analyzer (IEA, 2021) is an 
application that can be used to combine and analyze data from most major large-scale 
assessments. Originally designed for IEA’s international large-scale assessments, the IDB 
Analyzer has also been configured to work with national assessment databases, such as 
those from NAEP, PISA and PIAAC. The IEA’s IDB Analyzer consists of two modules—
the Merge Module and the Analysis Module—that are integrated into a single applica-
tion. The Merge Module creates R, SPSS, or SAS syntax that can be used to combine files 
from large-scale assessment databases. The Analysis Module can be used to perform 
statistical analyses with these databases. Available analysis options include calculations 
of percentages and means, linear and logistic regression, Pearson and Spearman corre-
lations, percentiles, and working with benchmarks of achievement. The IDB Analyzer 
works by creating R, SPSS or SAS syntax that incorporates information from the sam-
pling design in the computation of sampling variance and handles the plausible values. 
The code generated by the IDB Analyzer enables the user to compute descriptive statis-
tics and conduct statistical hypothesis testing among groups in the population without 
having to write any programming code. The most recent version of the IDB Analyzer 
also interfaces with SAS on Demand for Academics, a free online tool for statistical anal-
ysis available on the web.

For users of STATA, there is repest (Avvisati & Keslair, 2014). This application esti-
mates statistics using replicate weights, thus accounting for complex sampling designs. It 
is specially designed to be used with the PISA, PIAAC, and TALIS datasets produced by 
the OECD. It also allows for analyses with multiply imputed values or plausible values.

For users of R, in addition to the IEA’s IDB Analyzer, there is EdSurvey and the R- 
Analyzer for Large-Scale Assessments (RALSA). EdSurvey is an R statistical package 
designed for the analysis of national and international large-scale assessment data from 
the National Center for Education Statistics (NCES) in the U.S. The key functions of 
the current version of EdSurvey include downloading available databases and convert-
ing data to R; subsetting and merging of data; calculating summary statistics; calculat-
ing linear and logistics regression; multilevel modeling; direct estimation; gap analysis; 
percentiles; analysis of achievement levels and benchmarks, correlations, multivariate 
regression; quantile regression (Bailey et al., 2020). RALSA (Mirazchiyski, 2021) is also 
an R package for preparation and analysis of data from large-scale assessments and sur-
veys that use complex sampling and assessment designs. The software can handle the 
design issues and apply the appropriate analytical methods automatically for every type 
of study, out of the box with little user intervention.

In addition to the tools described above, NCES has also made Data Explorers available. 
The Data Explorers are online analysis tools that are freely available for users to analyze data 
from most large-scale assessments, national and international, in which NCES participates, 
such as NAEP, PISA, PIAAC, TIMSS, and PIRLS. The Data Explorers are available from the 
NCES website and are designed to give users relatively quick and easy access to the data 
from large-scale assessments. Using the Data Explorers, a user can generate report tables, 
conduct linear regression analysis, conduct significance testing, and create diverse graphics 
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without needing to have access to the databases or a statistical analysis program on the 
user’s local machine. The user-friendly graphical interfaces of the Data Explorers facilitate 
analysis and report generation through simple point-and-click interactions. The user also 
has access to historical data from the assessment and, in most cases, to restricted-use data.

Summary
Throughout this paper we have described, in conceptual, technical, and practical terms, 
what plausible values are, why they appear in databases for large-scale assessments, and 
how researchers should use them in secondary analyses. The motivation for plausible values 
in large-scale assessments ultimately reflects the fact that these assessments serve a purpose 
different from individual-score assessments. Large-scale assessments aim to describe the 
knowledge and skills of populations and population subgroups rather than individual test 
takers, and this is reflected in the methods and procedures used to summarize the results 
from the assessment and, consequently, how to analyze and report them. Plausible values 
were designed to allow users to analyze large-scale assessment data with common statistical 
methods, enabling valid group-level inferences, despite the challenges associated with the 
complex assessment data structure.

Secondary analysts are often challenged by the complex and unfamiliar nature of plau-
sible values, large-scale assessments, and their datasets. Users are encouraged to use the 
plausible values provided in the secondary-use databases and follow recommended proce-
dures for using plausible values to compute statistics of interest and corresponding errors.

While this paper provides a broad overview of the meaning and use of plausible val-
ues, more detailed information on specific aspects of large-scale assessments is available 
in recently edited books (e.g., Lietz et al., 2017; Maehler & Rammstedt, 2020; Nilsen et al., 
2022; Rutkowski et  al., 2013), special journal issues on large-scale assessments (e.g., Cai, 
2019; Stadler et  al., 2016, 2017), technical reports (e.g., Martin et  al., 2020; NCES, 2024; 
OECD, 2019a, 2019b, 2023; von Davier et al., 2023), and the specialized journal Large-Scale 
Assessments in Education.

Common misunderstandings and misuses of plausible values arise when users incorrectly 
assume that plausible values have the same meaning and statistical properties as test scores 
that are reported for participants from individual-score assessments. Throughout this 
paper, we intended to clarify and explain the meaning of plausible values, as well as to detail 
how best to analyze and interpret plausible values. We conclude this paper with an appen-
dix list of frequently asked questions on the use of plausible values. These questions have 
been compiled by the authors based on common misconceptions and misuse of plausible 
values found in the literature.

Appendix: Frequently asked questions
The authors have extensive experience lecturing on the topic of large-scale assessments 
and training secondary users of large-scale assessment databases. What follows are some 
of the questions that most frequently come up during these lectures and trainings. 

Why are results for large-scale assessments reported using plausible values?
Plausible values are used in reporting large-scale assessment results so that second-

ary users of the data can replicate the reported results using readily available statistical 
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software and use the data to conduct their own research. Prior to generating the plausible 
values, the relationships between the contextual variables and proficiency are estimated 
via a latent regression. Using the model parameter estimates from this latent regression, 
combined with the data for each individual, the plausible values are generated. Plausible 
values may then be analyzed with standard statistical programs and methods.

Why are there multiple plausible values used in large-scale assessments?
Multiple plausible values are used following best practices in the imputation of miss-

ing data (Rubin, 1972). By repeating the analysis with each set of plausible values and 
averaging across the results, the final results are obtained with more precision than if 
one set of plausible values is used. Furthermore, calculating the variance of the results 
for each set of plausible values is part of the recommended standard error calculation. 
Depending on the large-scale assessment program, currently, anywhere from five to 
twenty plausible values are used.

How many plausible values should I use for my analysis?
We recommend using as many plausible values as are provided in the data file, as that 

is the number of plausible values used by the large-scale assessment program for report-
ing results. Doing so will facilitate your ability to replicate reported results and those of 
others. For exploratory purposes, you could use fewer plausible values, and when plot-
ting graphics, you could use only one. But we recommend whenever possible using as 
many as are published in the available databases.

Why do different large-scale assessments use different numbers of plausible values?
Plausible values are a random sample of values from the estimated distribution of pro-

ficiency for each individual. As with any sample, more selections are better in terms of 
representing the estimated proficiency distribution, but at some point, more selections 
provide little additional information. As computer storage and processing power have 
become less expensive over the years, large-scale assessments have been able to incor-
porate more selections (i.e., more plausible values) for the estimation of proficiency and 
associated uncertainty. Therefore, the numbers of plausible values used by large-scale 
assessments vary, with some assessments using 5 plausible values, but others using up to 
20 plausible values.

If my statistical analysis program can use only one plausible value, which one should I 
use?

On occasion, the program or procedure you are using might not allow you to use more 
than one plausible value (e.g., plotting a histogram). In this case we recommend using 
one set; however, once you have selected a set from the sequence of available plausible 
values, you should use the same set of plausible values for all cases. For example, you 
could select the 3rd set of plausible values to use for all cases. You should not select a dif-
ferent set of plausible values for each case, even if the selection is at random. Note that 
when using only one plausible value, you will not be able to compute the variance due to 
measurement imprecision.

In the data file, why does one person have different plausible values for the same 
subject?

The plausible values are random selections from the individual’s estimated profi-
ciency distribution. Since they are random selections from within a range of possible 
estimates, they are expected to vary. The more uncertainty we have about a person’s 
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proficiency, the more the plausible values are expected to vary. The less uncertainty 
we have, the less they will vary. This is one of the reasons why plausible values should 
not be reported to individuals as their “score on the test.”

What is the proficiency distribution for an individual?
For any person responding to a large-scale assessment, we cannot estimate their 

proficiency precisely. All we have are the person’s responses to the relatively small 
number of assessment items assigned to them, their responses to the background 
questionnaire administered to them, and any other contextual information we have 
about them. Using this information, and in combination with probabilistic models, we 
can estimate the likelihood of having the observed response pattern if the participant 
had a certain proficiency. Using this information, we can approximate a probability 
distribution of their proficiency. It is from this estimated proficiency distribution that 
plausible values are randomly selected.

In the data file, why do different individuals with the same performance on the assess-
ment have different plausible values?

This is related to the question above. The plausible values are random selections 
from an individual’s estimated proficiency distribution. Since they are random selec-
tions from within a range of possible estimates, they are expected to vary within and 
between individuals, even if they performed the same. The more uncertainty we have 
about the performance, the more these will vary. This is one of the reasons why plau-
sible values should not be reported to individuals as their “score on the test.” They 
could also vary because the individuals are from different groups in the population, 
and according to the latent regression these groups vary in the estimated proficiency. 
This is another reason why plausible values should not be reported to the individuals 
as their “score on the test.”

What is wrong about using the average of the plausible values in my analysis instead 
of each of them separately?

There are two problems with doing this. First, using the average of the plausible 
values for the individuals will underestimate the variance of the proficiency estimates, 
because the variance of these averages will be an underestimate of the actual variance 
in the population. The second problem with using the average is that you will not be 
able to calculate the uncertainty due to measurement.

What does it mean to use variables for “conditioning”?
The process of estimating achievement in large-scale assessments consists of esti-

mating a latent regression using variables believed to be potentially related to pro-
ficiency as predictors in the regression. The resulting coefficients from this latent 
regression tell us about the relationships between these independent variables and 
proficiency. We can then use these regression parameters to calculate predicted pro-
ficiency distributions. These predicted proficiency distributions play a role in the 
generation of the plausible values, to accommodate analyses involving regressing the 
plausible values on those contextual variables. When a variable is used as an inde-
pendent variable in this latent regression, it is said that we are conditioning on this 
variable.

I hear that by conditioning on some variables, some groups of participants are given 
scores worse that they deserve based on their performance, is this true?
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To the contrary, by conditioning on a variable we estimate with the latent regression 
the relationship between that variable and achievement, and therefore are able to use 
that variable in generating the plausible values that incorporates the estimated effect of 
that variable on proficiency. Depending on the relationships between proficiency and 
the independent variable, excluding a variable from the latent regression may lead to an 
underestimation of the effect of that variable when the institution generates the plausible 
values.

How do I know if the variables I am using in my analysis were used as conditioning 
variables?

Traditionally, all contextual variables are summarized by means of a principal com-
ponent analysis, and the principal components accounting for 80 – 90% of the variance 
corresponding to the contextual variables are used as independent variables in the latent 
regression. While this is no guarantee that the contextual variables are represented in 
their entirety in the principal components used in the regression, most of the variance 
in the contextual variables are accounted for. You should consult the technical documen-
tation of the corresponding assessment to find out how the contextual variables were 
selected and used in the model.

How are the background variables used as independent variables in the latent regression 
equation?

This depends on how the variable is coded. There is some pre-processing required. A 
categorical variable is converted to a set of contrast-coded variables. For example, a vari-
able identifying public and private schools is converted to a dichotomous variable with 
a value of 1 assigned to public schools, and a 0 otherwise. If there is missing data for this 
variable, a second variable is created with a value of 1 for those cases missing this vari-
able, and 0 otherwise. A continuous variable could be categorized into several groups, 
and then converted to a set of contrasted coded variables, or it could be used as-is, with 
the missing values replaced with a ‘reasonable’ value and creating an additional varia-
ble identifying the cases for which this was done. These converted variables can then be 
entered as-is, but what is more commonly done is that principal components are calcu-
lated from these variables and a selection of these are entered in the equation. This has 
the benefit of requiring fewer variables in the equation than the total, while accounting 
for a large proportion of the variance.

What should I do if a background variable I am interested in was not used as a condi-
tioning variable in the analysis?

The standard practice is to use all contextual variables in the latent regression model, 
either directly or indirectly. Directly by using the unaltered variable in the model, or 
indirectly as part of the principal components. If the variable of interest was not used 
in the conditioning model at all, the effect for this variable on the estimated proficiency 
may be underestimated to the extent that this effect has not already been accounted by 
the other variables already included in the model.

How often are the effects from the variables in the regression equation calculated? 
If one group does relatively poor/well in an assessment, will they ever be able to show 
improvement/decline in subsequent assessments?

The latent regression coefficients are calculated for each assessment year, grade, and 
cycle. The fact that a group did poorly in one year has no effect on the regression 
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model that is calculated for later years. Along the same lines, if a group does poorly 
in one assessment, this does not mean that they will do poorly in all assessments. For 
example, three latent regressions with different subject domain data could point to 
girls outperforming boys in reading, boys outperforming girls in math, and boys and 
girls doing about the same in science. A latent regression for Country or State A could 
point to girls outperforming boys in mathematics, but to boys outperforming girls in 
Country or State B in the same assessment year. The effects for the contextual vari-
ables are re-estimated for every assessment, and all participant-level contextual vari-
ables are typically used in the analysis.

Can I use plausible values with my statistics program?
Yes, plausible are created precisely so that they can be used with readily available 

statistics programs. However, when using them we recommend you follow the pre-
scribed procedures for using them by running separate analysis using each plausible 
value and then reporting the average of the estimated statistics.

If I run the analysis separately with each plausible value, which results do I then 
report?

When using plausible values for an analysis, you will carry out the analysis sepa-
rately using each of the plausible values and would then report the mean of the statis-
tics computed. For example, when calculating a mean, you would report the average 
of the means obtained from each of the plausible values. When calculating a regres-
sion coefficient, you would report the average of the regression coefficients.

What does it mean that “plausible values are not individual scores”?
This is meant to be a warning to users of the data that plausible values are not 

meant to be used to report the results to individuals or otherwise make inferences 
about individuals. However, for the purpose of using readily available statistic pro-
grams to compute group-level statistics, the plausible values are there to be treated as 
individual scores for the cases in the data matrix.

How do I classify cases into achievement groups when each of them has several plau-
sible values?

The classification of cases needs to be done separately with each plausible value, 
potentially resulting in different classifications depending on the plausible value used. 
The variability of this classification across members of the same group will give an 
estimate about the classification of the group across the different categories.

What should I do if I need to plot achievement results using the plausible values?
This is one of the few instances where you could pick one set of plausible values, 

and plot these.
I am not very good using statistical programs, is there a tool I could use to get answers 

from the assessment that uses plausible values?
Nowadays there are several tools available that incorporate the use of plausible 

values. If you use SAS or SPSS, we recommend the IEA’s IDB Analyzer. If you are 
proficient with R, we recommend the package EdSurvey for the U.S. national and 
international assessments and the packages RALSA or IntSvy for the international 
large-scale assessments. Of these last three R packages, RALSA has a graphical user 
interface reducing the need for coding in R. If you have little experience with statisti-
cal programs, we recommend using the data explorers sponsored and supported by 
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NCES. The data explorers give you quick access to historical data from all the major 
national and international large-scale assessments, and a powerful data analysis tool.

Are the plausible values different manifestations of the same variable?
As per Mislevy (1993), plausible values bear a superficial resemblance to classical 

multiple indicators of a latent variable, as analyzed with structural equation modeling 
or hierarchical modeling. But analyzing them as such does not generally yield the cor-
rect results. Instead, they should be analyzed as imputed data by conducting separate 
analysis with each set of plausible values.

How do I work simultaneously with plausible values from two or more different 
domains? For example, correlate the plausible values from mathematics, science and 
reading literacy in PISA?

Before working with them simultaneously, you want to refer to the assessment’s pub-
lished technical documentation to confirm that the plausible values were estimated 
using a joint multidimensional model. If that is the case, you would analyze them in 
accordance to their construction by successively calculating the correlation between the 
first plausible values across all the domains, then the second one, and so on. You would 
then report the average of these correlation coefficients. You would not mix-and-match 
across different sets of plausible values.

 Does the use of contextual data in the generation of the plausible values bias results for 
groups based on their demographics?

A common concern is that the use of contextual data may result in biased comparison 
of groups with different demographic data. This is an understandable concern given that 
the contextual data is used in the generation of the plausible values. However, the pur-
pose of using the contextual data is to ensure that analysis with plausible values recovers 
the proficiency distributions that were estimated in the data with the IRT-latent regres-
sion. The use of contextual information does not bias the results towards previously 
collected data or non-data driven assumptions about the relative performance of demo-
graphic groups.
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