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Abstract 

The benefits of incorporating process information in a large-scale assessment 
with the complex micro-level evidence from the examinees (i.e., process log data) 
are well documented in the research across large-scale assessments and learn-
ing analytics. This study introduces a deep-learning-based approach to predictive 
modeling of the examinee’s performance in sequential, interactive problem-solving 
tasks from a large-scale assessment of adults’ educational competencies. The current 
methods disambiguate problem-solving behaviors using network analysis to inform 
the examinee’s performance in a series of problem-solving tasks. The unique con-
tribution of this framework lies in the introduction of an “effort-aware” system. The 
system considers the information regarding the examinee’s task-engagement level 
to accurately predict their task performance. The study demonstrates the potential 
to introduce a high-performing deep learning model to learning analytics and exami-
nee performance modeling in a large-scale problem-solving task environment 
collected from the OECD Programme for the International Assessment of Adult 
Competencies (PIAAC 2012) test in multiple countries, including the United States, 
South Korea, and the United Kingdom. Our findings indicated a close relationship 
between the examinee’s engagement level and their problem-solving skills as well 
as the importance of modeling them together to have a better measure of students’ 
problem-solving performance.

Keywords: PIAAC , PS-TRE, Long-short-term-memory (LSTM), Attention, Engagement, 
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Large-scale digital assessment in an interactive online environment is designed to evalu-
ate examinees’ thinking and problem-solving skills (Van Laar et al., 2017). An increasing 
number of large-scale assessments, such as the Programme for International Assessment 
of Adult Competencies (PIAAC), the Programme for International Student Assessment 
(PISA), and the Trends in International Mathematics and Science Study (TIMSS), have 
recently introduced more innovative test solutions with novel item formats to assess 
problem-solving or collaborative problem-solving performance (e.g., Barber et al., 2015; 
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Mullis et al., 2021). For example, PIAAC is an international assessment which was the 
first fully computer-based large-scale assessment in education and the first to provide 
public anonymized log file information widely.1 PIAAC’s problem-solving assessment in 
a technology-rich environment (PS-TRE hereafter) is designed to assess the adult exam-
inee’s ability to use “digital technology, communication tools and networks to acquire 
and evaluate information, communicate with others and perform practical tasks” (Rouet 
et al., 2009, p.9; (OECD), 2012, p. 47). In this test, examinees are provided with varying 
types of problem-solving tasks that embed authentic real-life scenarios.

These non-traditional, interactive, digital problem-solving items encourage examinees 
to demonstrate their authentic skill sets using their responses and the traces of activi-
ties associated with solving the task (Jiang et al., 2021). The traces stored as metadata of 
examinees’ interactions are the process log data or click-stream information. The pro-
cess log data provides insights into the examinee’s behavior that are not easily disambig-
uated with the response data alone, especially in many non-traditional and interactive 
large-scale assessments. The process log information uncovers more individualized and 
diagnostic evidence about the examinees’ latent abilities (Goldhammer et al., 2014; He & 
von Davier, 2015; Scherer et al., 2015; Wang et al., 2021) which enhances the reliability 
and validity evidence of the assessments (Kroehne & Goldhammer, 2018; Ramalingam 
& Adams, 2018), and identifies the examinees who are depicting anomalous behaviors 
(Lundgren & Eklöf, 2020). For instance, Jiang et al., (2021) demonstrated how the pro-
cess data gathered specifically from students’ drag-and-drop actions in a large-scale dig-
itally-based assessment environment could infer examinees’ varying levels of cognitive 
and metacognitive processes, such as their problem-solving strategies.

Incorporating the process information in a large-scale assessment to achieve such 
goals requires several methodological and empirical considerations. First, the complex 
micro-level evidence from the examinees (i.e., process log data) needs to be analyzed 
to extract explainable and interpretable patterns that inform the examinee’s latent abili-
ties (e.g., problem-solving strategies, Polyak et al., 2017; von Davier, 2017). Second, the 
examinees’ demonstration of knowledge and skills need to be modeled in the sequences 
of task levels to provide more generalizable implications compared to the item-level 
results (Ai et  al., 2019; Jiang et  al., 2020; Liu et  al., 2019a, 2019b; Wang et  al., 2017). 
Third, careful consideration is required to evaluate the effect of students’ sentiments or 
affect that may influence their performance, such as their task-disengagement behaviors 
(Wise, 2020).

With the recent wide introduction of machine learning and deep learning approaches 
in large-scale assessments and learning analytics, increasing attempts are being made to 
more effectively and efficiently analyze the process data from large-scale assessments. 
Hence, in this study, we propose a novel analytic framework where the examinee’s com-
plex and long traces of process log data are used to understand the problem-solving 
skills and performance. The present study is rooted in the fields of learning analytics 
and psychometrics. We combined multiple advanced computational methods, includ-
ing social network analysis and deep neural network models. Our framework also mod-
els the examinee’s task-engagement status for a more accurate representation of the 

1 https:// www. oecd. org/ skills/ piaac/.
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performance and skill demonstration in the series of interactive tasks. One research 
question is addressed to guide the study: Does modeling the engagement levels with prob-
lem-solving skills improve the prediction performance of the LSTM model for items solved 
on a large-scale assessment?

To describe how our research questions were addressed using the PIAAC’s PS-TRE 
assessment, the subsequent sections focus on three primary topics. First, we present the 
construct measured by the PS-TRE test and its three core dimensions, thereby provid-
ing contextual information on the types of tasks our research aims to investigate and 
evaluate. Second, we offer an overview of the literature, concentrating on methodologies 
introduced to understand the PS-TRE construct, with a specific focus on recent studies 
that have utilized process data to model the tasks associated with this construct. Lastly, 
we provide an overview of how test engagement is currently modeled in various large-
scale assessment settings, underscoring the importance of capturing test engagement in 
the PS-TRE.

Problem‑solving tasks in PIAAC PS‑TRE
The PIAAC’s problem-solving assessment in a technology-rich environment (PS-TRE) 
is designed to assess the adult examinee’s ability to use “digital technology, communica-
tion tools and networks to acquire and evaluate information, communicate with others 
and perform practical tasks” (OECD, 2012). Problem-solving usually means that people 
cannot solve problems through routine activities, which needs a complex hierarchy of 
cognitive skills and processes. Technology-rich environment indicates that some tech-
nologies (e.g., spreadsheets, Internet search, websites, email, social media, or their com-
bination) are required to solve the task in assessment (Vanek, 2017).

The three core dimensions of PS-TRE include task/problem statements, technologies, 
and cognitive dimensions. These dimensions are closely connected because examinees 
rely on their choice of technologies to solve the problems, which requires their cogni-
tive skills to successfully use the selected technology to solve the problem or accom-
plish the task. The examinees are provided with varying types of problem-solving tasks 
that embed authentic real-life scenarios based on intertwined dimensions of PS-TRE. A 
problem-solving task can be provided by connecting any domains in each core concep-
tual dimension as described in Appendix 1.

The interactions between these three core components create complex problem-solv-
ing tasks. Examinees are required to use a sequence of actions to correctly address these 
tasks, resulting in a substantial collection of process logs and clickstream information. 
The following section will explore the modeling of this extensive data, aiming to extract 
meaningful insights into the problem-solving strategies used by examinees during the 
assessment.

Modeling problem‑solving strategies in PS‑TRE with process data
Increasingly, studies have been conducted to introduce various computational and arti-
ficial intelligence-powered methods to effectively understand examinees’ responses as 
well as the complex interaction process log information gathered in PIAAC’S PS-TRE. 
These studies often adopted clustering analysis (He, Liao, & Jiao, 2019), pattern min-
ing analysis (Liao et  al., 2019), graph modeling approaches (Ulitzsch et  al., 2021), and 
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clickstream analysis with supervised learning models (Ulitzsch et al., 2022). For instance, 
He et al., (2019a, b) adopted the K-means algorithm (Lloyd, 1982) to cluster the behav-
ioral patterns from one representative PS-TRE item based on features extracted from 
process data (i.e., unigrams by n-grams model, total response time, and the length of 
action sequences) to explore the relationship between behavioral patterns and profi-
ciency estimates covaried by employment-based background. That is, more actions and 
longer response time tended to generate higher PS-TRE scores when getting incorrect 
answers. Their findings indicated process data tends to be more informative when items 
are not answered correctly.

To further investigate the impact of employment-based background, Liao et al., (2019) 
mapped the employment-based variables with action sequences in process data using 
the regression analysis and chi-square feature selection mode. They found that groups 
with different levels of employment-based background variables tended to generate dis-
tinctive characteristics regarding the action sequences to solve problems. However, it 
should be noted that the previous approaches (e.g., He et al., 2019a, b; Liao et al., 2019) 
only analyzed item-level timing data instead of time consumed between actions (i.e., 
action-level time), so the more detailed underlying cognitive processes due to time-
stamped action sequences might be neglected.

Ulitzsch et al., (2021) proposed a two-step approach to analyze complete information 
contained in time-stamped action sequences for a deeper investigation of the behavioral 
processes underlying task completion. The researchers integrated tools from clickstream 
analyses and graph-modeled data clustering with psychometrics so that they can com-
bine action sequences and action-level times into one analysis framework. In another 
study, enriching generic features extracted from sequence data by clickstream analysis, 
Ulitzsch et al., (2022) extracted features from time-stamped early action sequences (i.e., 
early-window clickstream data) and an extreme gradient boosting (XGBoost) classifier 
was used (Chen & Guestrin, 2016). Within the procedure, early-window datasets were 
created to train the model by getting rid of all afterward time-stamped actions (i.e., 
occurred after a given number of actions or a given amount of time from the sequences) 
thereby allowing the features taken from clickstreams to focus on the occurrence, fre-
quency, and sequentiality of actions by adding features based on the amount of time con-
sumed to carry out certain actions. Based on the clickstream analysis with a supervised 
learning model, Ulitzsch et al., (2022) investigated the early predictability of success or 
failure on problem-solving tasks before examinees complete the tasks and deepen the 
understanding of the trajectories of behavioral patterns in PS-TRE.

These studies demonstrated excellent potential to leverage our understanding with 
interpretable results to study different facets of students’ knowledge and abilities. How-
ever, no study, to our knowledge, was introduced in the sequence of task-level, with the 
potential to consider the examinees’ engagement status in the analysis of problem-solv-
ing knowledge modeling. Therefore, in the subsequent section, we will introduce how 
test-taking engagement has been defined in previous literature, along with the method-
ologies explored to investigate such constructs. Consequently, we will highlight the ben-
efits and advantages of employing test-taking engagement as a simultaneous measure to 
effectively evaluate students’ performance.
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Engagement in knowledge modeling with problem‑solving performance 
in large‑scale assessment
Test-taking engagement is used to describe if the test taker remains engaged throughout 
a test, which is an underlying assumption of using all psychometrics models in practice 
(Wise, 2015, 2017). The term test-taking engagement also refers to the test-taking effort. 
Test disengagement was defined as providing or omitting responses to items with no 
adequate effort (Kuang & Sahin, 2023), indicated by rapid-guessing behavior (Schnipke, 
1996; Wise & Kong, 2005) and item-skipping behavior. A lack of test-taking engage-
ment is a major threat to the validity of test score interpretation even in good test design 
(Wise & DeMars, 2006), especially in low-stakes assessments such as PIAAC (Goldham-
mer et al., 2016).

Modeling test-taking engagement in problem-solving tasks resolves the potential 
validity threat (e.g., construct-irrelevant variance) that can confound the examinees’ per-
formance results (Braun et al., 2011; Goldhammer et al., 2016; Keslair, 2018; Wise, 2020). 
Information gathered from the examinee’s response data in the task was commonly 
used to model their task-engagement level. Various item response theory (IRT)-based 
models incorporate students’ engagement to predict people’s latent traits (Deribo et al., 
2021; Liu et al., 2019a, b; Wise & DeMars, 2006). For instance, Wise and DeMars, (2006) 
introduced the effort-moderate IRT (EM-IRT) model, where disengaged responses are 
treated as missing data and fit the engaged responses to a unidimensional IRT model. 
Response time was used to identify students’ engagement in the EM-IRT model. More 
recently, studies explored the use of data gathered from the interactions, such as process 
log data, to evaluate examinees’ test-taking effort and motivation (Lundgren & Eklöf, 
2020; 2021).

The combination of response time and response behaviors was used as an “enhanced” 
method to detect examinees’ disengagement (Sahin & Colvin, 2020). Within this 
approach, the response behaviors (e.g., keypresses, clicks, and clicking interactive tools) 
were collected from the process data (Kuang & Sahin, 2023). Sahin and Colvin, (2020) 
set up the threshold for the maximum number of response behaviors that suggest no 
or minimum engagement. However, they did not use statistical models to analyze the 
response behaviors from process data. A small number of studies have demonstrated 
the capacity to model the examinee’s engagement and problem-solving performance 
from process data or a sequence of tasks (as well as at an individual task level). Since test 
engagement can be treated as a latent trait under response behaviors and deep learning 
approaches have the advantage of modeling process data or a sequence of tasks to cap-
ture examinees’ response behaviors, it is worth investigating how to apply deep learning 
approaches (such as Long Short-Term Memory Networks) to detect test engagement.

Long short‑term memory networks
Our study implements one of the variational models of recurrent neural network 
(RNN) models to effectively and accurately track students’ problem-solving perfor-
mance from a sequence of PS-TRE tasks. Unlike traditional neural network models, 
the RNN models introduce a simple loop structure in the hidden layer to consider a 
sequence or a history of input. In our study, we use one of the special variations of the 
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RNN models, which is the Long Short-Term Memory (LSTM) network. The LSTM 
model consists of units called memory blocks. Each memory block consists of multi-
ple gates—input, forget, and output gates—that control the flow of information.

Figure 1 provides an overview of an example LSTM memory cell structure. In our 
study, we use the memory cell to input, modify, extract, and communicate the deter-
ministic information about examinee’s problem-solving strategies and performance 
on a sequence of tasks, where t represents the task that the examinee is interacting 
with. Specifically, input data is determined based on n batch size with d features and 
h number of hidden layers, x(t) ∈ Rn×d , and the hidden state of the previous task 
h(t − 1) ∈ Rn×h , indicating the final input data as XT = [h(t − 1), x(t)] . This input 
data is first provided to the forget gate f (t) ∈ Rn×h , input gate i(t) ∈ Rn×h , and an 
output gate o(t) ∈ Rn×h . The forget gate governs the degree to which the information 
from the previous tasks is omitted from the cell state, the input gate governs how 
much new information about the examinee’s problem-solving skills are inferred from 
the current task, and the output gate produces the output that will be communicated 
to the next cell state for the task, t + 1.

The interim values after entering the gates are computed as below, where wxi , 
wxf ,wxo ∈ Rd×h and whi , whf ,who ∈ Rh×h represent weights of each gate, and bi , 
bf , bo ∈ R1×h represent bias of each gate, respectively. The input node c̃(t) ∈ Rn×h 
is also computed similarity with the other gates, where the activation function of 
tanh(x) = (ex −−e−x)/(ex + e−x) replaces the sigmoid function in the other three 
gates.

The memory cell outputs the internal state and the hidden state h(t) ∈ [−1, 1] . The 
hidden state at task t will concern the input, forget, and output gates by deciding the 
impact of the current memory to the next memory cell. The hidden state that is close 
to the value of 0 will minimize the current impact to the next cell while the value 
close to 1 will impact the internal state value of the next cell with no restriction. The 
memory cell updates the internal state c(t) in the task t by gathering the information 
from the forget, input, and the previous cell state as follows:

(1)

i(t) = σ(x(t)wxi + h(t − 1)whi + bi),

f (t) = σ(x(t)wxf + h(t − 1)whf + bf ),

o(t) = σ(x(t)wxo + h(t − 1)who + bo)

c̃(t) = tanh(x(t)wxc + h(t − 1)whc + bc)

Fig. 1 A Conceptual Representation of an LSTM Memory Cell
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Attention mechanism

The simple LSTM model can be limited in detecting which element provides the impor-
tant aspect of information to determine examinees’ problem-solving performance while 
accounting for their engagement level. Hence, we introduce an attention layer to explic-
itly model this information. Let H ∈ Rd×t represents the hidden layers derived from the 
memory cell of each problem-solving task t with an LSTM model with d hidden layers. 
The attention layer we use in the current finding is the global attention layer. The global 
attention layer represents the latent information extracted from the sequences of output 
from the encoder (i.e., input data is encoded using LSTM) in order to help decoders (i.e., 
output data is generated using LSTM) utilize global evidence related to examinees’ prob-
lem-solving skills to output correct predictions. The dot-product attention computes the 
element-wise multiplication between the hidden states of encoder and decoder of task t, 
ht and st with the attention weight W = {w1,w2, ...,wn}, where the attention α is captured 
as follows:

Then, the final weighted representation of the hidden state is derived by combining 
the dot-product attention ( α ) and the hidden layer ( H ) as r = HαT . Using this infor-
mation, we can represent the students’ problem-solving performance as a combination 
of projection parameters Wp and Wr , are h∗ = sigmoid(Wpr +Wxhn) . The parameters 
Wp and Wx are learned during training (Rocktaschel et al., 2015). In our study, we use 
these projection parameters to visualize whether the attention layer is accurately cap-
turing the examinee’s problem-solving performance and engagement across a sequence 
of problem-solving tasks. The final univariate/multivariate outcome(s) (performance 
and engagement) of this process will be computed using h∗ , as y = softmax(Wsh

∗ + bs), 
where Ws represents the output layer weights and bs represents the output layer bias. 
This way we will be able to produce whether the student was engaged (= 0), not engaged 
(= 1), as well as the score category that the students acquired from the task as the final 
outcome of our model (see Fig. 2).

Using Long Short-Term Memory (LSTM) models to evaluate students’ engagement 
and performance from process log data in the PS-TRE is a particularly effective approach 

(2)
c(t) = f (t)⊗ c(t − 1)⊕ i(t)⊗ c̃(t) and

h(t) = o(t) · tahn(c(t)).

(3)α = softmax(hTt Wast)

Fig. 2 A Conceptual Representation of the Attention Layer in LSTM
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due to several key advantages of LSTMs. These neural networks are uniquely suited for 
handling sequential data, a core aspect of process log data, where the order and timing 
of actions are critical indicators of student engagement and performance. This allows us 
to evaluate students’ performance and engagement effectively across multiple items and 
tasks, moving beyond analyzing the examinee’s performance at an individual item level 
(e.g., Shin et al., 2022; Tang et al., 2016). LSTMs excel in capturing not just immediate 
dependencies but also long-term patterns in sequences, which is crucial in the PS-TRE 
context where early actions can influence later ones, or patterns of engagement may 
change over time. This indicates possibilities of capturing the information and storing 
the information from the examinee’s process data at the very first task or the item they 
engage with, and utilizing their information to infer and predict their performance at the 
very last item they interact with.

The ability of LSTMs to learn complex patterns in sequential data is another signifi-
cant advantage. They can handle variable-length sequences, a common characteristic in 
PS-TRE log data, ensuring consistent model performance across different data lengths 
(Hernández-Blanco et al., 2019). This aspect is vital, considering each examinee’s inter-
action with the assessment varies in length and complexity. One of the standout features 
of LSTMs is their capacity for automatic feature extraction from raw sequential data. 
This is particularly beneficial for PS-TRE, where manually identifying relevant features 
from log data can be challenging. LSTMs can not only understand the context of each 
action within the broader sequence of events but also use this understanding to pre-
dict future behavior. This predictive ability is not only useful for analyzing past and pre-
sent actions but also offers potential applications in real-time scenarios, such as adaptive 
testing or personalized learning interventions. Furthermore, LSTMs are robust to noise 
and irregularities in data, which are common in log files due to varied user behaviors 
and system inconsistencies (e.g., Fei & Yeung, 2015). Their capability to generalize from 
training data to unseen test data is vital for deploying models in different assessment 
environments.

Hence, the LSTM’s proficiency in processing sequential data, its capability to detect 
and learn relevant features, and its robustness against data irregularities make it an 
appropriate choice for modeling the dynamics of student engagement and performance 
in PS-TRE. By leveraging the rich, time-ordered data in process logs, LSTMs provide 
deep insights crucial for educational assessments and learning analytics.

Data and materials
Data

We used the data collected from the first round of the OECD PIAAC Main Study, which 
was conducted from August 2011 to November 2012, involved 24 countries/economies, 
and was the first computer-based large-scale assessment to provide public anonymized 
log file data.2 Our investigation focused on the cognitive domain of PS-TRE. A total of 
14 tasks were dichotomously or polytomously scored (five 3-point, one 2-point, and 8 
dichotomously scored items) (OECD, 2016). We analyzed the data collected from the 

2 https:// search. gesis. org/ resea rch_ data/ ZA6712

https://search.gesis.org/research_data/ZA6712
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United States (4131 units3), South Korea (7024 units), and the United Kingdom (7250 
units). The log file of the PS-TRE tasks contained various information including the 
environment from which the event was issued (within the stimulus, outside of the stimu-
lus), the event type, timestamps, and a detailed description of the event. In this proposed 
study, we experimented with the items included in one booklet (PS1) to demonstrate the 
prediction capacity of our proposed analytics framework (see Table 1).

Binary task engagement level

The method of T-disengagement (Goldhammer et al., 2016) was used to label test takers’ 
engagement by response time as part of the training set. The term “T-disengagement” 
(OECD, 2019) describes a situation where examinees spend less time on a PIAAC task 
than a task-specific threshold. The approach to computing this item-specific threshold is 
based on the relationship between the probability of giving correct answers and the time 
spent on the item (Goldhammer et al., 2016). The underlying idea of this approach is that 
disengaged examinees tend to be less accurate than engaged examinees (Wise, 2017). 
The computation procedure first determined the time threshold t, it is necessary to com-
pute the probability of getting a task correct on time t. The observations with a time on 
task between t and t + 10(s) are used. Then, the probability of correctness is modeled as 
a linear function of time if the number of the observations is enough (e.g., > 200). Last, 
the task-specific time threshold is determined as the smallest t for which the estimated 
probability of correctness is higher than 10%. The T-disengagement value was used in 
our study to create an engagement indicator, labeling test-takers’ engagement based on 
response time as part of the training set. If an examinee spends less time on a task than 
the task-specific threshold, they are labeled as a disengaged examinee. Otherwise, they 
are considered engaged. Using the threshold calculated for each item in PS-TRE, we 
generated a binary outcome variable representing each examinee’s engagement status.

Methods
Figure 3 provides a conceptual representation of our analytic model. Our analytic frame-
work is based on a specific neural network model called the Long Short-Term Memory 
networks (LSTM; Hochreiter & Schmidhuber, 1997). The LSTM model takes a sequence 
of actions from the examinees which was captured while they were navigating through 
each item.

Table 1 Demographic Information of the three Countries/Datasets of the Current Study

a Only available in the U.S. restricted-use files

PS-TRE Booklet PS1

Total N Age Male (%) Female e (%)

United States 1,329 a 45.60 54.40

South Korea 1,434 34.98 (12.16) 46.93 53.06

United Kingdom 2,358 39.69 (13.29) 41.30 58.70

3 According to https:// search. gesis. org/ resea rch_ data/ ZA6712.

https://search.gesis.org/research_data/ZA6712
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The first layer of the model focused on converting the input sequences of actions 
from the process log data into a directed graph, where a node represents an activity in 
an item and the edges represent the connectivity between the two actions. The edges 
are weighted by the total amount of time between the two actions. Then, the overall 
task-navigating process of the examinees was summarized using network statistics. 
Network statistics summarize the interactions present in the network. Our analysis 
adopted five network statistics. This method includes five key network statistics: cen-
tralization, density, flow hierarchy, shortest path, and total number of nodes, each 
contributing to a comprehensive understanding of the interactions within the net-
work. This approach aligns with recent trends in educational data mining, where net-
work analysis is increasingly applied to understand learning processes (Salles et  al., 
2020; Zhu et al., 2016).

Converting process log data into a directed graph in the first layer in LSTM for 
predictive modeling is a strategic decision that offers numerous benefits, particu-
larly in the context of assessing complex sequential data like that found in PS-TRE. 
This conversion allows for a structured representation of the data, where each node 
in the graph represents an individual action or activity, and directed edges signify 
the sequence and transition between these actions. Importantly, by weighting these 
edges with the time elapsed between actions, the graph effectively captures the tem-
poral dynamics integral to understanding examinee engagement and problem-solving 
processes.

This graph-based approach significantly enhances the analysis of sequential inter-
actions among different actions (Zhu et  al., 2016). It provides a more nuanced per-
spective on how examinees approach and navigate through tasks, revealing patterns 
and strategies in their problem-solving process. By employing network analysis 
techniques, such as evaluating centralization, density, flow hierarchy, shortest path, 
and the total number of nodes, the model can delve deeper into the complexity and 

Fig. 3 A Conceptual Representation of the Effort-Aware Attention-LSTM Model
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efficiency of examinees’ approaches. Additionally, the directed graph structure is 
highly conducive to advanced machine learning techniques, such as those used in 
LSTM models, facilitating more accurate predictions and classifications based on the 
patterns identified in the graph (e.g., Zeng et al., 2021; Zhang & Guo, 2020). Beyond 
the analytical advantages, this representation also aids in the interpretability and 
visualization of the data, making it more accessible for educators and researchers to 
understand and visualize the problem-solving process. Moreover, this method’s flex-
ibility and scalability make it adaptable to various assessment scenarios, capable of 
accommodating different types of actions and interactions (Hanga et al., 2020). Over-
all, this first layer’s approach of transforming log data into a directed graph lays a 
robust foundation for subsequent, in-depth analysis, capitalizing on the strengths of 
network analysis and machine learning to provide insightful interpretations of exami-
nee behavior.

The encoder and decoder then summarized the network statistics and map them 
into the prediction outcomes. The encoder summarizes the input and represents it as 
an interim representation called internal state vectors. The decoder, on the other hand, 
generates sequences of output using the internal state vectors from the encoder as an 
input. In our study, we presented two variations of models that differ in the type and the 
number of outputs associated with the input. The first model (Attention-LSTM) only 
concerns the association between students’ process activities (log information) and their 
performance outcome (i.e., categorical scores) in each task. The second model (Effort-
Aware LSTM) additionally models the associations between students’ process activities 
with their task engagement level to reduce any effects stemming from the low-stakes 
characteristics of the current dataset. In summary, the second model is designed to 
produce output regarding students’ performance scores simultaneously with their task 
engagement level for each task.

In order to increase the interpretability of the model decisions (i.e., whether the 
model is correctly stipulating the information related to students’ latent ability level), we 
included an attention mechanism. The global attention layer represents the latent infor-
mation extracted from the sequences of output from the encoder in order to help decod-
ers utilize global evidence related to examinees’ problem-solving skills (Model 1) and 
problem-solving skills with engagement level (Model 2).

Evaluation

A two-step evaluation process was used. First, the two variations of the model were 
compared based on the overall and item (or task)-specific performance score prediction 
accuracies. In the first step of our evaluation process, we compared the two variations of 
the LSTM model based on their ability to predict overall and item-specific performance 
scores. To ensure a comprehensive assessment, we employed three evaluation metrics: 
accuracy, F1-score, and the area under the Receiver Operating Characteristic (ROC) 
curve. These metrics were chosen for their ability to provide a balanced view of the 
model’s predictive performance, considering aspects like the balance between sensitivity 
and specificity (ROC curve) and the harmonic mean of precision and recall (F1-score). 
The final evaluation metrics were derived from the average results obtained through 
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threefold cross-validation. This cross-validation approach adds rigor to our evaluation, 
ensuring that the performance metrics are robust and not overly fitted to a specific par-
tition of the data.

The second step involved conducting a Principal Component Analysis (PCA) on the 
final attention layer of our engagement-aware model (e.g., Chen et  al., 2018). Apply-
ing PCA to the last attention layer of an LSTM model, which handles complex data-
sets related to student engagement and performance, offers significant benefits. Firstly, 
PCA is instrumental in reducing the dimensionality of high-dimensional outputs gener-
ated by the attention layer. This reduction is crucial, as it retains essential patterns and 

Table 2 Experiment Results 1–Overall Average Prediction Performance

US: United States; SK: South Korea; GB: United Kingdom
a DV: Dependent Variable; The performance and engagement level is simultaneously predicted in the second model

aDV Attention-LSTM Effort-Aware Attention-LSTM

Performance Performance Engagement

ACC AUC F1 ACC AUC F1 ACC AUC F1

US 0.779 
(0.080)

0.751 
(0.101)

0.824 
(0.098)

0.802 
(0.113)

0.821 
(0.110)

0.875 
(0.106)

0.872 
(0.050)

0.878 
(0.052)

0.937 
(0.050)

SK 0.751 
(0.091)

0.700 
(0.102)

0.828 
(0.110)

0.859 
(0.115)

0.824 
(0.120)

0.886 
(0.108)

0.845 
(0.017)

0.857 
(0.020)

0.881 
(0.048)

GB 0.778 
(0.087)

0.771 
(0.100)

0.816 
(0.108)

0.883 
(0.103)

0.835 
(0.098)

0.900 
(0.097)

0.844 
(0.082)

0.858 
(0.068)

0.920 
(0.098)

Table 3 Experiment Results 2–Task (Item)-level Average Prediction Performance

a DV: Dependent Variable; The performance and engagement level is simultaneously predicted in the second model

aDV Item Attention-LSTM Effort-Aware Attention-LSTM

Performance Performance Engagement

ACC F1 ACC F1 ACC F1

United States 1 0.774 0.861 0.802 0.857 0.893 0.971

2 0.861 0.848 0.764 0.830 0.804 0.879

3 0.792 0.824 0.720 0.785 0.865 0.897

4 0.603 0.813 0.842 0.921 0.879 0.998

5 0.723 0.773 0.976 0.981 0.949 0.938

South Korea 1 0.844 0.936 0.842 0.934 0.869 0.892

2 0.833 0.815 0.820 0.817 0.821 0.833

3 0.827 0.813 0.858 0.733 0.864 0.841

4 0.642 0.824 0.824 0.952 0.860 0.885

5 0.53 0.752 0.758 0.992 0.869 0.952

United Kingdom 1 0.823 0.884 0.812 0.887 0.866 0.975

2 0.860 0.839 0.837 0.860 0.824 0.896

3 0.834 0.841 0.845 0.861 0.769 0.759

4 0.553 0.806 0.789 0.899 0.879 0.998

5 0.686 0.711 0.891 0.991 0.952 0.970
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variances while uncovering underlying latent associations. The ability of PCA to reveal 
latent relationships within the attention layer’s output is particularly valuable. It exposes 
underlying structures that might not be immediately evident, providing deeper insights 
into how the model processes and combines various aspects of the input data (e.g., Qiao 
& Li, 2020; Zhang et al., 2020). Moreover, PCA helps validate the focus of the attention 
mechanism, ensuring that it aligns with features pertinent to the task. This validation 
is essential for confirming that the model adheres to theoretical and empirical expecta-
tions, ensuring that the predictive model is focusing on and depending on the ’adequate’ 
source of information for the decision-making process (Terrin et al., 2003).

Results
Tables 2 and 3 provide the overall performance results of the two variations of the mod-
els proposed in this study. The results showed that the Effort-Aware Attention-LSTM 
model could achieve improved performance in predicting student performance scores 
in all three-evaluation metrics across all three countries. Our first model (Attention-
LSTM) produced f1-scores close to 0.82, ROC of 0.70–0.75, and accuracy of 0.75–0.78 
across all three countries. The second model (Engagement-Aware Attention-LSTM) pro-
duced f1-scores close to 0.88–0.90, ROC of 0.82–0.84, and accuracy of 0.80–0.88. The 
prediction performance on the examinee’s engagement level produced f1-scores close 
to f1-scores 0.92–0.94, ROC of 0.86 to 0.88, and accuracy of 0.84–0.87. In summary, an 
improvement in the problem-solving performance prediction was observed in the sec-
ond model.

For individual tasks (see Table  3), similar patterns were identified across the three 
countries where engagement-aware models acquired slightly improved performance 
results compared to the other model. The model results also demonstrated that the 
engagement-aware model could predict the engagement and disengagement level of 
the participants across all five tasks with high performance accuracies. Specifically, the 
improvement in prediction accuracy was the highest in Task 5 where F1-score improved 
by + 0.21 to + 0.28, and accuracy improved by + 0.20 to + 0.23.

Attention-layer visualization: engagement and performance latent variables

Appendix 2 provides visualizations of the attention layer from the engagement-aware 
model for each problem-solving task with the U.S. participant data set. The principal 
component analysis results visualized the potential underlying components that our 
attention mechanism captured to make correct decisions regarding students’ perfor-
mance results. The results showed that the interim output of the attention layer could be 
systematically explained by the two components which aligned with the problem-solving 
performance skill level with a relatively small variance explained by the second com-
ponent, engagement level. The two components accounted for 75.5% and 14.4% of the 
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variance in Task 1 attention score, 74.1% and 13.7% of the variance in Task 2 attention 
score, 56% and 30.7% in Task 3, 75.9% and 13.4% in Task 4, and 80.3% and 9.1% in Task 5.

More specifically, the size of the dots in Appendix 3 represents the students’ perfor-
mance scores, whereas the bigger dots represent students who scored higher in the task. 
The red and blue dots each represent students’ engagement and disengagement status 
(Goldhammer et  al., 2016). The figures for Tasks 1, 4, and 5 showed clear alignments 
between the principal component scores and the problem-solving performance and 
engagement levels. For instance, visualization of the principal component scores for 
Tasks 1, 4, and 5 indicates a visible alignment between the size of the dot along the con-
tinuum of principal component score 1. Moreover, a clear alignment between the color 
coordination of the dots with principal component score 1, where the higher component 
score indicated an increased engagement level. However, the alignment between compo-
nent scores and the performance and engagement level was less clear when visualized in 
Tasks 2 and 3, where the color coordination of the dots (engagement vs. disengagement) 
was less distinctive across the component scores.

The Pearson’s correlation coefficients between the principal component scores and the 
examinee’s performance and the engagement level also revealed similar findings. The 
primary component score in Task 4 and Task 5 showed moderate to high positive corre-
lations coefficients with the students’ engagement level (0.45–0.53) and the performance 
level (0.28–0.67). The primary component in Task 1, interestingly, showed moderate 
negative correlations with the engagement score (-0.57) and a positive correlation with 
the performance (0.564). We also observed that when the PCA scores aligned well with 
the engagement and the performance level, that comparably higher contribution to the 
prediction performance was observed. We discussed this and the implications of these 
findings further in the next section (Table 4).

Table 4 The Pearson Correlation Coefficients between the Principal Components and Engagement 
and Performance

PC1 PC2

Task 1

Engagement − 0.574 0.043

Performance 0.564 0.137

Task 2

Engagement − 0.323 − 0.054

Performance − 0.497 − 0.120

Task 3

Engagement 0.034 − 0.221

Performance − 0.401 − 0.138

Task 4

Engagement 0.456 0.121

Performance 0.671 0.038

Task 5

Engagement 0.526 0.113

Performance 0.278 0.140
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Conclusions and discussion
The purpose of our study was to describe and demonstrate an analytic framework where 
the complex and long traces of process log data are used to understand the problem-
solving skills and performance based on the examinee’s log data in a problem-solving 
task in PIAAC 2012. Our engagement aware-LSTM model could outperform the other 
model in accurately classifying students based on their problem-solving performance.

The current empirical findings situate well in the existing literature by highlighting the 
importance of behavioral patterns or action sequences that are valuable to capture in 
modeling the examinee’s problem-solving skills in PIAAC (He et al., 2019a, b). Some of 
the widely discussed benefits of incorporating behavioral patterns into problem-solving 
performance modeling involve the improvement of measurement accuracy (He et  al., 
2019a, b; Sireci & Zenisky, 2015), the establishment of the evidence to capture other 
latent or cognitive dimensions, such as engagement (He & von Davier, 2016; Zhu et al., 
2016), and improvement in capturing abnormal behaviors (Hellas et al., 2017). Consist-
ent with the previous literature, incorporating sequence-level process log features could 
successfully be associated with their performance (0.82–0.83 f1-score on average) while 
modeling students’ engagement levels (0.92–0.97 f1-score on average) simultaneously 
in our findings. In our study, the low engagement that was captured across the prob-
lem-solving tasks could be interpreted as one source of anomalies that were commonly 
reported in the previous literature concerning formative or low-stakes assessments (Pas-
tor et al., 2019; Pools & Monseur, 2021).

In addition, the findings from the current study align with previous research results 
indicating a close relationship between the examinee’s engagement level and their prob-
lem-solving skills as well as the importance of modeling them together to have a better 
measure of students’ problem-solving performance. Previously the connections between 
problem-solving performance and engagement were studied in relation to the complex-
ity of the testing or assessment environments such as interactive games (Eseryel et al., 
2014). For instance, Lein et al. (2016) indicated that engagement is a unique significant 
predictor that was associated with students’ mathematical problem-solving performance 
when controlling for students’ prior knowledge. Similarly, ongoing efforts are made in 
measurement research, where variations of IRT models are introduced to accurately 
estimate students’ abilities (Nagy & Ulitzsch, 2022; Wise & DeMars, 2006).

Accordingly, the problem-solving task with the largest performance improvement in 
measuring students’ problem-solving performance was in Task 1, Task 4, and Task 5, 
where the correlation coefficients between the performance and the engagement scores 
were the highest (ρ = 0.480, ρ = 0.412, ρ = 0.373). Conversely, in the tasks that showed 
a low to the negligible correlation between engagement and performance (2 and 3), the 
improvement in performance also remained relatively low.

Implication

The results provide practical and methodological implications for test developers and 
psychometric researchers. Using our approach, students’ problem-solving abilities can 
be modeled in real-time and predicted to provide more direct and prompt feedback for 
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student performance. Also, the visualization and validation of the interim layer of com-
plex machine learning models provide important evidence and insights to psychomet-
ric researchers which allows them to compare the model performance of deep learning 
models with the traditional psychometric approaches, such as IRT. Last, our engage-
ment-aware model may allow test developers to adopt the system in a low-stakes assess-
ment setting where the accurate evaluation of the student’s ability, knowledge, and skills 
is challenging due to the lack of student motivation or engagement.

Wise and Kong, (2005) previously outlined large-scale assessment scenarios where 
the simultaneous measurement of engagement and students’ ability level (e.g., prob-
lem-solving performance) may be recommended. First, the use of a low-stakes envi-
ronment to pilot and validate the large-scale high-stakes exams may entail assessment 
situations where engagement detection may be necessary. Large-scale assessments, 
such as PIAAC and PISA commonly adopt such approaches to investigate the psycho-
metric properties of the item prior to being officially introduced in their test book-
lets. Second, large-scale assessments are increasingly used to make inferences about 
teacher, school, and district evaluation, which may be deemed by the students to have 
low to negligible consequences for each participating individual. Not explicitly mod-
eling students’ engagement level during the participation may have significant conse-
quences on validity of the test scores.

In essence, the deep learning methods proposed in this study provide the benefits 
of a data-informed and machine-learning based approach with an educational and 
psychometric consideration which could increase the capacity of promptly and accu-
rately deriving decisions about examinee’s performance from the education assess-
ment with an increasingly digitized environment.

Limitations and future research

While our study was carefully constructed and implemented to avoid potential 
bias, we acknowledge that it is not free from limitations, which can be addressed in 
future research. First, the use of Principal Component Analysis (PCA) to improve 
the validity and interpretability of our model provided important benefits. However, 
it is important to recognize the limitations of PCA, notably its linear nature, which 
might not capture all non-linear relationships in the data. Also, the interpretation of 
the principal components, being linear combinations of original features, might not 
always be straightforward. Despite these limitations, the application of PCA on the 
last attention layer remains a valuable tool, offering a balanced approach to under-
standing and interpreting complex models in the context of educational assessments. 
Hence, we encourage future studies focusing on validating the PCA results to evalu-
ate whether such patterns and relationships can be replicated and revealed when ana-
lyzing similar types of process data in large-scale assessment settings.
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Appendix 1
Domains of Three Core Conceptual Dimensions. Adapted from "PIAAC Problem 
Solving in Technology-Rich Environments: A Conceptual Framework", OECD Educa-
tion Working Papers, No. 36, OECD Publishing, Paris.

Dimension Domain Examples

Task Purpose/context Personal, Work/occupation, Civic purposes

Intrinsic complexity Minimal number of steps required to solve the 
problem

Number of options or alternatives at various 
stages in the problem space

Diversity of operators required, complexity of 
computation/transformation

Likelihood of impasses or unexpected outcomes

Amount of transformation required to communi-
cate a solution

Explicitness of problem statement Ill-defined (implicit, unspecified) vs. well-defined 
(explicit, described in detail)

Technology Hardware devices Desktop or laptop computers, mobile phones, per-
sonal assistants, geographical information systems, 
integrated digital devices

Software applications File management, Web browser, Email, Spread-
sheet

Commands, functions Buttons, Links, Textboxes, Copy/Cut-Paste, Sort, 
Find

Representations Texts, Sound, Numbers, Graphics (fixed or ani-
mated), Video

Cognitive dimension Goal setting and progress monitoring Identifying one’s needs or purposes, given the 
explicit and implicit constraints of a situation

Establishing and applying criteria for constraint 
satisfaction and achievement of a solution

Monitoring progress

Detecting and interpreting unexpected events, 
impasses and breakdowns

Planning, self-organizing Setting up adequate plans, procedures, and strate-
gies (operators) and selecting appropriate devices, 
tools or categories of information

Acquiring and evaluating information Orienting and focusing one’s attention; select-
ing information; assessing reliability, relevance, 
adequacy, comprehensibility; and reasoning 
about sources and contents

Making use of information Organizing information, integrating across poten-
tially inconsistent texts and across formats, making 
informed decisions

Transforming information through writing, from 
text to table, from table to graph, etc., and com-
municating with relevant parties



Page 18 of 22Shin et al. Large-scale Assessments in Education            (2024) 12:6 

Appendix 2
Principal Component Analysis Results for the Task-level Attention Scores.
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Appendix 3
Distribution of the principal component scores extracted from the attention model for Task 
1 to Task 5 (green = PC 1, blue = PC 2).
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