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Abstract 

Stratification is an important design feature of many studies using complex sampling 
designs and it is often used in large-scale assessment (LSA) studies, such as the Pro-
gramme for International Student Assessment (PISA), for two main reasons. First, strati-
fication variables that achieve a high between and low within strata variance can 
improve the efficiency of a survey design. Second, stratification allows one to, explicitly 
or implicitly, control for sample sizes across subpopulations. It ensures that some parts 
of a population are in the sample in predetermined proportions. In this study, we 
determine through simulation which stratification scheme is best for PISA in Germany. 
For this, we consider the constraints imposed by the international sampling design, 
the available information about schools, and specific national characteristics of the Ger-
man educational system. We examine seven different stratification designs selected 
based on scenarios used in past LSAs in Germany and theoretical considerations 
for future implementations. The chosen scenarios were compared with two reference 
scenarios: (1) an unstratified design and (2) a synthetic optimal stratification design. 
The simulation study reveals that the stratification design currently applied in PISA 
produces satisfactory results regarding sampling precision. The present stratification 
design is based on Germany’s federal states and school types. However, this approach 
leads to small strata, which has been problematic for estimating sampling variance 
in previous cycles. Therefore, alternative stratification scenarios were considered and, 
in addition to overcoming the small-strata problem, also led to smaller standard 
errors for estimates of student mean performance in mathematics, science, and read-
ing. As a result of this study, we recommend considering three different stratification 
designs for Germany in future cycles of PISA. These recommendations aim to: (1) 
improve the sampling efficiency while keeping the sample size constant, (2) follow 
a sound methodological approach, and (3) make conservative and cautious changes 
while maintaining a reflection of the structure of the German federal school system 
with different school types. These suggestions include a reinvented stratification 
of grouped German federal states and designs with school types as explicit stratifiers 
and federal states as implicit stratifiers.
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Introduction
Drawing a sample for the Programme for International Student Assessment (PISA) to 
represent the target population of 15-year-old students is demanding (OECD, 2017). 
The PISA international sampling design uses features attributed to "complex" samples. 
The overall design can be described as a stratified two-stage random sample. In the first 
selection stage, schools are sampled with a probability proportional to their size (PPS; 
Meinck, 2020; Skinner, 2014), which implies that larger schools have a higher probability 
of being sampled relative to smaller schools. In a second stage, about 30 to 40 15-year-
old students are systematically randomly sampled across participating schools with 
equal probabilities after sorting them by gender and grade. Such a selection procedure is 
also called cluster sampling.

School-level stratification can be implemented in two different ways. Explicit stratifi-
cation involves dividing all eligible schools (those with 15-year-old students) into sub-
groups, with all schools belonging to a subgroup treated as a single sampling frame. 
Implicit stratification means sorting those separate frames by specific characteristics 
(Meinck, 2020).It differs from simple random sampling (SRS) as systematic sampling is 
applied to those ordered frames. The precision of the resulting estimates is similar to 
the results from proportional allocation and therefore this procedure is called implicit 
stratification in contrast to explicit stratification (Aßmann et  al., 2011). Stratification 
improves the efficiency of the sampling design if the variables used for stratification are 
correlated with the variables of interest (e.g., mean student proficiency). In other words, 
it increases the sampling precision and results in smaller sampling errors of estimates of 
these variables (Cochran, 1977; Meinck & Vandenplas, 2021) if the variance between the 
strata becomes large and the variance within the strata is small. It further ensures that 
some parts of the population are included in the sample in predetermined proportions. 
With implicit stratification, the proportions in the population are approximately pre-
served in the sample. Explicit stratification, however, allows for a disproportional sample 
allocation.

Sampling weights and nonresponse adjustments are provided to avoid bias due to 
disproportional selection probabilities that combine the inverse selection probabilities 
at each sampling stage with nonresponse adjustments (OECD, 2017). Using them with 
the Horvitz–Thompson (HV) estimator allows for unbiased and consistent estimators 
for any desired statistic. For computing unbiased estimates of the sampling variance 
accounting for the complex design, Balanced Repeated Replication (BRR) with Fay’s 
adjustment is used (Judkins, 1990). To implement this method, pairs of primary sam-
pling units (usually schools) are created based on their location in the sorted sampling 
frame within each explicit and implicit stratum, whenever possible (OECD, 2017). That 
is, schools in one pair, also called a “variance zone”, are those sampled schools next to 
each other in the sampling frame, thereby sharing specific characteristics as they belong 
to the same stratum. Replicate weights are then calculated using a specific re-weighting 
scheme to accommodate the BRR computation algorithm (OECD, 2017; Rust & Rao, 
1996).

Determining an efficient stratification scheme in international large-scale assessments 
in education (LSA) is not trivial. The selected characteristics for stratification should 
be chosen to increase the estimator’s efficiency compared to simple random sampling 
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(Jaeger, 1984). In addition, international project management requirements and relevant 
privacy areas must be considered. Finally, the number of strata is also methodologically 
limited by the sample size and the BRR method (Valliant et al., 2018a). This study aims to 
provide evidence aimed at supporting the improvement of the stratification design used 
for the German sample in PISA. It may serve as a template for similar studies in other 
countries and economies participating in LSA.

In previous PISA cycles, the German sample has been stratified using federal states as 
an explicit stratification variable with 16 categories and school type as an implicit strati-
fication variable (Mang et al., 2019). When preparing school nonresponse adjustments 
for this sampling scheme in previous rounds of PISA, it was found that some strata could 
become very small or even empty. During the school nonresponse adjustment, initial 
adjustment cells are based on explicit and implicit stratification variables. School-level 
nonresponse or school closures could induce very small adjustment cells. For example, 
in 10 out of 16 federal states (62.5%), fewer than 10 schools were selected in PISA 2018. 
Because small cells can lead to unstable weight adjustments and, in turn, inflate the sam-
pling variances, it is a common practice to collapse small adjustment cells. These col-
lapsed strata no longer accurately reflect the implemented sampling design, likely inflate 
the within strata variance, and show smaller efficiency gains compared to simple random 
samples when computing standard errors (SEs). Furthermore, federal states may not be 
effective predictors of achievement since many states share similar average achievement 
levels and variances within those strata might be too large to result in smaller sampling 
variances. Thus, other variables like the proportion of students with migration back-
grounds within schools or students’ average socioeconomic background may be more 
closely related to achievement and, therefore, could be preferred stratification variables 
(Buchmann & Park, 2009).

This study examines how different stratification designs of the German PISA sample 
can lead to an increase in precision in estimating the main outcome variables: student 
performance in mathematics, science, and reading. We aim to identify and recommend 
a stratification design that aligns with both international and national requirements, is 
feasible in terms of its practical implementation, and is highly efficient. Since the results 
of the PISA study enjoy great publicity in Germany and are closely examined by politi-
cians and the press, it is important to both use an unbiased and efficient estimation as 
well as be able to communicate design changes to a non-technical audience effectively. 
We focus on five schemes that will be benchmarked against a design without stratifica-
tion and an artificial “perfect” stratification. Comparisons of the current design and the 
proposed alternatives will be made to quantify the differences between them and thus, 
support recommendations for a change in stratification with evidence.

This paper is organized as follows. The first section elaborates on the PISA sampling 
design with PPS sampling, the stratification process, and its application in the German 
sample. Next, we introduce the simulation study. This section describes the process of 
simulating the PISA population and the process of stratification, sampling, and creating 
estimation weights for the analyses. We then describe the performed analyses to com-
pare and quantify the different stratification designs. Afterwards, we present and discuss 
the simulation study results, determining the differences and benefits that can result 
from different stratification designs and providing our recommendations for future data 
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collections. Finally, we discuss the generalizability of our findings and possibilities for 
future research.

Design‑based multistage sampling in PISA
PISA collects data from a multistage sample of 15-year-old students in all participating 
countries and economies. For this purpose, probabilistic random samples are selected, 
which can be used to generalize on the population, for example, to all schools having 
15-year-old students in Germany (Brown, 2010; Kish, 1965; Levy & Lemeshow, 2013; 
Thompson, 2012). To make correct inferences about the population of 15-year-old stu-
dents in school and to ensure international comparability, sampling procedures in PISA 
must be applied that allow for undistorted and precise population estimates. Special 
attention is paid to the point estimate of the characteristic of interest and its precision 
(Meinck, 2020). In PISA, a state-of-the-art sampling design acknowledged by the scien-
tific community is applied (Rutkowski et al., 2013). PISA implements, by default, a com-
plex sample design with a two-stage sampling procedure. As a rule, schools are drawn in 
a first stage, and students in participating schools are systematically randomly selected 
in a second stage.

PISA’s internationally specified target population consists of all students in an age 
cohort. This is, generally, all 15-year-old students who attend grade 7 or higher. The 
exact definition of the age cohort is determined in coordination with the international 
PISA consortium and may vary slightly between countries and economies due to differ-
ent survey periods. For example, in Germany, all students born between January 1, 2002 
and December 31, 2002 (inclusive) and attending at least grade 7 or higher were eligible 
to participate in PISA 2018. A so-called school sampling frame is created to implement 
the first sampling stage. This is a comprehensive list of all schools where 15-year-
old students are expected to be taught during the data collection period. The purpose 
of this frame is to provide a comprehensive list of all eligible primary sampling units 
(here: schools) containing all units of the target population (here: 15-year-old students; 
Meinck, 2020).

In Germany, the information for this list is collected from the statistical agencies of the 
federal states. It includes, among other variables, the school type, the funding body, the 
number of students from the target population (7th to 10th grade, born in the year of 
definition), the number of 7th to 10th grade classes as well as information about planned 
school mergers or school closures. It should be emphasized that the information made 
available is mostly data protection insensitive according to GDPR,1 which is an impor-
tant consideration when deciding how to design the sample.

In the PISA sampling frame, a school is defined as an organizational unit with one or 
more buildings belonging to that school. However, if a school has different tracks within 
that organizational unit, each track is listed separately. Within comprehensive schools or 
schools with several educational programs, the school track defines the intended school 
qualification of students in the associated branch. The German federal states partially 

1 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural 
persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 
95/46/EC (General Data Protection Regulation) [2016] OJ L 119/1.
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define different tracks which can be divided into three different branches: lower second-
ary with no access to upper secondary (basic general education), lower secondary with 
access to upper secondary (extensive general education), and higher secondary (aca-
demic education). This definition forms the basis of school types for the stratification.

PPS sampling

In PISA, the PPS sampling procedure is applied for the school selection (Meinck, 2020; 
Skinner, 2014). This procedure was first advocated by Mahalanobis (1952) and subse-
quently discussed by many researchers, e.g., Hansen and Hurwitz (1943) or Sukhatme 
et al. (1984). If the school size is used as the measure of size (MOS) in PPS, larger schools 
have a higher probability of being sampled than smaller ones, and vice versa, as students 
within larger schools have smaller selection probabilities than students within smaller 
schools (Lohr, 1999). Selecting schools with varying probabilities will result in unbiased 
estimators if they are appropriately weighted according to their selection probabilities 
(Singh & Mangat, 1996). The size variable must be available in the sampling frame. In 
PISA, the preferred MOS is the expected number of 15-year-old students in each school. 
Other size measures, such as the total school size or the number of students in the 
modal grade, could be used as alternatives (OECD, 2020). The selection probability for a 
school i can then be written as

with nMOSi <
∑N

j=1MOSj , i being the selected schools, N  being all schools in the pop-
ulation, and n being the sample size. Please note that nMOSi can be greater than or equal 
to the sum of MOSj in exceptional cases. These schools are then removed from the list 
and the probabilities for selection are re-estimated. As the simulation in this paper is 
based on an existing sample, such schools are not part of the simulation and therefore 
do not need to be taken into account. For the variance of any estimator, the variation of 
the values in the sum is decisive (Lohr, 1999). This also shows the advantage of PPS sam-
pling: if the variance of the calculated statistic in a school is higher than its division by 
the MOS of the respective school, the estimator has a smaller sampling variance. This is 
met if MOS is proportional to the used statistic (Kauermann & Küchenhoff, 2011).

Sampling weights are provided to avoid bias due to disproportional selection prob-
abilities (OECD, 2017). Those weights are computed as the inverse of the selection 
probabilities of each selection stage. Not all sampled schools and students eventually 
participate in the assessment. In Germany, the PISA assessment is mandatory for pub-
lic schools, so they cannot reject participation. However, private schools do sometimes 
refuse to participate. At the student level, students may not participate in the test if they 
are sick on the assessment day or if they changed schools between the time of listing and 
assessment. In the event of such nonresponse, other “similar” students who participate 
(those belonging to the same gender and grade) carry the weight of their nonresponding 
peers. This avoids under-representation of those students. In short, nonresponse adjust-
ment cells are built within each explicit stratum, grade, gender, and school combination 
(OECD, 2020). This nonresponse factor is thus, also considered in the sampling weights. 
The PPS method adjusts for nonresponse results by creating unequal weights in smaller 

(1)πi = n
MOSi∑N
j=1MOSj

,
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sampling errors when estimating population features and increases the estimator’s effi-
ciency. Combined with systematic random sampling within schools, it is also called a 
self-weighting design (Solon et  al., 2015). Moreover, PPS sampling is a simple way to 
ensure similar final sampling weights when selecting an approximately equal number of 
students in each sampled school (Meinck, 2020).

Stratification

The word “stratify” comes from Latin word meaning “to make layers.” One can draw 
independent probability samples from each stratum by dividing the population into H 
non-overlapping subpopulations, called strata (Groves, 2011). Accordingly, a stratified 
random sample comprises of several subsamples, each representing internally more 
homogeneous subpopulations concerning the stratification characteristics. To make 
conclusions about the full population, the individual sample values must be weighted 
according to the ratios of the strata to the population. In stratified sampling, what mat-
ters is the variation within the strata. The strata should be determined such that the vari-
ables of interest within a stratum are as invariant as possible. In contrast, the different 
strata should differ as much as possible from each other to improve sampling efficiency 
(Jaeger, 1984; Lohr, 1999) and sampling precision (Cochran, 1977). Stratification infor-
mation must be available for all eligible schools in the sampling frame. Using this infor-
mation, the sampling frame can be sorted by the stratification variables before sampling. 
Requirements at the international level and national political sensitivity (such as the 
request for a fair regional distribution of the sample) may also play a role in the strati-
fication. The variance between strata does not contribute to the variance of the estima-
tor. Only the sample size proportional to its stratum size ensures that the sample will 
highlight the differences between strata. Estimating the sampling variance for stratified 
samples with SRS within the strata is straightforward and can be handled, e.g., via a vari-
ance decomposition. For complex samples such as those applied in PISA, estimation of 
sampling variance becomes more complicated as clustering effects and varying selection 
probabilities have to be accounted for within each stratum.

Stratification can be applied at any stage of the multistage sampling design. In PISA, 
two types of stratification are used: explicit and implicit (OECD, 2020). Explicit strati-
fication means the grouping of schools by specific school characteristics and sampling 
schools for each explicit stratum separately (Singh & Mangat, 1996). In the literature, 
explicit stratification is what is referred to in stratified sampling (Lohr, 1999; Singh & 
Mangat, 1996; Thompson, 2012). Implicit stratification can be added within explicit 
strata and involves the sorting of the schools by further characteristics. Combined with 
the PPS sampling approach methods, implicit stratification can be described as a sys-
tematic random PPS sampling design within each explicit stratum. The goal of this sort-
ing is to approximately preserve the population proportions in the sample.

PISA establishes quality standards all participating countries and economies must 
adhere to. One of these standards specifies that schools must be sampled using agreed 
upon, established, and professionally recognized principles of probability sampling. 
One of these principles involves the identification of appropriate stratification vari-
ables to reduce sampling variance and facilitate the computation of nonresponse adjust-
ments (OECD, 2020). Stratification schemes differ considerably across the participating 
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educational systems. For instance, the OECD (2020, Table  4.1) lists the stratification 
schemes for all participating countries and economies in their technical report. Urbani-
zation, ISCED levels, school funding, countries’ and economies’ languages, school types, 
school sizes, or school tracks have been chosen in the past as stratification categories. In 
addition, the percentage of school variance explained by explicit stratification variables 
by country and domain (OECD, 2020, Annex C1) differs widely between the participat-
ing countries and economies. The potential effects of an optimal stratification design can 
be illustrated using the example of the Netherlands in Tables C4 and C5 of the Annex of 
the OECD Technical Report for PISA 2018 (OECD, 2020). For example, the intraclass 
correlation (ICC) for the domain reading is 0.53. This means the variances between and 
within the schools are equally distributed between and within the schools. After con-
sidering stratification (explicit stratification in the Netherlands: school types, Table 4.1. 
of the Technical Report, OECD, 2020), it is only 0.10, i.e., the variance within schools 
barely plays a noteworthy role anymore. A similar effect of stratification on variance 
decomposition can also be observed for France.

To understand the current stratification design used for PISA in Germany, a look into 
the past may be helpful. In the first three cycles (2000, 2003, and 2006), PISA was used 
to facilitate comparisons between the German federal states, which comprise of inde-
pendent educational school systems with independent governance. Explicit stratifica-
tion and oversampling by federal states were necessary to accommodate this national 
requirement. Each federal state was treated as a separate population of interest. While 
not needed in later cycles, this stratification design was kept to simplify the communica-
tion of the results to the broader audience unfamiliar with the technicalities of complex 
samples. In addition, education policy representatives from the federal and state govern-
ments called for such a design, as it appropriately reflects and relates to the diversity of 
different education systems at the federal state level. In addition to explicit stratification 
by state, implicit stratification by school type has been implemented in each cycle. This 
ensures that sampled students were distributed as evenly as possible across Germany 
so that each combination of federal state and school type was represented with at least 
some minimum number of schools in the sample.

Germany applies different stratification designs in other LSAs, at least more recently. 
For example, in the Progress in International Reading Literacy Study (PIRLS) and the 
Trends in International Mathematics and Science Study (TIMSS), the German stratifica-
tion design is based on an indicator of the socioeconomic background of students and 
school types (for more details, see Mullis et  al., 2016, Chapter  5). The socioeconomic 
indicator has been determined by the number of students with an immigration back-
ground in each school eligible for the respective study.

Estimation procedures for multistage, stratified PPS sampling

To determine the correct estimation procedure for any survey statistic when complex 
sampling is applied, the characteristics of the sample design and the form of the required 
statistic must be considered (Wolter, 2007). The form of a statistic can be distinguished 
into linear and non-linear estimators. Those can be, for example, means from a straight-
forward sampling design or ratio estimators under complex sampling design. In detail, 
Wolter (2007) or Valliant et  al. (2018a) provide a theoretical background for those 



Page 8 of 28Mang et al. Large-scale Assessments in Education           (2024) 12:15 

distinctions. The characteristics of the sampling design influence the precision measure 
of any statistic, in particular.

Horvitz–Thompson estimator

The HV estimator can be used for any linear and non-linear statistic with the constraint 
that no element (i.e., the students in this context) can be sampled with replacement. The 
estimation formula can be written as

with  πij = the selection probability that the j-th student is selected within the i -th 
school, N  being the number of students in the population, m and n being the number 
of schools and students in the sample, respectively. yij indicates the statistic from the 
students. The Horvitz-Thompson estimator weights the selected students within the 
schools chosen by their inverse selection probabilities πij . Thereby, the mechanism of the 
PPS sampling procedure is applied for the selection of the schools. This step is defined in 
this context as schools being the Primary Sampling Units (PSU). This estimator provides 
unbiased and consistent estimates for almost all linear and nonlinear statistics (Horvitz 
& Thompson, 1952), also known as the Horvitz-Thompson-theorem (Singh & Mangat, 
1996).

Variance estimation

To account for the uncertainty in the estimation resulting from the complex sampling 
design, standard errors must be estimated by their respective statistical methods (Lohr, 
1999). For computing unbiased and consistent estimates of sampling variance, the BRR 
method with Fay’s adjustment is used in PISA (Judkins, 1990). The advantage of BRR, 
but also of similar replication methods like the Jackknife Repeated Replication (JRR), 
is that it can account for the effects on variances of nonresponse adjustments (as long 
as weighting steps are computed separately for each replication; Valliant et al., 2018b). 
However, this method is preferred over other methods, such as JRR, as it provides more 
stable estimates when analysing sparse population subgroups (Judkins, 1990; OECD, 
2017; Rao & Shao, 1999). Specifically, if the estimate is a ratio of two subgroups, some 
replicate ratio estimates can be extremely large or undefined because of near-zero or 
undefined denominators, respectively. (Rao & Shao, 1999; Rao & Wu, 1985). For profi-
ciency estimates in PISA, standard errors are a combination of sampling and imputa-
tion errors. Still, this paper focuses only on the sampling error as the sampling error is 
generally much larger than the imputation error. Therefore, the imputation error can be 
neglected in the context of this paper (OECD, 2020).

To implement the method of BRR, pairs of primary sampling units (usually schools) 
are created according to the order of appearance in the sampling frame, which is first 
sorted by explicit strata, then by implicit strata and size (i.e., in Germany, first by the 
federal states, then by school types and size). Hence, schools in a pair often share similar 
characteristics, as they belong to the same stratum. Pairs are sequentially numbered and 
named as variance zones (or just simple zones); other common names are variance strata 

(2)Ŷ HT =

1

N

m∑

i=1

n∑

j=1

yij

πij
,
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or pseudo-strata. One school within these pairs is randomly numbered as one, the other 
as two.

Then, 80 replicate weights are calculated using a specific re-weighting scheme to 
accommodate the BRR computation algorithm (OECD, 2017; Rust & Rao, 1996). That 
is, the estimation weight of each student within one school in the pair is multiplied by 
1.5, while the estimation weight of each student in the other school in the pair is mul-
tiplied by 0.5. In cases where there are three units in a triplet, either one of the schools 
(designated at random) receives a factor of 1.7071 for a given replicate, with the other 
two schools receiving factors of 0.6464, or else the one school receives a factor of 0.2929 
and the other two schools receive factors of 1.3536. Determining which schools receive 
inflated and deflated weights is carried out systematically, based on the entries in a Had-
amard matrix of order 80 (OECD, 2017). This Hadamard matrix only contains the values 
− 1 and 1, and multiplication with its transposed counterpart returns an identity matrix 
of order 80 multiplied by a factor 80 (Wolter, 2007). Technically, this is like selecting sub-
samples from the whole sample, achieved by systematically manipulating the estimation 
weights. The PISA 2000 Technical Report (OECD, 2002, Appendix  12) explains how 
these particular factors came to be used. More than 80 replicates would not improve the 
precision and would only add computational time. In addition, each replication weight is 
adjusted for nonresponse at both school and student levels.

Given the variance estimator for a specific analysed statistic named X∗ from the full 
sample follows

with t = 1,…, 80 being the number of replicates. X∗

t  results in the  tth estimation of 
this statistic with the t-th replication weights combination. The advantage of the BRR 
method is that it produces unbiased and consistent estimators under complex designs 
(OECD, 2017).

Research questions
Utilizing a simulation study, we aim to answer the following research questions in this 
paper:

1. Are there relevant differences in the SEs and the bias of mean achievement estimates 
of specific PISA domains when applying different stratification schemes for school 
sampling?

2. What is the best stratification design for PISA Germany, considering suggestions 
from research question 1 and constraints determined by the international sampling 
design, the available information about schools, and specific national characteristics 
of the educational system?

Simulation study
With the help of a simulation study, the most efficient stratification procedure that also 
complies with the abovementioned requirements should be identified. In detail, we 
compare schemes used in the past with schemes that show promise for providing more 

(3)V̂BRR

(
X∗

)
= 0.05

80∑

t=1

{(
X∗

t − X∗
)2}
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precise results, benchmarking them against both a scheme without stratification and a 
scheme reflecting a “perfect” stratification.

The simulated school population is based on the German PISA 2018 school popula-
tion. From this “population”, 2000 sample replications are selected according to the strat-
ification characteristics defined in the next section, using the approach of a Monte Carlo 
simulation. For each dataset, simulated weights and replication weights are calculated 
when drawing the sample for each stratification variant.

The software program R Studio Version 1.4.1717 (RStudio Team, 2020) and its cor-
responding program R 4.1.0 (R Core Team, 2020) were used for simulating the sample 
replicates. The analyses to quantify the differences between those stratification methods 
were also performed with R Studio, its corresponding program R and the package survey 
(Lumley, 2004).

Simulation PISA population

The simulation of a population can be implemented using two different methods. First, it 
can be generated using the properties of the desired characteristics and their correlation 
with each other with an existing distribution assumption (Mang et  al., 2021). Second, 
weights of an existing sample can be used such that this simulation approximates the 
actual population. The second method has been applied in this simulation study. The 
basis of this approach has been developed by Little (1993) and Rubin (1993), discussed 
by Beckman et  al. (1996) and developed in recent applications such as Templ et  al. 
(2017).

In this study, we use the student sample of the German PISA 2018 data as a basis for 
the simulation (Reiss et al., 2021). By aggregating student data (using school identifiers) 
to the level of schools, we achieve a school dataset. As the true anonymous list of schools 
from PISA 2018 with information on the number of PISA eligible students is available to 
the authors, we add information on the school’s MOS, federal state, and school type to 
the data. We did not only use information from the list of schools because other char-
acteristics, such as student achievement and migration background, are available in the 
sample.

To simulate the German school frame using a sample of schools, each school has been 
copied according to its (rounded) school weight. A school from the sample then repre-
sents several schools according to their weight in the population. For example, a sam-
pled school with a school weight of 10.21 was copied 10 times on the simulated school 
frame as it represents about 10 other schools in the population. This approach gives us 
an approximated copy of the complete school frame. As school weights are adjusted for 
nonparticipation of schools, this is automatically accounted for in the simulation. Fur-
ther corrections address changes in the number of 15-year-old students between listing 
and data collection timepoints.

Since students are drawn randomly within schools after sorting by grade and gender, 
student design weights constitute the inverse of the selection probabilities of students 
within schools. They are again adjusted for nonresponse of students within schools. 
Duplicating the students within the schools in the sample by those within school student 
weights achieves the final simulated population, which can now be used to determine 
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some “true population values”, such as mean achievement and its associated standard 
deviation.

To compare the characteristics of this simulated population with the true school list 
for Germany in PISA 2018, the total number of students in the frame, the MOS, the 
federal states, and the school types are used. The true school population comprises 
13,855 schools, while the simulated school population cover 13,046 schools. The MOS’s 
mean and standard deviation are slightly higher in the simulated school population 
(M = 58.64, SD = 44.58) than in the real population (M = 52.98, SD = 43.86). Deviations 
can be attributed to rounding errors and further sample trimming factors. Rounding 
errors can be attributed to the rounded school and student weights (to an integer with 
no decimals) used to create the simulated school and student population. The trimming 
factors include adjustments when the number of estimated 15-year-olds differs signifi-
cantly from the actual number of those students in a school (there is a period over a year 
between the listing and testing in a school).

Furthermore, six of the schools drawn did not have any 15-year-old students, so that 
no testing could occur. Two other schools were excluded during the assessment (Mang 
et al., 2019). Table 10 gives a comprehensive overview of those characteristics.

Analysis procedures—stratification, samples and weights

Seven different stratification designs have been defined and applied for the simulation 
study. Table  1 below details the variables used in the different stratification designs 
under study, whereas Table 3 lists the designs and their explicit, first implicit, and second 
implicit stratification variables. Additionally, Table  2 details the seven different school 
types mentioned in Table 1, comprising of lower and upper secondary schools and lower 
and upper secondary comprehensive schools.

The different stratification approaches will be described below in detail. According to 
Baumert et al. (2006), individual characteristics such as gender, migration, grades, socio-
economic status, and school-based characteristics such as school type and grade level 
are essential predictors of student achievement and hence relevant stratification varia-
bles for student assessment surveys. While the PISA within-sampling design is standard-
ized across countries and economies (stratification within schools is done by gender and 

Table 1 Overview of stratification categories and their abbreviations for the simulation study

Abbreviation Stratification categories

FS 16 federal states of Germany
Special handling of

SAR Very small federal state Saarland

FS—grouped CFS 3 city federal states

NFS 5 “new” federal states

OFS 8 “old” federal states

MIGRATION 3 levels of the proportion of students with migration background

ST 7 school types
Special handling of

SEN Special educational needs

VOC Vocational

LOC 3 levels of competence
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grades), national variation of school sampling designs is possible. We hence determined 
the stratification designs under study accordingly while also considering data availability, 
as described below.

To get a comprehensive picture of stratification, we use an unstratified sample design 
(i.e., a simple random sample) as a reference point. This is declared as stratification 
design 1.

Stratification design 2 reflects the stratification used in the last cycles of PISA and is, 
therefore, an essential benchmark for this study. In this design, the explicit stratification 
is implemented using a two-step process: first, vocational (VOC) and special educational 

Table 2 School types used for implicit stratification in the simulation

School type (English translation) School type (Original name in German)

Lower secondary, some with access to upper secondary; basic gen-
eral education (exclusively students of the same track)

Hauptschule

Lower secondary, access to upper secondary; extensive general 
education (exclusively students of the same track)

Realschule

Lower secondary, access to upper secondary; basic and extensive 
general education

Schule mit mehreren Bildungsgängen

Lower secondary and upper secondary; academic education (exclu-
sively students of the same track)

Gymnasium

Lower and upper secondary comprehensive Integrierte Gesamtschule

SEN schools Förderschulen

VOC schools Berufsschulen

Table 3 Stratification variants for the simulation study

Stratification 
design

Explicit stratification Number 
of explicit 
strata

Implicit stratification Number of implicit 
strata

Within 
explicit 
strata

Overall

1 – 1 – 1 1

2 FS (16 states) 18 ST (5 strata) 80 112

VOC FS (16 categories) 16

SEN FS (16 categories) 16

3 FS—grouped (CFS, NFS, 
OFS)

5 ST (5 strata) 15 21

VOC FS—grouped (CFS, NFS, 
OFS)

3

SEN FS—grouped (CFS, NFS, 
OFS)

3

4 MIGRATION (3 levels) 5 ST (5 strata) 15 21

VOC MIGRATION (3 levels) 3

SEN MIGRATION (3 levels) 3

5 ST 7 7

6 ST (7 levels) 8 FS (15 categories) 105 112

SAARLAND ST (7 strata) 7

7 LOC (3 levels) 5 ST (5 strata) 15 21

VOC LOC (3 levels) 3

SEN LOC (3 levels) 3
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needs (SEN) schools are separated, then, all remaining schools are then separated by 
federal state. Within the federal-states-strata, schools are sorted by the five school types 
without VOC and SEN schools. Conversely, all VOC and SEN schools are sorted by 
federal state. This results in 18 explicit and 112 implicit strata, many of which are very 
small. This design is the one currently applied in PISA.

Stratification design 3 groups federal states into three categories: city, old, and new fed-
eral states. City federal states are the three German cities Berlin, Hamburg, and Bremen, 
which are politically administered as a state; the distinction between old and new fed-
eral states reflects the division of states based on the separation of Germany before the 
reunification in 1989. Although Germany has been a federal republic since then, major 
differences exist between the old and new federal states, e.g., in salaries or education 
structure and curricula (Holtmann, 2020). A potentially better approach would be to 
merge the federal states based on their mean competencies. However, groups of federal 
states that are homogenous across all domains do not exist. Another argument against 
such a division is that it may be difficult to communicate and explain the choice to edu-
cational stakeholders. Stratification design 3 addresses the problem of too many small 
strata in design 2 detailed in the section Sampling Precision: Sampling Variance of this 
paper. In addition, the use of federal states is maintained in a grouped form so that the 
changes compared to variant 2 are minimal. They can be well defended to lay audiences 
that may challenge the change of the PISA stratification scheme.

It is well known from numerous PISA analyses that socioeconomic and migration 
background are significant predictors of student proficiency (OECD, 2019; Sirin, 2005; 
Stanat & Christensen, 2006). However, recording socioeconomic background is difficult, 
especially in Germany, as this is subject to strict data protection regulations. However, 
one piece of information available for German schools is the percentage of students with 
an immigrant background. Therefore, we decided to define stratification design 4 based 
on these properties. This variant uses categories of schools with different proportions 
of students with a migration background. Schools having no students with migration 
background are allocated to the first category of this index. Categories two and three 
are defined in Table 4 as schools with more than 0% and less than 30% of students with 
migration background and schools with more than 30%, respectively.

Stratification designs 5 and 6 address school types as explicit stratification variables. 
For variant 6, an additional explicit stratum for the federal state of Saarland is created. 
This is to avoid sampling no schools from this (very small) federal state, which could 
happen by chance because the number of students in this state is smaller than the sam-
pling interval.2 Note that including no schools from Saarland in the sample is politically 
sensitive, and hence, should be avoided. As for the special handling of VOC and SEN 
schools, the explicit stratification is formed using two steps for this variant: first, the 
schools from the federal state Saarland (SAR) are separated, and all remaining schools 
are then separated by school type. Within the school types, schools are sorted implic-
itly by federal states. Conversely, all schools in SAR are sorted implicitly by their school 
types.

2 The sampling interval is the sum of the number of fifteen-year-olds in all schools divided by the number of schools to 
be sampled in each stratum.
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Stratification design 7 from Table  3 represents the near-optimal stratification vari-
ant, where an aggregated index of student competence is used to categorize schools 
into three performance levels. The LOC is not available for German schools with offi-
cial statistics and therefore is used just as another benchmark design in this study. It is 
defined in this study based on the 10 plausible values (PVs) of the three main domains of 
math, reading, and science obtained in PISA 2018 (OECD, 2020); these were combined 
at the individual student level and then aggregated to the school level. Each school was 
allocated to one of the three categories in Table 4. PVs, representing the competency of 
one student, are 10 drawn values from the answering distribution of this pupil to the 
PISA testing questions. The answering distribution is based on the principles of Item 
Response Theory (IRT; Rasch, 1960) and adapted to PISA actual standards by Davier and 
Sinharay (2013). With IRT models, student responses to the questions from the PISA 
test are modelled as a probability function of person and item characteristics. For exam-
ple, detailed explanations of this estimation procedure can be found in OECD (2020) 
and Mang et al. (2019).

Note that VOC schools and SEN schools are treated as separate strata in stratifica-
tion variants 3, 4, and 7 because students in these school types perform systematically 
lower than students in other school types. Separation further allows for achieving higher 
precision for these groups of students by oversampling schools in these strata. Addition-
ally, the implicit sorting by school type is retained for variants 3, 4, and 7 as it is highly 
related to achievement and, therefore, essential for low sampling variance. This sorting 
also accommodates a higher precision for comparisons between school types.

For each stratification design, the frame is sorted by explicit and then implicit stratifi-
cation and then by MOS in a serpentine manner, mimicking the PISA sorting method. 
In the next step, 2000 samples of 223 schools with 30 students per school were drawn by 
systematic PPS sampling for each stratification scenario using a Monte Carlo approach. 
The sample size of 223 schools and 30 students per school was chosen, as this num-
ber reflects the number of schools and students participating in PISA 2018 in Germany. 
Please note the standard PISA sampling international target is 150 schools and 42 stu-
dents per school (OECD, 2020). The PPS sampling procedure implies that schools are 
selected using a random start and a sampling interval within the explicit strata. Schools 
are selected for the sample if the cumulative sampling interval matches the cumulative 
number of 15-year-olds in the schools.

Within the schools, an equal probability sample of PISA students was selected using 
systematic sampling, where the lists of students were first sorted by grade and then by 
gender. In schools with less than 30 eligible students, all of them were selected. Using 
the binomial distribution or so-called Bernoulli processes (Clopper & Pearson, 1934), 
it is determined that 2000 replicates are adequate to achieve a coverage probability of 

Table 4 Level of competence for the three domains reading, science, and math; derived 
competence levels for stratification/Thresholds for the migration index for stratification

Variable Thresholds

MIGRATION MIGRATION = 0 0 < MIGRATION < 30 MIGRATION ≥ 30

LOC LOC ≤ 400 400 < LOC < 500 LOC ≥ 500
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greater than 99% for the 95% confidence interval of the estimates. This approach allowed 
a nearly exact representation of the sampling distribution, thereby enabling a precise 
estimation of the sampling precision (i.e., the SEs of specific population features) for 
each scenario.

The school and student base weights were automatically generated after drawing the 
school and the student sample for each stratification variant. Therefore, the estimation 
weight we use in our simulation is the product of the school and the student base weight, 
given by

with πij = selection probability for student j given school i  has been selected. The calcu-
lation of replicate weights to correctly estimate the SEs in this study is based on the BRR 
method with Fay’s adjustment (Judkins, 1990), as done in PISA (OECD, 2009, 2020). 
Preserving the order of schools in the sample determined by the sorting before the selec-
tion process, two adjacent schools belonging to an explicit stratum are paired into so-
called variance zones. If there is an odd number of schools in a stratum, the last group 
is set with three schools. Once 80 variance zones are reached, the next pair of schools is 
again allocated to zone one, the second-to-next pair to zone two, and so on. One school 
within the pairs is randomly numbered as one, the other as two. In the case of three 
schools being placed in a zone, one school is randomly numbered as one and the other 
two schools as two. With the help of these variance zones, 80 replicate weights are then 
calculated with the help of a Hadamard matrix explained in the section Estimation pro-
cedures for multistage, stratified PPS sampling: Variance estimation in this paper.

Nonresponse for both levels must also be considered to determine the final school and 
student weights. As the assessment is mandatory in Germany, nonresponse for schools 
was very low over most cycles. Hence, we assumed 100% participation at the school level 
for the simulation. Furthermore, student nonresponse is not the focus of this article and 
is therefore also neglected (100% student participation is assumed). Some minor adjust-
ments to student base weights regarding, e.g., school nonparticipation or corrections 
from the estimation of the number of 15-year-olds were applied to reflect the true popu-
lation values as precisely as possible in the samples.

One constraint of this simulation study is that measurement variance might be under-
estimated as one student in the base sample with a given competency represents multi-
ple students with exactly this competency value (represented by PV’s) in the simulated 
population. That is, a student with a weight of 200 represents 200 students in the popu-
lation.. To account for this simulation feature, random noise is added to each of the 10 
PVs of the individual domains. This is added to the original PVs via random selection 
from a normal distribution with a mean of 0 and a 1/4 fraction of the standard devia-
tion of the respective PVs grouped by school type. This proportion was chosen based on 
evidence, as it adds “noise” to the distribution of skills without changing the distribution 
characteristics.

Given the stratification designs used with the 2000 samples and associated weights 
and replicate weights, mean calculations for the three PISA domains reading, science, 
and math and their associated SEs were calculated in the following step, and these 2000 

(4)wij =
1

πij
,
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estimates per variant and domain were compared with their distributional properties in 
the following sections.

Results and discussion
Variance in proficiency explained by stratification

As explained earlier in this paper, efficient stratification variables are closely related to 
the outcome variables. Therefore, using a regression modelling approach, we exam-
ined in a first step what part of the variance of the achievement scores was explained by 
the stratification variants, implicit and explicit stratification, in the different scenarios 
(Tables 5 and 6).3 Table 5 shows the variances of average school proficiency explained 
by the stratification scheme in each design, whereas Table 6 displays the respective vari-
ances in student proficiency. Average school proficiency was determined by the average 
student proficiency for each subject, using the first plausible value for each student. Note 
that only the first PV for mathematics, science, and reading was used as it approximates 
the distribution of student achievement correctly (Davier et al., 2009).

Comparing Tables  5 and 6, the first thing to emphasize is that differences across 
schools explain about half of the variance in student proficiency (variances from Table 5 

Table 5 Explained variances in average school proficiency (math, science, and reading) by explicit 
and implicit stratification for each stratification variant

Method: linear regression (unadjusted  R2)

Stratification 
design

Explicit Stratification Implicit Stratification Mathematics Science Reading

1 – – – – –

2 FS, VOC, SEN ST, FS 0.86 0.84 0.84

3 FS—grouped, VOC, SEN ST, FS 0.83 0.81 0.81

4 MIGRATION, VOC, SEN ST, MIGRATION 0.82 0.80 0.80

5 ST – 0.82 0.79 0.79

6 ST, SAR FS, ST 0.86 0.84 0.83

7 LOC, VOC, SEN ST, LOC 0.91 0.89 0.89

Table 6 Explained variances in student proficiency (math, science, and reading) by explicit and 
implicit stratification for each stratification variant

Method: linear regression (unadjusted  R2)

Stratification 
design

Explicit Stratification Implicit Stratification Mathematics Science Reading

1 – – – – –

2 FS, VOC, SEN ST, FS 0.38 0.38 0.39

3 FS—grouped, VOC, SEN ST, FS 0.36 0.36 0.38

4 MIGRATION, VOC, SEN ST, MIGRATION 0.35 0.36 0.37

5 ST – 0.33 0.34 0.36

6 ST, SAR FS, ST 0.37 0.37 0.38

7 LOC, VOC, SEN ST, LOC 0.66 0.69 0.72

3 The OECD (2020) also displays information on explained variances (Annex C6). Note that they are based on multilevel 
models, drawing on information from both students and schools simultaneously, and can therefore not be compared 
with the information presented in Tables 5 and 6.
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are about double compared to those from Table 6), meaning that the school context can 
explain a large proportion of the explained variance. Stratification design 1 represents 
the variant without stratification. Hence, no variance can be explained by this scheme. 
Variants 2 to 6 explain about one-third of the variance in students’ proficiency scores 
in the three competencies math, science, and reading (Table 6). Stratification variant 6 
slightly outperforms variants 3, 4, and 5, explaining the same variance as variant 2. As 
expected, the near-perfect stratification variant 7 illustrates the highest share in pro-
ficiency score variance since it is based on the proficiency scores themselves. In addi-
tion to these findings, we calculated these explained variances using the “actual” data 
from the PISA 2018 sample and presented them in Tables 12 and 13 in Appendix. It can 
also be seen that, for the sample, the variance explanations at the school level are almost 
twice as high as at the student level. Also, the proportions of explained variance at the 
school level compared to the simulated population values are almost identical, with a 
bias of approximately three to four percentage points found at the student level. This 
may be due to the fixed stratification in PISA 2018 with stratification design 2, or it may 
be due to the added “noise” to the PVs (please refer to section Analysis Procedures—
Stratification, Samples and Weights for the explanation). In summary, this analysis can 
serve as a basis and interpretation aid for the simulation study results. It provides the 
first evidence that stratification variants 3, 4, 5, and 6 can likely be a reasonable alterna-
tive to the currently implemented variant (2).

Results of the simulation study

We present further results in the format of boxplots and tables. Boxplots describe the 
distribution of the estimated values each based on many repetitions (2000 in our study). 
The median, the 25th, and 75th percentiles, minimum and maximum, are presented 
(Chambers, 1983). Differences between the boxplots are interpreted based on several 
definitions (e.g., Williamson et al., 1989). First, the boxes representing the interquartile 
ranges are compared. If boxes do not overlap, a difference can be stated. Second, medi-
ans are considered. If the median line of a box lies outside of another box entirely, then 
a difference between the two groups is likely. Third, the whiskers must be considered. 
They mark the maximum and the minimum values of each set. Their distance represents 
the range between those two extremes. Larger ranges indicate a wider distribution, that 
is, more scattered data.

In Tables 7, 8, and 9, informal statistics are listed for math, science, and reading for all 
seven stratification designs. Augmenting the upcoming graphical results in Fig.  1 and 
Fig.  2, the tables provide the following information. Column 1 (Mean math bias) pre-
sents the deviation from the estimated mean of the respective competences to the true 
mean values of the population. Column 2 shows each parameter’s empirical 95% cov-
erage rates (CR). The empirical 95% coverage rate indicates how often each estimated 
parameter’s 95% confidence interval covers the true population value. An acceptable 
coverage rate starts at 95%. Column 3 presents the SEs computed using the BRR method, 
averaged over the 2000 sample replicates. Column 4 displays the “true” SE for each vari-
ant, calculated as the standard deviation (SD) of the average student achievement over 
the 2000 sample replicates, i.e., the SD of the sampling distribution. Finally, we present 
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in column 5 Root Mean Squared Error (RMSE). A low RMSE value means that the esti-
mator’s bias and variance are small.

Although stratification only impacts the estimation precision, columns 1 and 2 of 
Tables 7, 8, and 9 show that all methods estimate the mean domain value with little bias, 
as expected. These minor deviations can be explained by the simulation of the popula-
tion itself. In particular, if there are only a few students in a school or few schools in a 
stratum, deviations in mean estimations can occur.

Figure 1 augments and confirms the information presented in the tables, with boxplot 
panels A to C presenting the distribution of estimated means for the three proficiency 
domains based on the simulation (2000 samples). The red horizontal line represents the 

Table 7 Mean bias, SEs, and fit statistics for the domain math by stratification design

SE = sampling error, CR = coverage rate, BRR = balanced repeated replication, RMSE = root mean squared error

Stratification 
design

(1) Mean 
math bias

(2) CR mean 
math

(3) Mean math 
SE (BRR)

(4) Mean math SE (SD of 
sampling distribution)

(5) RMSE

1 0.02 0.98 4.28 4.12 4.12

2 0.03 1.00 3.00 2.48 2.48

3 0.04 1.00 2.71 2.41 2.41

4 0.50 1.00 2.34 1.45 1.53

5 0.12 1.00 2.22 2.39 2.39

6 0.04 1.00 2.16 2.51 2.51

7 0.37 1.00 1.58 1.30 1.35

Table 8 Mean bias, SEs, and fit statistics for the domain science by stratification design

SE sampling error, CR coverage rate, BRR balanced repeated replication, RMSE root mean squared error

Stratification 
design

(1) Mean 
science bias

(2) CR mean 
science

(3) Mean 
science SE 
(BRR)

(4) Mean math SE (SD of 
sampling distribution)

(5) RMSE

1 0.23 0.97 4.46 4.09 4.10

2 0.29 1.00 3.06 1.92 1.95

3 0.28 1.00 2.78 1.82 1.84

4 0.59 1.00 2.45 1.35 1.48

5 0.35 1.00 2.31 1.83 1.86

6 0.25 1.00 2.21 1.92 1.94

7 0.41 1.00 1.66 1.24 1.30

Table 9 Mean bias, SEs, and fit statistics for the domain reading by stratification design

SE sampling error, CR coverage rate, BRR balanced repeated replication, RMSE root mean squared error

Stratification 
design

(1) Mean 
reading bias

(2) CR mean 
reading

(3) Mean 
reading SE 
(BRR)

(4) Mean reading SE (SD of 
sampling distribution)

(5) RMSE

1 0.72 0.97 4.80 4.73 4.78

2 0.64 1.00 3.45 2.92 2.99

3 0.70 1.00 3.12 2.83 2.91

4 0.08 1.00 2.62 1.54 1.54

5 0.58 1.00 2.74 2.77 2.83

6 0.71 1.00 2.79 2.98 3.06

7 0.30 1.00 2.11 1.42 1.45
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Fig. 1 Distribution of estimates for proficency means by stratification variant. Please refer to Table 4 for the 
description of the stratification variants

Fig. 2 Distribution of estimated sampling error with BRR by stratification variant. Please refer to Table 4 for 
the description of the stratification variants
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true population value. Looking closely at Fig. 1, we see that the true values are optimally 
covered for the analysed domain reading (graph C). At the same time, a consistent but 
negligibly slight bias appears for the estimation of means for mathematics and science.

This research focuses on sampling precision, which is presented in columns 3 and 4 
of Tables 7, 8, 9, augmented by a graphical display (Fig. 2) of the distributions of SE esti-
mates of the domain means, here based on BRR.4 The red points in the figure indicate 
the “true” SE measured by the standard deviation of the sampling distribution. The find-
ings are equivalent for all domains. As expected, stratification design 1 (i.e., unstratified 
sample) results in the highest SEs and stratification design 7 (i.e., stratification by average 
proficiency) results in the smallest SEs. The remarkable difference shows the potential 
of optimal stratification: comparing designs 1 and 7, SEs decrease by a factor of three, 
equivalent to an increase in sample size by roughly a factor of 10, given no changes in 
the sampling design. In other words, if one wishes to decrease sampling precision by the 
same factor without changing the stratification design, one must select a sample that is 
ten times bigger.

The stratification design that PISA currently applies (stratification design 2) decreases 
SE, too, on average, across the three domains by a factor of around 1.5 compared to 
no stratification. This is equivalent to doubling the sample size. However, stratification 
designs 3 to 6 all outperform design 2. SEs are almost halved compared to design 1 (no 
stratification), equivalent to an increase in sample size by a factor of three. Designs 5 
and 6 show the best results regarding sampling precision. However, the gains are mini-
mal compared to designs 3 and 4. However, looking strictly at the true SE (column 4 in 
Tables 7, 8, 9), only design 4 results in substantially smaller SEs than design 2.

Another side effect of stratification is that the precision of the SE estimates is higher—
this can be seen in Fig. 2. The distances between the boxplot whiskers are smaller in all 
variants applying stratification.

By looking at RMSE, we account for both sampling precision and proficiency estima-
tion accuracy (columns 5 in Tables 7, 8, 9). Again, unsurprisingly, the highest and lowest 
RMSE is observed in variants 1 and 7, respectively. RMSE values are similar for variants 
2, 3, 5, and 6, while variant 4 shows the best performance again.

Biasedness of sampling error estimates when using BRR

A rather unexpected finding of this simulation study was the discrepancy in the SEs 
when comparing the “true” values (computed as the SD of the sampling distribution over 
2000 samples) versus the averaged SEs estimated using BRR. This is not the focus of this 
paper but warrants further investigation, which is why we briefly describe the issue in 
this section. The BRR SE estimates are—with a few exceptions—consistently larger than 
the true values. That means the standard errors seem to be systematically overestimated. 
After careful consideration, there was a presumption that estimating standard errors 
using BRR does not comprehensively account for implicit stratification. The authors re-
performed all analyses with a random permutation for the applied implicit stratification 
variables to address this hypothesis. Unlike the implicit stratification in stratification 

4 Please consider that deviations from SEs displayed in Table 12.7 in the PISA 2018 Technical Report (OECD, 2020) and 
reported SEs (BRR) in Tables 7,8,9 are due to the simulation design.
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designs 2–7, there is now a random implicit sorting assuming no implicit sorting was 
applied. In doing so, the standard deviations of the estimates (i.e., the “true” SE) become 
visibly larger and approach the true SEs (see Table 11 with 100 replicates in Appendix). 
Without implicit sorting, different (i.e., less precise) mean estimators result for each 
sample so that the overall sampling distribution has a larger standard deviation. Note 
that we present only analysis for the domain math in Appendix; for the other domains, 
the outcomes are comparable.

Related to this, note that the coverage rates presented in columns 2 of Tables 7, 8, 9 
above were estimated based on the BRR SEs. It can be seen that almost all stratification 
designs achieve 100% CR meaning that all true population values were covered in the 
95% confidence interval of each estimated parameter. Given the results above, it can be 
assumed that the CR is overestimated.

Furthermore, some approaches note and discuss an overestimation of the standard 
deviation from the sampling distribution via replication approaches such as BRR or sim-
ilar methods, e.g., the JRR method (Qian, 2020; Rizzo & Judkins, 2004; Rizzo & Rust, 
2011). Other variants for estimating the standard error based on Taylor series expan-
sion (Lavrakas, 2008; Valliant et al., 2018b), such as the so-called delta method (Cochran, 
1977), seem to result in more robust and efficient estimates (Krewski & Rao, 1981; 
Qian, 2020; Wolter, 2007). A problem of this variant is that it requires the joint inclu-
sion probability for each variance zone, i.e., the probability that the two selected schools 
in the respective variance zone are jointly selected. This probability can become zero 
for certain pairs of units within the chosen variance estimation process (Wolter, 2007). 
However, there are ways to estimate it (Hajek, 1964; Särndal et al., 2003). To consider all 
confounding parameters of this discrepancy in the simulation, parts of the simulation 
were also calculated with JRR. An almost identical result structure confirms the suspi-
cion of the conservative estimation of the standard deviation of the estimated values by 
repeated replication methods. In addition, it should be mentioned that the "ideal" condi-
tions of the simulation study probably also underestimate the SD of the sampling dis-
tribution since specific “errors” such as schools’ or students’ nonresponse may not be 
considered.

Summary and conclusions
This simulation study reflects the relevance of stratification and, in particular, its high 
potential for efficient sample designs in the case of PISA Germany.

First, the study reconfirmed that stratification does not affect parameter estimation, 
here looking at the mean achievement of the PISA domains mathematics, science, and 
reading. More importantly, we found large differences in the SEs of achievement scores 
when applying different stratification schemes for school sampling. This study aimed to 
investigate alternative stratification designs since the one currently applied results in 
strata that are too small, causing technical problems when preparing the sample data 
for inference statistics (i.e., estimation of population features). One problem is that the 
small strata cause suboptimal data handling for estimating sampling variance with BRR. 
Explicit strata had to be collapsed in previous cycles to accommodate the pairing algo-
rithm in BRR, a procedure that compromises technical standards. Further, nonresponse 
adjustment procedures were affected (an issue not covered in this article).
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We studied four alternative stratification designs, referred to as designs 3, 4, 5, and 
6, that all overcome the problem of small strata, and compared them with the current 
scheme (design 2), a variant without stratification (design 1), and an optimal stratifica-
tion design (7).

Considering the true SEs and the RSME exclusively, design 4 performs best. How-
ever, switching to this stratification design would lead to a substantial change in the 
PISA sampling design. This scheme stratifies based on the proportions of students with 
a migration background and completely neglects the German school structure tied to 
federal states. This would change the logistics for conducting the PISA study in Ger-
many, as it would, for example, be impossible to allocate a fixed number of schools to 
each federal state and inform states at an early stage about sample sizes to be expected. 
It is also possible that no schools at all are drawn from very small states (especially the 
Saarland). Given these effects, stratification design 4 may not be the best solution for a 
change. Note this is not a problem from a methodological point of view: no comparisons 
between federal states are intended for PISA, and the sample remains unbiased.

Designs 3, 5, and 6 can also be recommended as alternatives. They show sufficiently 
good estimate precision and BRR SEs are smaller than variant 2.

Stratification design 3 groups the federal states into three categories (city states, old 
and new German states). Since this grouping preserves the federal-state structure of 
Germany, it may provide one good stratification design alternative for upcoming cycles 
of the PISA study, representing a conservative and cautious change. However, it does 
not entirely overcome the logistical issues pointed out above for design 4. By an implicit 
stratification by federal states (designs 5 and 6), the issue of unpredictable sample sizes 
can be solved, as this procedure results in a close-to-perfect proportional allocation of 
the sample to all strata so that the sample sizes per federal state become predictable. 
Variant 6 also solves the issue of the likelihood of selecting no school in Saarland. Both 
designs 5 and 6 use the types of schools for explicit stratification, ensuring high sampling 
precision as school type is very closely related to the average proficiency of students. 
Overall, we believe that stratification design 6 meets all requirements of a stratifica-
tion design in Germany and can therefore be thoroughly recommended for future PISA 
cycles.

The reduced SEs with a change in stratification will lead to more precise samples, 
smaller confidence intervals, and higher statistical power when comparing Germany 
with other participating countries, economies, or specific groups of students within Ger-
many (e.g., gender differences). Increased statistical power may allow the comparison 
of smaller subgroups, which was not possible before. However, this may involve com-
munication challenges, i.e., explaining specific findings to a lay audience. For example, a 
difference of 5 points between two comparison groups would not have been detected as 
a statistically significant difference in previous cycles, but now would. While a statisti-
cian is aware that an insignificant result does not mean there is no difference between 
groups but merely means we cannot know whether or not there is a difference, this is 
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a misinterpretation that is very common even among scholars less familiar with statis-
tical theory. In connection with trend calculations between two PISA cycles and their 
cross-sectional nature, it can be stated that the linking error, considering the uncertainty 
between two assessments, might increase due to the proposed change in the sampling 
design (OECD, 2020). The complete SE consisting of sampling, imputation, and linking 
error will then increase, and results might not become as statistically significant as they 
would without changing the sampling design.

Suppose an increase in sampling precision is not needed or not desired. In that case, 
another possibility is a change in the stratification design and a reduction in sample size 
while keeping precision constant with previous cycles. This could reduce the burden on 
German schools that must cope with various regional, national, and international stud-
ies and assessments. This could also mean that resources are directed toward better 
data quality rather than “more data.” For example, a smaller sample size means national 
centres can direct funds to increase participation rates. Nevertheless, it must be kept 
in mind that a smaller sample size can also result in a smaller number of possible sub-
groups to analyze. In any case, a change in the stratification design for PISA in Germany 
must be carefully communicated with relevant stakeholders (for example, the press or 
teacher unions) and policymakers.

Future research and initiatives may focus on further possibilities to increase sampling 
efficiency without increasing costs (Biemer & Lyberg, 2003; Groves, 2011). One direc-
tion could be to consider including better socioeconomic background indicators of the 
student intakes of schools in the sampling frame and the stratification scheme since this 
is a powerful predictor of student achievement in the PISA domains of mathematics, sci-
ence, and reading. Another, perhaps even more straightforward, approach would be to 
use achievement indicators for schools, i.e., categorizing schools by the average achieve-
ment of their students. Such indicators could be based on regional mandatory census 
assessments. As shown with stratification variant 7, this would be the most efficient 
design. This approach is already used for several countries in many contemporary large-
scale assessments (e.g., Mullis et al., 2016). While this data also exists in Germany, it is 
inaccessible for the teams preparing the German school sampling frames for national 
and international large-scale assessments because of its confidential nature. Provid-
ing this data to these teams while adhering to strict data protection measures would be 
desirable.

Limitations and outlook
It should be noted that this simulation study has been conducted under ideal con-
ditions. As mentioned earlier in the report, no bias due to nonparticipation was con-
sidered at both the school and student levels. Further, even if unlikely, new strategies 
may also increase other sources of error, or new biases may arise. We refer to the the-
ory of the total survey error (Assael & Keon, 1982; Weisberg, 2005), which introduces 
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non-sampling error sources, such as errors due to frame construction, the sample selec-
tion process, data collection, data processing, and estimation methods.

Another limitation of the study is that the proportion of foreign students in schools, 
which is used as a stratification design in Stratification 4, does not consider whether a 
student with an immigrant background has a German passport because, unlike their 
parents, they were born in Germany. Since public statistics are usually not allowed to 
publish these subtleties due to data protection, this aspect must be taken care of in 
the stratification for interpretations. Another limitation here may be that this infor-
mation may not be consistently available in public statistics the frame is based on, 
and hence, the effect might be overestimated. Furthermore, it would be desirable to 
calculate additional statistics, such as correlation or regression coefficients, to quan-
tify the precision gain further. Finally, the discrepancy between the true SEs and their 
estimation via BRR should be examined in more depth. In particular, the relation-
ship between BRR and the origin of Taylor Series Linearization (Lavrakas, 2008; Val-
liant et al., 2018b) with its application of the delta method (Cochran, 1977) shall be 
addressed in future studies.

Last but not least, our results are hardly transferable to other studies as explicitly only 
the stratification of Germany in PISA has been addressed. However, it may serve as a 
guide for other countries establishing or revising their stratification. It should be consid-
ered that proportions in the school or student population might change and need to be 
considered in future adjustments. So can migrational movement lead to changed popu-
lation characteristics that must be controlled to apply the given suggestions.

In summary, it can be emphasized that the principle of stratification with its systematic 
sampling should be retained in the complex sampling design in PISA, but with recom-
mended adjustments in the execution of explicit and implicit execution of stratification.

Appendix
See Tables 10, 11, 12, 13.
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Table 10 Comparison of the simulated school population and the true school population of PISA 
2018 (Frame)

Due to data protection reasons, strata were pseudonymized

The MOS, the explicit stratification of PISA 2018 (FS: federal states, special educational needs, and vocational schools), the 
suggested grouped explicit stratification (FS new), and the school types are displayed. The absolute number, means, and 
standard deviations have been analysed
* No school type 6 has been sampled in PISA 2018

Simulated school population PISA 2018 school 
population 
(Frame)

N 13,046 13,855

Mean MOS 58.64 52.98

SD MOS 44.58 43.86

N FS 1 1995 2002

N FS 2 2187 1913

N FS 3 229 299

N FS 4 263 295

N FS 5 60 80

N FS 6 183 163

N FS 7 829 920

N FS 8 237 291

N FS 9 1218 1279

N FS 10 1889 2068

N FS 11 401 417

N FS 12 93 103

N FS 13 515 516

N FS 14 247 306

N FS 15 303 428

N FS 16 335 374

N SEN 1208 1334

N VOC 854 1067

N ST 1 2857 2559

N ST 2 1915 2077

N ST 3 1514 1742

N ST 4 3102 3129

N ST 5 1596 1947

N ST 6 -*

N ST 7 2062 2401

Table 11 Mean bias, SEs, and fit statistics for the domain math by stratification design with a 
random permutation per sample for the applied implicit stratification variables with 100 replications

SE sampling error, CR coverage rate, BRR balanced repeated replication, RMSE root mean squared error
a No implicit stratification for Stratification 5 variant

Stratification 
variant

(1) Mean 
math bias

(2) CR mean 
math

(3) Mean math 
SE (BRR)

(4) Mean math SE (SD of 
sampling distribution)

(5) RMSE

1 0.14 0.97 4.27 4.45 4.43

2 0.10 0.96 4.20 4.22 4.20

3 0.28 0.99 4.19 4.16 4.15

4 0.01 0.95 3.98 4.28 4.26

5a – – – – –

6 0.40 0.97 2.38 2.99 3.00

7 0.20 0.97 2.15 2.70 2.69
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Table 12 Explained variances in average school proficiency (math, science, and reading) by explicit 
and implicit stratification for each stratification variant for real PISA 2018 sample data

Method: linear regression

Stratification 
design

Explicit Stratification Implicit Stratification Mathematics Science Reading

1 – – – – –

2 FS, VOC, SEN ST, FS 0.87 0.86 0.86

3 FS—grouped, VOC, SEN ST, FS 0.82 0.83 0.83

4 MIGRATION, VOC, SEN ST, MIGRATION 0.81 0.81 0.81

5 ST – 0.80 0.80 0.81

6 ST, SAR FS, ST 0.86 0.86 0.85

7 LOC, VOC, SEN ST, LOC 0.90 0.90 0.90

Table 13 Explained variances in student proficiency (math, science, and reading) by explicit and 
implicit stratification for each stratification variant for real PISA 2018 sample data

Method: linear regression

Stratification 
design

Explicit stratification Implicit stratification Mathematics Science Reading

1 – – – – –

2 FS, VOC, SEN ST, FS 0.42 0.41 0.43

3 FS – grouped, VOC, SEN ST, FS 0.39 0.39 0.41

4 MIGRATION, VOC, SEN ST, MIGRATION 0.39 0.39 0.41

5 ST – 0.38 0.38 0.40

6 ST, SAR FS, ST 0.41 0.41 0.43

7 LOC, VOC, SEN ST, LOC 0.69 0.73 0.75
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