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Abstract 

In low-stakes assessment settings, students’ performance is not only influenced by stu-
dents’ ability level but also their test-taking engagement. In computerized adaptive 
tests (CATs), disengaged responses (e.g., rapid guesses) that fail to reflect students’ true 
ability levels may lead to the selection of less informative items and thereby con-
taminate item selection and ability estimation procedures. To date, researchers have 
developed various approaches to detect and remove disengaged responses after test 
administration is completed to alleviate the negative impact of low test-taking engage-
ment on test scores. This study proposes an alternative item selection method based 
on Maximum Fisher Information (MFI) that considers test-taking engagement as a sec-
ondary latent trait to select the most optimal items based on both ability and engage-
ment. The results of post-hoc simulation studies indicated that the proposed method 
could optimize item selection and improve the accuracy of final ability estimates, 
especially for low-ability students. Overall, the proposed method showed great prom-
ise for tailoring CATs based on test-taking engagement. Practitioners are encouraged 
to consider incorporating engagement into the item selection algorithm to enhance 
the validity of inferences made from low-stakes CATs.

Keywords: CAT , Low-stakes, Test-taking engagement, Response time, Maximum fisher 
information

The tacit assumption when administrating an assessment is that examinees will invest 
maximal effort while attempting the items (AERA et  al., 2014; Rios & Soland, 2021). 
The effort here refers to the individuals’ investment of mental exertion to achieve a task 
(Inzlicht et al., 2018). For example, an examinee who knows how to decode a particular 
word may fail to do so during a test due to insufficient effort or disengagement (Freder-
ick, 2005). The effort exerted by examinees during a test is usually defined as test-taking 
engagement. Therefore, the response behavior characterized as effortful is referred to 
as solution or engaged response behavior (e.g., Pastor et al., 2019; Schnipke & Scrams, 
2002), whereas the response behavior characterized as non-effortful is known as disen-
gaged response behavior (e.g., Soland & Kuhfeld, 2019). Disengaged responses typically 
do not reflect students’ true ability levels (Swerdzewski et al., 2011; Wise, 2006; Wise & 
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Kong, 2005), and thus they may contaminate statistical estimates, psychometric proper-
ties, classifications, individual scores, test inferences, and conclusions if left untreated 
(Lindner et al., 2019; Rios & Soland, 2021; Wise et al., 2009).

The absence of personal consequences and intrinsic value for examinees distinguishes 
an assessment setting as low-stakes testing. Although teachers, schools, or district 
authorities may use these assessments to adjust teaching practices, identify at-risk stu-
dents, or compare the relative performance of teachers and schools, students generally 
do not observe this process (Finn, 2015). Limited personal consequences for students 
(Penk & Schipolowski, 2015) may violate the assumption that the assessment reflects 
students’ ability levels, and the lack of effort thereof may lead to the underestimation of 
students’ ability levels (Rios et al., 2017). Therefore, researchers and practitioners face a 
challenge regarding whether the observed low performance is due to low engagement or 
low ability when statewide (e.g., National Assessment on Educational Progress) (Braun 
et al., 2011; Swerdzewski et al., 2011) or large-scale international assessments (e.g., Pro-
gramme for International Student Assessment (PISA), International Reading Literacy 
Study, and the Trends in International Mathematics and Science Study) (Eklöf, 2007; Liu 
et al., 2014) are used for accountability purposes, teacher or program evaluations, fund-
ing decisions, or country performance comparisons (Eklöf, 2006, 2010; Finn, 2015; Thelk 
et al., 2009).

Researchers have proposed several reactive remedies to mitigate the negative influ-
ence of test-taking disengagement. Motivation filtering approaches based on response 
time thresholds (e.g., Wang & Xu, 2015; Wise & DeMars, 2005; Wise & Kong, 2005) or 
self-report measures which are used to rate student motivation or effort while taking 
the assessment (e.g., Eklöf, 2006; Sundre, 1999; Sundre & Moore, 2002; Sundre & Wise, 
2003) suggest removing disengaged responses or examinees. Wise and colleagues also 
proposed effort monitoring with proctor notification to improve test-taking engage-
ment (Wise et al., 2019). Accordingly, the test proctor is notified after an examinee dem-
onstrates a disengaged response, and the proctor urges the examinee to show effortful 
response behavior. Nevertheless, these reactive remedies deal with test-taking disen-
gagement after it occurs and may be limited in sustaining the optimal testing condi-
tions. For example, if an examinee displays disengaged response behavior for most of the 
items, it may not be possible to estimate the examinee’s ability levels. Therefore, a proac-
tive approach is necessary to minimize the occurrence of disengaged responses during 
an assessment administration.

Understanding the onset of disengaged response behavior may help researchers and 
practitioners inhibit disengaged responses in a low-stakes assessment. Thus, research-
ers have long been interested in explaining the examinee or test characteristics that may 
trigger disengagement in low-stakes settings. While some argued that examinee disen-
gagement in non-adaptive fixed tests is due to the potential mismatch between the dif-
ficulty of the items on the test and the examinee’s ability level (Tonidandel et al., 2002), 
others argued that it is rather examinees’ intrinsic motivation that determines whether 
an examinee invests effort or not (Wise & Smith, 2011). Expectancy-Value Theory (Wig-
field & Eccles, 2000) may account for these two different explanations of examinee disen-
gagement in low-stakes settings. That is, some examinees may not expend effort if they 
perceive a task as unattainable (e.g., the item is perceived as too difficult; expectancy). 
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Likewise, some may not attempt the task due to the lack of personal consequences (e.g., 
the item is considered to have no direct impact on the examinee; value).

On a par with the expectancy aspect of the Expectancy-Value Theory, several research-
ers claimed increased levels of student engagement in adaptive tests because items are 
optimally selected according to the examinee’s interim ability level (e.g., Linacre, 2000; 
Mead & Drasgow, 1993; Weiss & Betz, 1973). Hence, compared with non-adaptive tests, 
computerized adaptive tests (CATs) may provide examinees with a better testing experi-
ence by selecting and administering the items that match their ability levels more closely. 
Yet, studies found mixed empirical evidence regarding the positive association between 
CATs and test-taking engagement. For example, Martin and Lazendic (2018) and Ross 
and colleagues (2018) found a positive association between adaptive tests and test-taking 
engagement. On the other hand, others found no significant positive impact of adaptive 
tests on test-taking engagement (e.g., Bergstrom et al., 1992; Häusler & Sommer, 2008; 
Ling et al., 2017; Lunz & Bergstrom, 1994), indicating that using an adaptive test may not 
be sufficient to ensure a high level of test-taking engagement and like fixed-item tests, 
CATs are also susceptible to examinee disengagement.

The current study proposes a proactive remedy to tackle test-taking engagement dur-
ing an assessment administration in low-stakes adaptive tests. Specifically, we aim to 
extend the use of response time distributions to the item selection procedure in CATs 
(Wise, 2014, 2020; Wise & Kingsbury, 2016). First, we design a post-hoc simulation 
study based on real data to evaluate whether incorporating the test-taking engagement 
into the item selection process could improve the performance of a CAT system. Our 
analyses show the promise of integrating engagement into item selection to enhance the 
CAT’s accuracy. Next, we propose a novel item selection algorithm where optimal items 
are selected adaptively based not only on item information at a given ability level but 
also on test-taking engagement. After describing how the proposed item selection algo-
rithm works, we evaluated its performance using a simulation study based on real data 
from a timed computer-based (non-adaptive) large-scale assessment.

Literature review
Disengagement in low‑stakes assessments

Compared with high-stakes assessments, low-stakes assessments are more prone to test-
taking disengagement (Finn, 2015; Wise, 2006; Wise & DeMars, 2005). In high-stakes 
settings, examinees may get disengaged towards the end of the test due to running out 
of time or test fatigue (Schinke & Scrams, 1997, 2002). However, in low-stakes settings, 
disengaged responses may occur anywhere during test administration because exami-
nees may switch back and forth between disengaged and engaged response behaviors 
during the test (Lindner et al., 2019; Wise & Kong, 2005). Some researchers argued that 
examinees begin the test with an engaged response behavior, but once they enter the dis-
engaged response mode, they are likely to stayed disengaged until the end of the assess-
ment (Bolt et al., 2002; Jin & Wang, 2014). In contrast, Cao and Stokes (2008) argued 
that examinees are more likely to demonstrate disengaged response behaviors (e.g., rapid 
guessing) after they encounter difficult items on the test.

Previous research primarily associated disengaged or non-effortful responding with 
rapid guessing (e.g., Rose et al., 2010; Ulitzsch et al., 2020; Wise, 2019). As examinees 
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perceive that they need to spend a long time to answer the item correctly, the time cost 
becomes higher, and the expectation of answering the item correctly does not compen-
sate for the cost of effort (i.e., speed-accuracy trade-off), especially in timed tests (De 
Boeck & Joen, 2019). Although longer response times are often associated with higher 
accuracy, response accuracy is likely to decrease after a certain length of response time 
(i.e., dual-preprocessing theory; De Boeck & Jeon, 2019). As an examinee foresees that 
an item requires a longer time to find the correct answer, the effort becomes more costly, 
and the examinee may eventually cease to invest enough effort to answer the item. These 
types of response behaviors are referred to as slow errors and can be due to attentional 
lapses, lack of automation, and uncertainty (Novikov et  al., 2017). Under ideal testing 
conditions (e.g., a sufficient duration is granted to examinees to complete the items), 
examinees would be expected to show effortful response behavior throughout the test by 
adjusting their speed to complete the test in time and minimizing the occurrence of not-
reached items (Gorgun & Bulut, 2021; Tijmstra & Bolsinova, 2018).

Disengaged test-taking behavior can be instantiated as either rapid guessing (i.e., the 
use of an unrealistically short amount of response time) or idle responding (i.e., the use 
of an unrealistically long amount of response time when attempting the items on the 
test) (Gorgun & Bulut, 2021; Wise, 2017; Yildirim-Erbasli & Bulut, 2021). Rapid guessers 
may attempt to randomly select a response option without reading and understanding 
the item content, whereas idle responders may not work on the item (i.e., invest effort; 
Lindner et al., 2019) such as through engaging in daydreaming leading to allotted time 
to expire.. Although the presence of rapid guessing is problematic for all types of assess-
ments, idle responding becomes a major concern in automaticity-based assessments 
where speed and ability are operationalized together, such as reading assessments that 
require students to decode words, comprehend the information, and make inferences at 
the same time (e.g., Samuels & Flor, 1997) or math assessments that require students to 
recall math facts rapidly and accurately (e.g., Stickney et al., 2012). Further, it could be 
argued that idle responding could be a concern for timed assessments where examinees 
may have to deal with a speed-ability trade-off by adjusting their speed to complete all 
the items within the allotted time and avoid having not-reached items as much as pos-
sible (Tijmstra & Bolsinova, 2018; Ulitzsch et al., 2020).

Response times recorded for each item during computer-based tests, including CATs, 
have been widely used as a proxy (see Rios & Deng, 2021) to classify examinees’ test-tak-
ing behavior as effortful (i.e., engaged) or non-effortful (i.e., disengaged). Several thresh-
old-based and model-based methods have been proposed for identifying and handling 
disengaged responses in low-stakes assessments. For example, Wise and Ma (2012) pro-
posed a Normative Threshold (NT) method that uses a particular percentage (i.e., 10%, 
15%, or 20%) of the average response time for each item as a threshold to identify stu-
dents with rapid guessing behavior. There are also model-based approaches that aim to 
quantify test-taking engagement based on ability and speed (e.g., Guo et al., 2020; Pohl 
et al., 2014; Pokropek, 2016; Ulitzsch, 2020, 2021; Wang & Xu, 2015). These methods are 
typically used for flagging and removing disengaged responses from the data after test 
administration is completed. With dynamic assessment tools such as CATs, it might be 
possible to identify, and overturn disengaged response behaviors in real-time for low-
stakes assessments.
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Computerized adaptive tests

CATs have numerous advantages over paper-and-pencil and computer-based tests with 
fixed items, such as optimal item selection based on each examinee’s interim ability level 
(Eggen, 2012; Lord, 1980; Veldkamp, 2003), substantial reductions in test length and test 
duration (e.g., Bulut & Kan, 2012; Choe et  al., 2018, Weiss, 1982; Weiss & Kingsbury, 
1984), increased measurement precision (Davey, 2011; Weiss, 2004), and the availability 
of response time information for a large pool of items (van der Linden, 2008; Wise & 
Kingsbury, 2016). In CATs, optimal items for each examinee can be adaptively selected 
using a variety of methods, such as maximum Fisher information (MFI; Birnbaum, 
1968), Kullback–Leibler information (Chang & Ying, 1996), and maximum likelihood 
weighted information (Veerkamp & Berger, 1997). Among these methods, MFI is the 
most common method for selecting items adaptively in operational CATs (Thompson 
& Weiss, 2011). With the MFI method, the item with the highest Fisher information at 
the interim ability level is iteratively selected until a test termination criterion is satis-
fied (Lord, 1980; Weiss, 1982). The MFI method implicitly assumes that each examinee 
puts their maximum effort into answering the items until the end of the test. Hence, as 
more items are administered, the interim ability estimate is expected to become more 
precise (i.e., closer to the true ability level) and thereby better guide the item selection 
procedure.

Although the maximal effort assumption can be reasonable for high-stakes CATs (e.g., 
licensure or certification exams), it may not necessarily hold for low-stakes CATs (e.g., 
universal screening and progress monitoring measures in K-12). The presence of signifi-
cant test-taking disengagement would be detrimental to the item selection process in 
CATs. For example, if an examinee responds to the item through rapid guessing, their 
probability of answering the item correctly would be lower than the expected probability 
based on the true ability level. Therefore, the CAT is likely to underestimate the exami-
nee’s interim ability level and select an easier item from the item bank (Betz & Weiss, 
1976; Wise, 2020; Wise & DeMars, 2005; Wise et al., 2014). Therefore, the item selection 
algorithms need to be modified to minimize the negative impact of test-taking disen-
gagement on item selection in CATs.

Integration of response times into item selection

Integrating response times into the item selection algorithm can be promising for opti-
mizing the item selection procedure during a CAT administration. Several researchers 
proposed new algorithms for item selection by inversely weighting the MFI algorithm 
with the expected response time (e.g., Choe et  al., 2018; Fan et  al., 2012). With these 
algorithms, the optimal item selection is based on the maximum information per unit 
of expected response time. That is, the measurement efficiency depends on the number 
of items and the total time required to complete the CAT. Similar approaches involv-
ing response times in adaptive tests have been proposed to identify aberrant response 
behaviors such as cheating during a CAT (e.g., van der Linden & Guo, 2008). These 
approaches often rely on the hierarchical modeling framework introduced by van 
der Linden (2007) to estimate the examinee’s expected speed and ability jointly; how-
ever, they do not necessarily consider the response time as an indicator of test-taking 
engagement.
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Wise and Kingsbury (2016) and Wise (2020) proposed an effort-guided CAT approach 
based on two modifications. In the first modification, the CAT would ignore the exam-
inee’s disengaged responses when calculating the final ability estimate after the test is 
terminated. In the second modification, if the examinee’s response time for a given item 
is below a normative threshold, the response is flagged for rapid guessing and thus not 
used for updating the interim ability estimate. Instead, the MFI algorithm selects the 
next item based on the previous estimate of the interim ability. The first modification 
can be a remedy for situations where the examinees had only a few disengaged responses 
that did not occur in succession during the CAT administration. Otherwise, depend-
ing on the maximum number of items to be administered, the item selection algorithm 
may not accommodate the negative impact of disengaged responses on the estimation of 
interim ability. The second modification can be an effective solution for situations where 
the examinee re-engages with the test after giving a few disengaged responses. Both 
modifications follow a reactive approach by responding to disengagement after it occurs 
on the test. However, a proactive approach that eliminates the disengagement problem 
before it occurs would be a more desirable solution. To accomplish this goal, the item 
selection algorithm should consider not only the examinee’s interim ability but also their 
engagement level when selecting the items from the item bank.

Current study

A proactive approach considering test-taking engagement during the test can be a more 
promising solution for dealing with disengaged responses in low-stakes CATs. However, 
an important question remains to be addressed before modifying the item selection 
algorithm: How can we predict whether an examinee would engage with an item before 
administering it? In other words, is it possible to select the optimal items that would be 
not only informative but also engaging for each examinee? To address these questions, 
we propose to conceptualize test-taking engagement as a secondary latent trait. To date, 
several researchers conceptualized test-taking engagement as a latent trait and found 
systematic differences among examinees in terms of their engagement levels across the 
items (e.g., Goldhammer et  al., 2016; Setzer et  al., 2013). For example, Goldhammer 
et al., (2017) recoded item responses in the Programme for the International Assessment 
of Adult Competencies based on the examinees’ test-taking engagement levels (i.e., 0 = 
engaged, 1 = disengaged) and fitted a one-parameter item response theory (IRT) model 
to the recoded data. The authors found empirical evidence supporting the operationali-
zation of test-taking engagement as a latent examinee characteristic.

In this study, we follow Goldhammer et al.’s (2017) approach to operationalize test-tak-
ing engagement as latent engagement (LE)—a latent examinee characteristic indicating 
the degree of test-taking engagement based on examinees’ response times. Our ultimate 
goal is to incorporate LE into the CAT and optimize the item selection process based 
on both ability and test-taking engagement. Our study consists of two post-hoc simula-
tion studies based on real data from a low-stakes computerized formative assessment 
focusing on students’ automaticity skills in reading (i.e., recognizing, decoding, and 
reading words rapidly, effortlessly, and accurately). In Study 1, we use the students’ exist-
ing response time information to assign ranks to the items based on test-taking engage-
ment (i.e., 1=rapid guessers, 2=idle responders, and 3=optimal time users). Then, when 
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implementing the CAT, we iteratively select the items with the maximum Fisher infor-
mation at the interim ability level and the highest ranking for test-taking engagement. 
This item selection method is referred to as engagement-ranked MFI hereafter. The 
results of Study 1 served as a benchmark model to understand the impact of incorporat-
ing test-taking engagement into the adaptive item selection.

Study 1 relies on an unusual assumption that each student’s response time is known 
before administering the items, which would not be realistic for a real-time CAT. 
Therefore, in Study 2, we provide a solution for the absence of response time informa-
tion in a real-time CAT administration by operationalizing test-taking engagement as 
a latent examine characteristic (i.e., LE). Then, we modify the item selection algorithm 
by selecting the most informative items based on the interim estimates of ability and 
LE. Specifically, we compute two sets of Fisher information values for each examinee: an 
ability-based information function using item responses and an LE-based information 
function using response times. Next, we sort the items in descending order based on 
Fisher information values and select the item with the maximum information in terms of 
both ability and LE. This item selection method is referred to as MFI-LE hereafter. Given 
the relationship between ability and LE, we proposed two variants of MFI-LE. The first 
variant (unconditional MFI-LE) selects the items iteratively based on interim estimates 
of both ability and LE. The second variant (conditional MFI-LE) considers a threshold 
for LE to determine whether item selection should involve both ability and LE, or only 
ability. Interim estimates of ability and LE are computed after each item and if the exam-
inee’s LE level is below an engagement threshold, the next item (i.e., the most informa-
tive item) is selected based on interim estimates of both ability and LE; otherwise, the 
conventional MFI approach is used to select the most informative item based on interim 
ability. That is, unlike unconditional MFI-LE, conditional MFI-LE incorporates LE into 
item selection only when the examinee’s test-taking engagement level is lower than a 
predefined LE threshold.

To evaluate the feasibility of the proposed item selection methods introduced in Study 
1 and Study 2, we compared their performances with those of the conventional MFI and 
the effort-guided CAT (Wise, 2020). The conventional MFI selected the most informa-
tive items based on interim ability, while the effort-guided CAT removed disengaged 
responses prior to estimating the final ability value. The research questions underlying 
the two studies summarized above are as follows:

A) Does selecting the items based on the engagement-ranked information function yield 
more accurate ability estimates than the MFI and effort-guided CAT method (Study 
1)?

B) Does the item selection algorithm utilizing ability and LE together yield more accu-
rate ability estimates than the MFI and effort-guided CAT method (Study 2)?

Method
Participants and study context

The sample of this study included 21,811 students (grades 5 to 12) who participated in 
a timed computer-based reading assessment in the United States. The teachers used 
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the assessment to measure students’ reading automaticity and monitor their progress 
throughout the school year (i.e., no direct consequences for students). The assessment 
consisted of 120 multiple-choice items with four response options focusing on various 
reading skills (e.g., recognizing words, understanding how words are formed, and vocab-
ulary). Students had approximately 10 seconds to respond to each item. Both students’ 
responses (i.e., 1 = correct and 0 = incorrect) and response times (in seconds) for each 
item were recorded during the test administration.

In this study, we used the 2-parameter logistic (2PL) IRT model (Birnbaum, 1968) to 
calibrate the item parameters as item bank and estimate students’ ability levels based on 
the entire test (i.e., 120 items). The 2PL model can be written as:

where Pj(θ) is the probability of answering the item j correctly, aj is the item discrimi-
nation parameter for item j, and bj is the item difficulty parameter for item j, and θ is 
the ability level of the student answering the item. Before calibrating the items and esti-
mating the ability levels of students, we identified disengaged responses based on the 
NT10 method (Wise & Ma, 2012) and recoded them as missing to minimize the nega-
tive impact of test-taking disengagement on item calibration and ability estimation. The 
disengaged response rate ranged from 5 to 15% across the items.

Design and analysis

We designed two post-hoc simulation studies and modified the item selection algorithm 
to select both informative and engaging items for the students. After administering the 
first item based on θ = 0 , the CAT iteratively selected the most informative and engag-
ing items for students (see the following sections for more details on the item selec-
tion algorithms used for each study). The CAT was terminated when the maximum test 
length (20, 30, or 50 items) was reached or the conditional standard error of measure-
ment (cSEM) of the ability estimate was less than 0.25.1 Interim and final ability values 
were estimated using the expected a posteriori (EAP; Bock & Mislevy, 1982) method. 
The post-hoc simulations were conducted using the mirtCAT package (Chalmers, 2016) 
in R (R Core Team, 2021).

Simulation study 1: engagement‑ranked MFI

In Study 1, we adopted the NT10 method (Wise & Ma, 2012) to identify engaged and 
disengaged students. Accordingly, we found the median response time for each item and 
computed 10% and 190% of the median response time to determine the response time 
thresholds for rapid guessers, idle responders, and effortful responders. Then, we identi-
fied students’ level of engagement on each item based on the students’ response times and 
the response time thresholds. Using the response time-based polytomous scoring approach 
introduced by Gorgun and Bulut (2021), responses classified as rapid guessing (i.e., response 
time < 10% of the median response time representing an unrealistically short response 

(1)Pj(θ) =
eaj(θ−bj)

1+ eaj(θ−bj)

1 Since the primary goal of the CAT is to measure ability instead of test-taking engagement, cSEM for test-taking 
engagement was not considered when terminating the CAT administration.
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time) received the rank of 1, and responses classified as idle (i.e., response time > 190% of 
the median response time representing an unrealistically long response time) received the 
rank of 2, and responses classified as effortful (i.e., the middle region in response time distri-
bution representing optimal time use) were assigned a rank of 3 to differentiate the amount 
of effort that examinees put into answering each item.

Figure 1 demonstrates an example item with the scoring scheme for rapid guessers (left-
hand side of the plot), idle responders (right-hand side of the plot), and effortful respond-
ents (middle region of the plot). We used this scoring scheme to rank the information 
function when selecting items that students are likely to put enough effort. Determining the 
response time thresholds for each item separately enabled us to take the item difficulty into 
account as more difficult items tend to have higher median response times. Furthermore, 
using the NT10 method, rather than NT15 or NT20, enabled us to avoid false positives 
when classifying students’ levels of test-taking engagement (Kong et al., 2007; Wise & Ma, 
2012).

We created the engagement-ranked MFI algorithm that considers both item information 
and rankings of items based on test-taking engagement when selecting the items during the 
CAT administration. The conventional Fisher information at a given ability level in the 2PL 
model can be computed as:

where Pj(θi) is the probability of answering item j correctly given the student i’s ability θi , 
aj is the item discrimination parameter for item j, and Ij(θi) is the item information level 
for student i on item j. When implementing the engagement-ranked MFI algorithm, we 
compute the Fisher information for each item using the interim ability estimate, rank 
the items in descending order based on the Fisher information and their engagement 
levels wj (i.e., wj = 1 for rapid guessing, wj = 2 for idle responding, or wj = 3 for effortful 

(2)Ij(θi) = a2j Pj(θi)
(
1− Pj(θi)

)

Fig. 1 An illustration of How Engagement Level is Determined based on the Response Time Distribution for 
Each Item in Simulation Study 1
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responding in item j), and select the item with the maximum Fisher information and 
the highest ranking for test-taking engagement. That is, the items yielding the highest 
information while being ranked as the most engaging are prioritized in item selection. 
Although engagement-ranked MFI cannot be employed in operational testing settings 
(unless it is a repeated test), the results from engagement-ranked MFI had two impor-
tant implications. First, the results allowed us to evaluate the utility of incorporating 
engagement into the item selection in CATs. Second, they served as a benchmark for 
the second study to assess the feasibility of incorporating LE into item selection. Study 1 
represents an ideal but impractical scenario where the examinees’ known response times 
could be utilized to rank the items based on test-taking engagement and select the most 
informative item iteratively. In Study 2, we use a more practical scenario to evaluate the 
MFI-LE methods and compare their performance with the performance of engagement-
ranked MFI.

Simulation study 2: unconditional and conditional MFI‑LE

In Study 2, we conceptualized test-taking engagement as a latent examinee characteris-
tic and estimated the examinees’ LE levels (e.g., Goldhammer et al., 2017). We used the 
NT10 method to identify disengaged and engaged responses for each student. That is, 
we found the median response time for each item and computed 10% and 190% of the 
median response time to identify the thresholds to label students’ response time data 
based on their level of test-taking engagement. For this procedure, we considered rapid 
guesses and idle responses as disengaged responses and effortful responses as engaged 
responses. Then, we assigned 0 to disengaged responses and 1 to engaged responses 
(see Fig. 2), yielding a secondary dichotomous dataset based on test-taking engagement. 
Hence, we created two datasets: one based on item responses (0=Incorrect, 1=Correct) 
and the second one based on engagement (0=disengaged, 1=engaged) operationalized 

Fig. 2 An Illustration of How Test-Taking Engagement is Determined based on the Response Time 
Distribution for Each Item in Simulation Study 2
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through response times. Similar to the calibration of item parameters based on the item 
responses, we fitted the 2PL IRT model to the engagement dataset and estimated item 
engagement parameters.2 The resulting item engagement parameters can be defined as 
difficulty and discrimination for LE.

To select the most informative items during the CAT administration, we considered 
two sets of item parameters (one for ability and another for LE). Specifically, two sets of 
Fisher information values were calculated for each item; one for students’ ability level 
based on the difficulty and discrimination parameters and another for students’ LE level 
based on the engagement parameters. The item information functions for ability and 
test-taking engagement can be written as:

where Ij,θ(θi) is the Fisher information function for person i and item j based on abil-
ity (i.e., θi ) and Ij,e(θe.i) is the Fisher information function for person i and item j based 
on LE (i.e., θe.i ). During item selection, we ranked the item information values obtained 
from ability and LE together and selected the item with maximum information based on 
both ability and LE. The highest rank is determined by multiplying the information func-
tions of both ability and engagement. Using this procedure (i.e., unconditional MFI-LE), 
the CAT selected the most informative and engaging items from the item bank for all 
examinees, regardless of their ability and LE levels.

Unlike unconditional MFI-LE, conditional MFI-LE incorporates LE into the item 
selection process if the examinee’s interim estimate of LE is below a predefined thresh-
old (i.e., showing a low level of LE). If, however, the examinee’s interim estimate of LE 
is above the threshold (i.e., showing an acceptable level of LE), then the conventional 
MFI is applied by selecting the most informative items based on the examinee’s interim 
estimate of ability. An optimal LE threshold can be determined in several ways, such as 
visual inspection of the test information function (TIF) for LE, norm-based threshold 
selection based on the population distribution of LE, or an empirical threshold based 
on the relationship between ability and LE. In this study, we inspected the TIF for LE 
visually (see Fig. 3) and identified two thresholds (i.e., θ = 0 and θ = − 1), after which the 
items became less informative in terms of LE.

Evaluation criteria

We evaluated the relative performance of the proposed approaches against the con-
ventional MFI and effort-guided CAT methods. The simulation studies were evaluated 
based on the same criteria: the average number of administered items, the correlation 
between estimated and true ability levels, average cSEM values, bias, and root-mean-
squared error (RMSE). Bias and RMSE values were calculated as follows:

(3)Ij,θ(θi) = a2j,θPj,θ(θi)
(
1− Pj,θ(θi)

)

(4)Ij,e(θe.i) = a2j,ePj,e(θe.i)
(
1− Pj,e(θe.i)

)

2 We also used NT15, NT20, and NT25 to identify test-taking disengagement and calibrate the item parameters. The 
parameters did not change significantly across these different threshold-based methods. We used the NT10 method 
because it is a more conservative method minimizing the occurrence of false positives.
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where θ̂i is student i’s final ability estimate from the CAT administration, θi is student i’s 
(true) ability level based on the entire test, and N represents the sample size. Smaller val-
ues of RMSE and smaller absolute values of bias showed more accurate ability estimates. 
Positive values of bias indicated overestimated ability levels, whereas negative values 
indicated underestimated ability levels.

Results
Results for simulation study 1

Table  1 summarizes the evaluation indices obtained for each simulation condition in 
Study 1. The results showed that the engagement-ranked MFI outperformed the conven-
tional MFI and effort-guided CAT based on the correlation between estimated and true 
ability, bias, and RMSE under the 20-item test length condition. Also, the engagement-
ranked MFI yielded the highest correlations between estimated and true ability and the 
lowest RMSE values across all test length conditions. However, effort-guided CAT in 
terms of the average number of items administered and the conventional MFI in terms 
of the mean cSEM performed better than the engagement-ranked MFI. The benefit of 
ranking Fisher information based on the students’ engagement level was more salient 
when the test length was either 20 or 30. Figures 4, 5 demonstrate bias and RMSE values 
across the true ability values for the engagement-ranked MFI, conventional MFI, and 
effort-guided CAT approaches. The engagement-ranked MFI outperformed the conven-
tional MFI and effort-guided CAT for all conditions. However, the difference between 
the three item selection methods became negligible as the estimated ability values 
increased, suggesting that considering test-taking engagement in item selection could be 
more critical for low-ability students.

(5)Bias =

∑N
i=1

(
θ̂i − θi

)

N

(6)
RMSE =

√√√√
∑N

i=1

(
θ̂i − θi

)2

N

Fig. 3 Test Information Functions for Ability and Latent Engagement
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The bias results in Fig. 5 also suggest that the engagement-ranked MFI yielded slightly 
overestimated values for higher ability levels (i.e., θ > 0.5 ) under the 50-item condition. 
This finding appears to be a result of selecting nearly half of the items from a small item 
bank. In a longer test, the students with high ability levels could not benefit from adap-
tive item selection that considered the engagement level. Another interesting finding is 
that the performances of the conventional MFI and effort-guided CAT were very similar 
in terms of bias and RMSE across all ability levels. This finding underscored the fact that 
the effort-guided CAT, as a reactive approach, may not be able to alleviate the negative 
impact of disengagement on item selection and ability estimation in low-stakes CATs. 
Overall, the findings of Study 1 suggest that taking test-taking engagement into account 

Table 1 Results for Simulation Study 1 and 2

Bold values indicate the best results for each evaluation criterion

MFI: Maximum Fisher Information, Effort-Guided CAT : Removing disengaged items when estimating ability levels after the 
CAT is completed, Engagement-Ranked MFI: MFI that considers item engagement ranking in item selection, Unconditional 
MFI-LE: MFI that considers both ability and latent engagement in item selection, Conditional MFI-LE: MFI that considers 
both ability and latent engagement in item selection only when latent engagement is below a certain threshold, r : 
Correlations between true and estimated theta values, RMSE: Root-mean-squared error, cSEM: Conditional standard error of 
measurement, n: The average number of items administered

Test 
length

Evaluation 
criteria

Conventional 
MFI

Effort‑
guided 
CAT 

Engagement‑
ranked MFI

Unconditional 
MFI‑LE

Conditional 
MFI‑LE (θ = 0)

Conditional 
MFI‑LE 
(θ = − 1)

20 r 0.889 0.889 0.911 0.903 0.901 0.906

Bias − 0.011 − 0.015 − 0.001 0.004 0.026 0.036

RMSE 0.450 0.451 0.339 0.426 0.433 0.422

Mean cSEM 0.388 0.390 0.393 0.389 0.391 0.391

n 19.71 19.71 19.74 19.72 19.57 19.57

30 r 0.931 0.930 0.945 0.933 0.932 0.932

Bias 0.030 0.025 0.036 0.035 0.058 0.058

RMSE 0.357 0.357 0.316 0.355 0.364 0.364

Mean cSEM 0.347 0.349 0.353 0.349 0.350 0.349

n 27.95 27.95 28.26 28.09 27.84 27.84

50 r 0.952 0.952 0.958 0.955 0.953 0.953

Bias − 0.079 0.061 − 0.069 0.073 0.091 0.092

RMSE 0.303 0.302 0.282 0.296 0.313 0.313

Mean cSEM 0.316 0.317 0.322 0.355 0.316 0.317

n 40.80 40.80 42.06 40.95 40.63 40.63

Fig. 4 Estimated RMSE across the Item Selection Methods
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could improve the item selection process and consequently the accuracy of estimated 
ability values.

Results for simulation study 2

In Study 2, we evaluated the performances of the unconditional and conditional MFI-
LE, conventional MFI, and effort-guided CAT by comparing the correlations between 
true and estimated ability, bias, RMSE, and average cSEM values. The simulation results 
of Study 2 showed that on the aggregate level, both unconditional and conditional 
MFI-LE outperformed the conventional MFI and effort-guided CAT approaches under 
most conditions (see Table 1). The superior performance of the MFI-LE methods was 
more salient under shorter test length conditions (i.e., 20 or 30 items). Regardless of the 
engagement level threshold, the conditional MFI-LE methods yielded smaller values for 
the average number of items administered in the CAT, compared with the conventional 
MFI and effort-guided CAT.3 Like in Study 1, the conventional MFI was the best per-
forming method in terms of the mean cSEM value. This was an expected finding because 
the conventional MFI maximizes the TIF, which is inversely related to the cSEM value of 
the estimated ability.

The results in Table 1 also show that both effort-guided CAT and MFI-LE performed 
better than the conventional MFI, suggesting that considering test-taking engagement 
in item selection is likely to yield more accurate results in low-stakes CATs. However, 
between the two item selection methods, effort-guided CAT might be less desirable 
than MFI-LE due to decreased efficacy of effort-guided CAT for testing situations where 
the test length is short and disengaged response behaviors (e.g., rapid guessing and idle 
responding) are very prevalent. With effort-guided CAT as a reactive approach, exclud-
ing many disengaged responses from the ability estimation at the end of a CAT admin-
istration might lead to less accurate estimates of ability. Unlike effort-guided CAT, the 
MFI-LE as a proactive approach is likely to yield more accurate ability estimates since 
this method can regulate the item selection process during the CAT administration.

Fig. 5 Estimated Bias across the Item Selection Methods

3 Since effort-guided CAT uses the conventional MFI method to select the items, both methods yielded the same aver-
age number of items administered.



Page 15 of 21Gorgun and Bulut  Large-scale Assessments in Education           (2023) 11:27  

In addition to the aggregated results from Simulation Study 2 (see Table 1), Figs. 4 and 
5 also demonstrate RMSE and bias values across different ability levels for all item selec-
tion methods utilized in this study, respectively. Especially for lower ability levels (i.e., 
θ < −1 ), conditional MFI-LE performed better than the other item selection methods, 
including engagement-ranked MFI. There was only a negligible difference between the 
two versions of conditional MFI-LE (i.e., conditional MFI-LE using either θ = 0 and 
θ = −1 as a latent engagement threshold). For lower ability levels (i.e., θ < 0 ), the per-
formance of unconditional MFI-LE was better than the conventional MFI and effort-
guided CAT but worse than the conditional MFI-LE methods. Also, compared with 
engagement-ranked MFI, both unconditional and conditional MFI-LE performed bet-
ter for higher ability levels (i.e., θ > 0.5 ). This finding suggests that the MFI-LE methods 
could utilize test-taking engagement more effectively for students with higher ability lev-
els who are less likely to experience disengagement during the CAT administration. As 
the ability level and test length increased, the performance difference between the item 
selection methods became very negligible.

Discussion
CATs offer a personalized testing experience to each student by iteratively selecting 
items based on the student’s interim ability levels (Eggen, 2012; Lord, 1980; Veldkamp, 
2003). In this study, we proposed alternative item selection methods for low-stakes CATs 
where some students are likely to demonstrate aberrant response behaviors (e.g., rapid 
guessing and idle responding) due to the lack of test-taking engagement (e.g., Finn, 2015; 
Rose et al., 2010; Ulitzsch et al., 2020; Wise & DeMars, 2005; Wise, 2006, 2019). Using 
the conventional MFI algorithm as a baseline, the proposed item selection methods aim 
to find the most optimal item by ranking the items based on their engagement levels. In 
Simulation Study 1, we assumed a hypothetical scenario where students’ response times 
for all items in the item bank were available prior to participating in the CAT. Using 
the existing response times, we categorized the items into one of the three engagement 
categories; namely, 1: rapid guessing, 2: idle responding, and 3: effortful responding. For 
each student, we ranked the items based on both the Fisher information using interim 
ability and the engagement level using response times, and then selected the most 
informative item with the highest engagement and ability ranking. The results of Study 1 
showed that engagement-ranked MFI could provide more accurate ability estimates than 
the conventional MFI and effort-guided CAT (Wise, 2020; Wise & Kingsbury, 2016). The 
utility of using engagement-ranked MFI, instead of traditional item selection methods, 
was more salient for lower ability levels.

In Simulation Study 2, we proposed another item selection method that could be 
more suitable for operational CAT settings since engagement-ranked MFI relies on the 
unusual assumption that students’ response times are known prior to participating in 
the test. Following Goldhammer et al.’s (2017) approach of defining test-taking engage-
ment as a latent examinee characteristic, we calibrated the items in the item bank in 
two different ways. We estimated item difficulty and discrimination parameters based 
on dichotomous item responses and engagement parameters based on dichotomized 
response times (i.e., 1=Engaged, 0=Disengaged). The goal of the proposed method, 
MFI-LE, was to harness test-taking engagement as a secondary latent trait (i.e., LE) in 
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the item selection process. For each student, we selected the items that maximized the 
Fisher information based on both item parameters and engagement parameters. That is, 
MFI-LE identified the most informative item based on interim estimates of ability and 
LE. The results of Study 2 indicated that MFI-LE outperformed the conventional MFI 
and effort-guided CAT wherein only the students’ interim ability levels were considered 
when selecting the items.

The simulation studies also showed that effort-guided CAT, which was also considered 
a reactive approach for dealing with disengaged examinees in CATs, was not as effective 
as the proposed MFI-LE methods. This finding emphasized the need for developing pro-
active solutions for tackling the lack of test-taking disengagement in low-stakes CATs. 
Furthermore, the findings of this study showed that incorporating test-taking engage-
ment into the item selection process could be more essential for students with low abil-
ity, especially in a low-stakes CAT setting. This is congruent with previous studies that 
reported a significant relationship between effort and ability (e.g., Lindner et al., 2019). 
The utility of considering test-taking engagement in item selection appears to decrease 
as the student’s ability level increases. Therefore, the conditional MFI-LE method could 
be a more suitable solution for tackling disengaged responses by regulating the item 
selection process depending on the student’s engagement level in low-stakes CATs.

To date, researchers recommended various ways to improve students’ test perfor-
mances in low-stakes assessments, such as encouraging students to take a low-stakes 
assessment more seriously by expending maximal effort through proctors (Wise et al., 
2019), response time-based scoring approaches (Gorgun & Bulut, 2021), or engagement 
monitoring such as auto-pauses (Wise et al., 2022). As a more proactive approach, the 
use of the engagement-ranked MFI and MFI-LE methods for item selection may also 
offer several benefits for low-stakes CATs. First, these methods could help promote 
optimal time use among students (Gorgun & Bulut, 2021; Tijmstra & Bolsinova, 2018), 
curtailing the occurrence of not-reached items, missing responses, effortless or idle 
responses, or rapid guesses in low-stakes CATs with a time limit. Second, finding the 
optimal items based on both ability and test-taking engagement could maximize the 
information about one’s interim ability, while reducing the effect of construct-irrelevant 
variance in ability estimation due to the presence of aberrant responses such as rapid 
guesses (Haladyna & Downing, 2004). Third, incorporating test-taking engagement 
into item selection in low-stakes CATs can help practitioners evaluate whether insuf-
ficient test-taking engagement interferes with how students respond to the items (Wise 
& Kingsbury, 2016).

As explained earlier, the engagement-ranked MFI method requires a pre-knowledge 
of students’ response time for each item and thus it may not be feasible for low-stakes 
CATs where each student responds to a different set of items selected from a large item 
bank. However, this method could still be employed in low-stakes, computerized assess-
ments where the same items are often used repeatedly for tracking students’ learning 
progress over time. For low-stakes CATs, the MFI-LE method could be a more feasible 
approach for diminishing the negative impact of disengagement on item selection and 
ability estimation. Especially with the conditional MFI-LE method, the flexibility of set-
ting an LE threshold could help accommodate different scenarios in low-stakes CATs 
(e.g., test-taking engagement issues only among low-ability students). In addition, the 
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MFI-LE methods proposed in this study could pave the way for more advanced CAT 
applications taking other types of test-taking behaviors into account during the test 
administration and thereby increasing the reliability and validity of low-stakes CATs 
(Wise, 2020).

Limitations and future direction

This study has several limitations. First, this study utilized response time as a proxy for 
test-taking engagement (e.g., rapid guesses, idle responses, and effortful responses). 
However, it is also possible to use additional variables (e.g., process data extracted from 
logfiles captured by the computer, students’ self-reports of test-taking engagement, 
and students’ previous test scores) to account for test-taking engagement in low-stakes 
CATs. Thus, future research can investigate how additional indicators of test-taking 
engagement could be incorporated into item selection to render low-stakes CATs more 
adaptable to different testing situations and students with different test-taking behaviors. 
Second, we demonstrated the engagement-ranked MFI and MFI-LE algorithms using 
real data from a cross-sectional assessment. However, test-taking engagement levels may 
change from one assessment to another, affecting decisions to be made based on the 
change between the test scores, such as identifying academic growth (Yildirim-Erbasli 
& Bulut, 2021). Future research is needed to better understand the impact of test-tak-
ing engagement on low-stakes CATs when the assessments are used to monitor perfor-
mance and progress over time. Third, we operationalized ability and LE as distinct latent 
traits and used both when finding the most optimal items during the item selection pro-
cess, instead of jointly modeling ability and engagement within a single model. Thus, 
researchers may consider using a multidimensional IRT (MIRT) framework to model 
ability and engagement jointly and then use the MIRT model to implement a multidi-
mensional CAT.

Conclusion
This study proposed new item selection algorithms that could minimize the negative 
influence of test-taking disengagement on item selection and ability estimation in low-
stakes CATs. The MFI-LE method showed great promise for enhancing the operational 
low-stakes CATs by optimally selecting items that are informative in terms of both abil-
ity and engagement. The utility of MFI-LE was evident, especially for low-ability stu-
dents since these students are more likely to show disengaged response behaviors in 
low-stakes assessments. Also, this study underscored the need for developing proactive 
remedies to deal with disengaged responses in real-time to optimize CAT administra-
tions more effectively.

Abbreviations
CAT   Computerized adaptive test
MFI  Maximum fisher information
LE  Latent engagement
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RMSE  Root-mean-squared error
cSEM  Conditional standard error of measurement
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