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Abstract 

Background:  Making accurate diagnoses in teams requires complex collaborative 
diagnostic reasoning skills, which require extensive training. In this study, we investi-
gated broad content-independent behavioral indicators of diagnostic accuracy and 
checked whether and how quickly diagnostic accuracy could be predicted from these 
behavioral indicators when they were displayed in a collaborative diagnostic reasoning 
simulation.

Methods:  A total of 73 medical students and 25 physicians were asked to diagnose 
patient cases in a medical training simulation with the help of an agent-based radiolo-
gist. Log files were automatically coded for collaborative diagnostic activities (CDAs; 
i.e., evidence generation, sharing and eliciting of evidence and hypotheses, drawing 
conclusions). These codes were transformed into bigrams that contained information 
about the time spent on and transitions between CDAs. Support vector machines with 
linear kernels, random forests, and gradient boosting machines were trained to classify 
whether a diagnostician could provide the correct diagnosis on the basis of the CDAs.

Results:  All algorithms performed well in predicting diagnostic accuracy in the train-
ing and testing phases. Yet, the random forest was selected as the final model because 
of its better performance (kappa = .40) in the testing phase. The model predicted 
diagnostic success with higher precision than it predicted diagnostic failure (sensitiv-
ity = .90; specificity = .46). A reliable prediction of diagnostic success  was possible after 
about two thirds of the median time spent on the diagnostic task. Most important for 
the prediction of diagnostic accuracy was the time spent on certain individual activi-
ties, such as evidence generation (typical for accurate diagnoses), and collaborative 
activities, such as sharing and eliciting evidence (typical for inaccurate diagnoses).

Conclusions:  This study advances the understanding of differences in the collabora-
tive diagnostic reasoning processes of successful and unsuccessful diagnosticians. Tak-
ing time to generate evidence at the beginning of the diagnostic task can help build 
an initial adequate representation of the diagnostic case that prestructures subsequent 
collaborative activities and is crucial for making accurate diagnoses. This information 
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could be used to provide adaptive process-based feedback on whether learners are on 
the right diagnostic track. Moreover, early instructional support in a diagnostic train-
ing task might help diagnosticians improve such individual diagnostic activities and 
prepare for effective collaboration. In addition, the ability to identify successful diag-
nosticians even before task completion might help adjust task difficulty to learners in 
real time.

Keywords:  Simulations, Collaborative diagnostic reasoning processes, Learning 
process analysis, Medical education, Logfile analysis, Supervised machine learning

Introduction
Training in collaborative diagnostic reasoning is important across various domains in 
higher education because, in practice, diagnosticians often work together in teams (e.g., 
in medical consultations, classrooms, scientific laboratories, therapeutical supervision, 
or industrial engineering). Previous research on collaborative problem solving (e.g., 
Graesser et al., 2018) has highlighted the need for training in collaboration skills, which 
form a key competence of the twenty-first century. For example, in order to assess a stu-
dent’s learning status or to diagnose a patient’s health problem accurately, teachers or 
physicians, respectively, must be able to generate, elicit, and share evidence as well as 
come up with and share hypotheses and draw conclusions (so-called collaborative diag-
nostic activities [CDAs]; Fischer et  al., 2014; Radkowitsch et  al., 2022). The improve-
ment of such complex skills is related to a constant increase in learners’ current zone of 
proximal development (Vygotsky, 1978), which describes what learners are currently not 
able to solve on their own but could certainly solve with external help. Thus, for optimal 
learning outcomes, there is a need for learning environments that include problem-solv-
ing tasks that are slightly more difficult than what learners can already solve indepen-
dently (Roosevelt, 2008).

Simulations are often used to train complex skills. They enable standardized repeti-
tions of individual learning steps and deliberate practice (Ericsson, 2004) and training 
in rarely occurring or critical real-life situations (e.g., rare or deadly diseases). There is 
evidence that simulations are particularly effective when the embedded instructional 
support is adaptive (Chernikova et al., 2020). However, properly and immediately adjust-
ing the appropriate instructional support to learners’ individual needs represents a chal-
lenge for instructional designers and educators. Moreover, being able to identify at what 
point in time learners can already solve the task without additional support might also 
be helpful for removing or fading out (Pea, 2004) instructional support that might even 
hinder learning (Kalyuga et al., 2003). One starting point for such an adjustment involves 
using machine learning to analyze learners’ behavior on the basis of process data that 
are recorded and stored by the computer system (e.g., log files). Previous studies have 
demonstrated that analyzing learners’ behavior can help identify how learners approach 
certain problems (Griffin and Care, 2015) and can aid the understanding of specific mis-
conceptions that arise in the learning process (e.g., Stadler et al., 2019). Earlier analyses 
showed that specific actions in the learning environment were associated with task com-
pletion success (Cirigliano et al., 2020). Thus, assessing behavioral indicators of diagnos-
tic reasoning skills (e.g., CDAs) and relating them to the diagnostic outcome can provide 
insights into whether learners currently have adequate or inadequate representations 
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of the diagnostic problem. For instance, such behavioral indictors may be beneficial for 
assessing whether a patient’s relevant signs and symptoms are adequately interpreted 
(Charlin et al., 2012). If a learner’s performance can be predicted before the diagnostic 
task is completed, instructors may be able to take early action to improve learning out-
comes. The information obtained from the analysis of CDAs could provide a promis-
ing starting point for performance-based individualized instructional support and could 
make a positive contribution to effective diagnostic training.

Collaborative diagnostic reasoning as a complex skill

The process of diagnosing can be considered the “goal-oriented collection and interpre-
tation of case-specific or problem-specific information to reduce uncertainty” (Heitz-
mann et  al., 2019, p. 4) to be able to make professional decisions. Specific diagnostic 
situations require planned or initiated actions based on observations of and information 
about the problem to meet the diagnostic goal. Building on the conceptual framework 
of scientific reasoning and argumentation (Fischer et al., 2014), Heitzmann et al. (2019) 
defined such actions as epistemic diagnostic activities, which consist of, for example, evi-
dence generation, evidence evaluation, hypothesis generation, and drawing conclusions 
(see also Klahr & Dunbar, 1988). These activities are grouped into a framework but can-
not be placed in a fixed general sequence or order. According to Fischer et  al. (2014), 
evidence generation refers to generating evidence in favor of or against a claim. Next, evi-
dence evaluation is aimed at assessing “the degree to which a certain piece of evidence 
supports a claim or theory” (Fischer et al., 2014, p. 34). Hypothesis generation refers to 
the process by which students frame possible answers to the question, hereby deriving 
them from plausible models, available theoretical frameworks, or empirical evidence 
that they have access to. Finally, in drawing conclusions, students integrate different 
pieces of evidence “by weighing every single piece according to the method by which it 
was generated and by the rules and criteria of the discipline” (Fischer et al., 2014, p. 35).

To ensure high diagnostic quality, practicing scientists, physicians, psychologists, 
teachers, and engineers often need to diagnose in teams. Collaborative diagnostic rea-
soning (and, more generally, collaborative problem solving) has some advantages over 
individual reasoning, such as dividing labor according to individual professions, differ-
ent perspectives, and knowledge bases (OECD, 2017), plus higher diagnostic accuracy 
(Tschan et al., 2009). However, existing research has demonstrated that students often 
lack collaborative skills (e.g., Hall & Buzzwell, 2012; O’Neill et al., 2013; Pauli et al., 2008) 
and that practitioners lack collaborative diagnostic reasoning skills (e.g., physicians; 
Tschan et  al., 2009). By extending Fischer et  al.’s (2014) framework of individual diag-
nostic activities to collaborative contexts, Radkowitsch and colleagues (2022) recently 
defined CDAs in their model of collaborative diagnostic reasoning. This model describes 
the diagnostic reasoning processes of two diagnosticians with different knowledge back-
grounds. In doing so, Radkowitsch and colleagues (2022) distinguished individual activi-
ties from social or collaborative activities, namely, sharing, elicitation, negotiation, and 
coordination. The model can also be viewed as an integration and extension of Liu et al.’s 
(2015) collaborative problem-solving framework and Klahr and Dunbar’s (1988) scien-
tific discovery as dual search (SDDS) model. More precisely, the collaborative diagnostic 
reasoning model combines individual and collaborative activities and integrates them 
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into CDAs referred to as eliciting, sharing, negotiating, and coordinating evidence as well 
as hypotheses (Radkowitsch et al., 2022). During the diagnostic reasoning process, these 
activities help diagnosticians construct and maintain a shared conception of a problem 
(Roschelle & Teasley, 1995). The quality of CDAs is assumed to be crucial for the success 
of the collaboration (Radkowitsch et al., 2022).

Using process data analysis for individualized learning support in the context 

of simulation‑based complex skills training

To foster complex skills (e.g., collaborative diagnostic reasoning), simulations have been 
established in various domains in higher education. Flight simulators have been used in 
pilot training for many years (Landriscina, 2012) just as surgical simulations are com-
mon in the medical context (Al-Kadi & Donnon, 2013). Standardized training in simula-
tions has different advantages over training in real-world scenarios. First, simulations 
can reduce the complexity of a situation while offering learners the opportunity to apply 
their knowledge to specific cases in standardized settings (Grossman et al., 2009). Sec-
ond, simulations enable repetitive deliberate practice, which has been considered to 
be crucial for acquiring professional expertise (Ericsson, 2004). Third, unlike real-life 
scenarios, simulations enable training while ensuring ethical safety regarding mental 
or physical human conditions (Gegenfurtner et al., 2014; Grossman et al., 2009). Use-
ful real-learning situations are often either rare (e.g., disruptive patient behavior) or 
too critical (e.g., amniotic fluid examination) to be used for training purposes. In real 
life, failure or complications would have serious unacceptable consequences (Ziv et al., 
2003). A large number of primary studies and several meta-analyses have yielded posi-
tive effects of simulation-based learning and have provided recommendations for their 
implementation (e.g., Chernikova et al., 2020; Cook et al., 2013). 

However, despite their potential, the effective use of simulations in training, espe-
cially in the field of collaborative diagnostic reasoning, remains challenging. To enhance 
highly effective learning that is based on complex and challenging problems, additional 
instructional support is often important (e.g., Hmelo-Silver et  al., 2007). Instructional 
support is considered to be particularly effective when it is adapted to learners’ indi-
vidual needs (i.e., microlevel; e.g., Plass & Pawar, 2020). Dynamic assessment that can 
be realized by measuring learners’ current performance in the problem-solving process 
(performance-based adaptation; e.g., VanLehn, 2011) can provide an adaptive basis for 
instructional support. One way to dynamically assess learners’ performance is to analyze 
learners’ behavior. This allows researchers to identify processes that are related to arriv-
ing at a successful solution to the problem (Griffin & Care, 2015) and to understand mis-
conceptions in the learning process (e.g., Stadler et al., 2019). Compared with looking 
at only the summative outcome measure of a learning process, considering the learning 
process itself also offers the advantage of identifying subtler differences among learners 
that might not be reflected in the outcome measure (Stadler et al., 2020). To foster col-
laborative diagnostic reasoning skills, it might be useful to detect whether learners are 
currently leaning toward a correct or incorrect diagnosis—which is related to whether 
they have adequate or inadequate representations of the patient’s problem—by predict-
ing diagnostic accuracy. Following the hierarchical model of clinical reasoning processes 
(MOT; Charlin et al., 2012), which depicts the complex process of clinical reasoning as a 
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network, these cognitive representations of the patient’s problem evolve and change as 
the diagnostic reasoning process unfolds.

In recent years, interest in predicting learners’ performance with machine learning has 
increased considerably (e.g., Baker & Inventado, 2014; Hilbert et al., 2021). For instance, 
previous studies have predicted learners’ performance to identify those at risk of failing 
a course (e.g., Tomasevic et al., 2020) or to support an intervention (e.g., San Pedro et al., 
2013). The data for such an assessment can be collected automatically in real time while 
the learners are exploring the learning content (e.g., stealth assessment; Shute, 2011). 
However, the analysis of learners’ behavior—especially during collaborative diagnostic 
reasoning procedures for automated assessments—based on wide, general behavioral 
indicators has not yet been sufficiently investigated or implemented in practice. First, 
previous studies that have analyzed learners’ behavior have tended to focus on problem-
solving strategies (e.g., Stadler et al., 2019) rather than on diagnostic activities. Second, 
the chosen behavioral indicators have been highly specific to the problem context pre-
sented in the learning environment (e.g., necessary and unnecessary actions for fix-
ing a water pump; Zhu et  al., 2016). A more general and replicable approach may be 
found in relating successful learning to more generic behavioral indicators that can be 
found across a broader range of diagnostic contexts (O’Neil et al., 2003). Predictions of 
diagnostic success could inform learners and instructions in real time whether or not 
learners are currently in need of instructional support in the collaborative diagnostic 
reasoning process and can thus help to individually address learners’ zone of proximal 
development (Vygotsky, 1978). Supporting learners with individual instructional sup-
port in single diagnostic cases enables dynamic diagnostic training, which is important 
for the learning of collaborative diagnostic reasoning skills. Research on complex prob-
lem solving has shown that learners use problems that have been solved as blueprints for 
similar new problems to find new solutions (Richter & Weber, 2013). The opportunity to 
use learners’ learning behavior to readjust instructional support for each diagnostic case 
would offer the advantage of being able to take learning progress into account.

However, beyond the ability to predict diagnostic success or failure, in order to effec-
tively adapt instructional support, it is necessary to better understand the behavior of 
successful and unsuccessful diagnosticians. We consider the CDAs to be broad process-
based indicators of collaborative diagnostic reasoning skills that can be used in various 
collaborative diagnostic contexts—from diagnosing diseases to assessing a student’s cur-
rent learning status—to identify differences in successful and unsuccessful diagnostic 
reasoning processes.

This study
The goals of this study were twofold. First, to provide a general and replicable approach 
for analyzing diagnostic reasoning processes, we aimed to link diagnostic accuracy to 
broad behavioral indicators by analyzing the CDAs displayed in a medical training simu-
lation using log files. We aimed to investigate differences in successful and unsuccessful 
diagnostic reasoning processes and to determine the extent to which CDAs could pre-
dict diagnostic accuracy. Second, we aimed to investigate how early diagnostic accuracy 
could be predicted from CDAs on the basis of behavior exhibited before, during, and 
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after collaboration. In this way, we aimed to exploratively identify early starting points 
for effective ways to adapt instructional support.

We addressed the following research questions:

1.	 To what extent can CDAs predict diagnostic accuracy in a medical training simula-
tion using machine learning classification models?

2.	 How early in the process of making a diagnosis can diagnostic accuracy be reliably 
predicted from CDAs in a medical training simulation using machine learning clas-
sification models?

Methods
Sample, simulation, and procedure

To predict diagnostic accuracy, we selected a sample with sufficiently high variance in 
prior knowledge. Participants were 73 medical students (Nfemale = 51) in their clinical 
years from the 5th semester and higher (M = 8.32 semesters, SD = 2.80) of a 6-year study 
program and 25 physicians from internal medicine (Nfemale = 11)  with a minimum of 
3 years of clinical experience (M = 13.6 years of clinical work, SD = 10.5). Participation 
for medical students was limited to those in their clinical years because we assumed that, 
in principle, students in their preclinical years have not yet generated systematic prior 
knowledge of radiology and internal medicine. Participation was voluntary. The mean 
age of the participating medical students was M = 24.9 (SD = 4.23); for the participating 
physicians, it was M = 42.0 (SD = 11.7).

In the text-based simulation, participants acted in the role of an internal specialist 
in the emergency department of a hospital. Figure 1 presents an overview of the struc-
ture of the simulation. Five patient cases that all had the same structure had to be pro-
cessed. Sequentially, participants received an electronic health record of five fictitious 
patients who all presented with a fever of unknown origin. The electronic health record 
was implemented as an electronic folder that contained information about the patients’ 
admission, their medical history, findings from a physical examination, and laboratory 
results. Participants could navigate between these sections by clicking on representa-
tively named buttons (e.g., medical history), which led to texts with the respective infor-
mation. The health record could be accessed during the entire diagnostic procedure. 
After individually processing the information presented in the health record, partici-
pants were asked to collaboratively generate further evidence by requesting a radiologi-
cal examination from an agent-based radiologist.

Participants filled out a request form by choosing a radiological examination and by 
sharing evidence of the suspected disease and hypotheses with the agent-based radiolo-
gist. The agent-based radiologist conducted the radiological examination only when the 
request was appropriately justified by the shared evidence and hypotheses. Participants 
then received a detailed document containing the radiological evidence they requested. 
Otherwise, participants were asked to revise their requests. After requesting the radio-
logical examination, participants could request up to 10 additional radiological exami-
nations. Finally, participants solved the patient case by indicating the diagnosis they 
thought was most likely. In sum, a participant’s task was to collect evidence and generate 
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hypotheses about a patient’s illness to reduce uncertainty about the final diagnosis. The 
simulation was implemented in the learning platform CASUS (www.​instr​uct.​eu). For 
further information about the development, implementation, and validation of the simu-
lation, see Radkowitsch et al. (2022). The study was conducted in a laboratory setting. 
Participants could work on the cases without time constraints but were asked to work 
efficiently. They were prompted to offer a solution to a case after 15 min. The total pro-
cessing time per case was Mdnmin = 15.26. The minimum median processing time was 
6.77 min, and the maximum was 26.03 min. Participants received 25€ as compensation 
for their participation.

Coding collaborative diagnostic activities and measuring diagnostic accuracy

Participants’ activities (i.e., their clicks and text entries) during the diagnostic reasoning 
process were automatically recorded and assigned to the five abovementioned previously 
specified CDAs (Radkowitsch et al., 2022). Due to the implementation of the simulation, 
some activities were individual diagnostic activities (e.g., evidence generation), whereas 
other activities were collaborative diagnostic activities with the agent-based radiologist 
(e.g., evidence sharing). The overview of the structure of the simulation in Fig. 1   con-
tains the corresponding assignment of activities to the CDAs within each section. The 
ways in which the activities were assigned to the activity categories is described below in 
more detail.

Fig. 1  Overview of the Structure of the Simulation With Corresponding Assignment of Activities to the CDAs

http://www.instruct.eu
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Evidence generation (EG)

Any individual activity by which learners directly received additional information 
about a patient’s health status was coded as evidence generation. This included any 
clicking within the health record as well as reading the results from the radiological 
examination.

Evidence elicitation (EE)

An activity was coded as evidence elicitation whenever participants asked the agent-
based radiologist to generate further evidence about a patient’s health status. The 
specific activities included choosing a body part about whose status participants 
required further evidence as well as choosing a radiological examination (e.g., com-
puter tomography [CT] scan) to examine the respective body part using the request 
form.

Evidence sharing (ES)

Anytime participants used the request form to share evidence about a patient’s health 
status (e.g., main symptoms, course of the disease) with the agent-based radiologist 
to help them interpret the radiological evidence, an activity was coded as evidence 
sharing.

Hypothesis sharing (HS)

Anytime participants used the request form to share a differential diagnosis with the 
agent-based radiologist, an activity was coded as hypothesis sharing.

Drawing conclusions (DC)

Learners concluded a patient case by choosing a final diagnosis from a long menu 
containing over 200 entries. To do so, participants were asked to type in the initial 
letters of a diagnosis, after which matching entries popped up, and from which they 
could select a fitting diagnosis. In addition, participants were asked to justify their 
diagnosis using a free text field. This activity and the previous one were coded as 
drawing conclusions. The quality of the final diagnosis was used as an indicator of 
diagnostic accuracy.

Diagnostic accuracy

We used the final diagnoses proposed by the participants as indicators of diagnos-
tic accuracy, which we used as an easy-to-interpret summative measure of diagnostic 
reasoning skills. The final diagnoses were coded by researchers from the learning sci-
ences based on sample solutions developed by medical experts as either 1 (correct) 
or 0 (incorrect). Two trained raters independently coded 20% of the data set. They 
achieved perfect interrater agreement (ICC = 1). The remaining data set was split in 
half, and each half was coded by one of the trained raters.
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Statistical analyses

All analyses described below were conducted in R 4.0.2 (R Core Team, 2020). The 
data sets, R script, and formulas are available from the open science framework (OSF) 
repository at https://​osf.​io/​2ne3y/?​view_​only=​13ae8​4318f​16487​5a67b​7919c​f85fd​21.

Feature extraction

To analyze participants’ activities during the diagnostic reasoning process, the total time 
participants worked on the patient cases was split into seconds for each patient case. We 
logged the collaborative diagnostic activity that was being performed for each second. 
This procedure resulted in 490 individual strings of activities (98 participants with five 
patient cases each) with the length of the total time-on-task measured in seconds. Sub-
sequently, 14 of the strings had to be removed due to missing values in the case solution, 
resulting in a final number of N = 476 strings. For the subsequent feature extraction, we 
opted to apply an exploratory approach.

An approach that was created for applying an exploratory search of repetitive patterns 
within long sequences is the n-gram method (Damashek, 1995). The n-gram method 
summarizes a long string of entries (e.g., individual diagnostic steps in a diagnostic rea-
soning process) as sequences of n consecutive elements. To limit the number of features, 
we split the strings of activities into n-grams of length 2 (bigrams), using the “ngram” R 
package (Schmidt & Heckendorf, 2017), resulting in 25 variables, each representing the 
frequency of the occurrence of a unique combination of activities (see He & von Davier, 
2016). More precisely, the resulting bigrams included two types: bigrams consisting of 
one activity (e.g., EE.EE) and bigrams consisting of two activities (e.g., EE.ES). The more 
frequently bigrams of two identical activities occurred, the more time was spent on 
that activity. The more frequently bigrams of two different activities occurred, the more 
frequently the transition from the first to the second activity occurred. Bigrams that 
occurred in only a maximum of one participant’s string of activities were not included in 
the following analyses.

To identify bigrams that led to correct or incorrect diagnoses, we employed the 
Chi-Square feature selection model proposed by He and von Davier (2016). Using this 
approach, we conducted a weighted Chi-Square test for each bigram to determine 
whether its occurrence and nonoccurrence were independent for participants who came 
up with the correct versus the incorrect diagnosis. We used the weighted frequencies of 
the bigrams in correct and incorrect diagnoses to calculate whether the bigrams were 
more typical of correct or incorrect diagnoses (more details can be found in Oakes et al., 
2001). 

Machine learning approaches

To investigate our research questions, we trained three different supervised machine 
learning models to classify whether a participant would provide the correct diagnosis 
for any specific patient on the basis of the bigrams. Specifically, we trained support vec-
tor machine (SVM) models with linear kernels, random forest (RF) models, and gradi-
ent boosting machine (GBM) models. We chose these models because they are widely 
used in educational data mining and are viewed, among others, as representatives of the 
state-of-the-art methods for predicting binary or categorical outcome variables inside 

https://osf.io/2ne3y/?view_only=13ae84318f164875a67b7919cf85fd21
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and outside of educational assessment (e.g., Costa et al., 2017; Fernández-Delgado et al., 
2014; Qiao & Jiao, 2018). Detailed insights into the calculation principles (including for-
mulas) can be found in Bonaccorso (2017).

SVMs classify data into two classes by finding the hyperplane that captures the largest 
distance between the data points in one class and those in the other class. The maximum 
width of the slab parallel to the hyperplane, which has no inner data points, is called the 
margin (Cortes and Vapnik, 1995). The data points at the left and right sides of the mar-
gin closest to the hyperplane (support vectors) are used as the starting point for maxi-
mizing the margin. With the help of the so-called kernel function, which is applied to the 
predictor variables, SVMs raise the variable space to a higher dimension and can thus 
also identify nonlinear relationships (Hilbert et al., 2021). Previous studies have shown 
that SVMs achieve better performance than other algorithms such as RFs or naïve 
bayes (e.g., Costa et al., 2017). Moreover, SVMs offer the advantage of being suitable for 
smaller data sets (Hussain et al., 2019). For the application of SVMs to our data set, we 
chose linear kernels to map linear relationships in the data in addition to nonlinear rela-
tionships that we captured with RFs and GBMs. RFs are based on decision trees and are 
used in classification and regression problems.

RFs constructs a certain number of single decision trees using random parts of the 
data to be classified. The procedure uses the test data on all constructed trees and 
assigns the most frequently occurring outcomes as labels to the test data (Breiman, 
2001). As ensembles of single decision trees, RFs have advantages over single trees in 
terms of predictive power (Fernández-Delgado et al., 2014). Due to the large number of 
trees (law of large numbers), RFs barely overfit compared with single decision trees or 
other tree-based ensemble methods, such as GBMs (Breiman, 2001). Moreover, RFs are 
easier to tune and less time-consuming than GBMs, as well as easier to interpret than 
other supervised machine learning models, such as SVMs (Hilbert et al., 2021).

In contrast to RF models, which train trees independently, GBMs construct decision 
trees sequentially so that each new tree can help compensate for errors in previous trees 
(gradient descent method). By limiting the maximum number of leaves and splits, each 
decision tree acts as a weak learner (a model that performs slightly better than a ran-
dom classifier/regressor) and does not dominate the prediction. GBM models allow 
high flexibility (Natekin & Knoll, 2013) and often achieve better performance than RFs 
(e.g., Qiao & Jiao, 2018) due to various hyperparameter options. Moreover, a strength of 
GBM models is that they can easily handle plenty of features and unbalanced data sets 
(Schröders et al., 2022).

Model development and evaluation

To train the models, we used the R packages “caret” (Kuhn, 2020), “ranger” (Wright & 
Ziegler, 2017), and “gbm” (Greenwell et al., 2020).

For all methods, the same data were used to train and test the models. First, we randomly 
split the data set into a training set (70% of the data) and a testing set (30% of the data). This 
resampling strategy is also called the holdout estimator (Pargent et al., 2022). The training 
set was then used to fit the predictive models. Unlike more conventional statistical models 
(e.g., linear regression), machine learning algorithms involve hyperparameters that have to 
be set before they are run (Probst et al., 2019). For SVM models with linear kernels, only 
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one hyperparameter (the cost value, which specifies how much the algorithm is “punished” 
for incorrect assignments) has to be tuned. The RF models were tuned to optimize mini-
mal node size (the minimum number of data points required in any given node to split it), 
splitrule (gini or extra trees), and the number of predictors considered for splitting at each 
node (mtry). Important hyperparameters for GBM models include the basis of the number 
of trees (total number of trees in the ensemble), the interaction depth (maximum nodes 
per tree), the shrinkage (learning rate), and the minimal number of observations in a node 
(n.minobsinnode).

While training, the abovementioned hyperparameters were tuned automatically for each 
model on the basis of model performance using 10 × 3 cross-validation (Fushiki, 2011). The 
cross-validation resulted in 30 iterations (10 folds, three repetitions) of training for each 
model, thus allowing us to determine the optimal hyperparameters and estimate the stabil-
ity of each model to avoid over- or underfitting.

The optimal model was selected automatically for each of the algorithms on the basis of 
the largest kappa value (degree of agreement between the classifications and the real data, 
taking into account the agreement that occurred by chance). To check whether the diag-
nostic accuracy could be predicted on the basis of unseen data (RQ1), the optimal model 
was evaluated in the testing data set. To evaluate the algorithms, the classification accuracy 
(proportion of correct classifications out of all classifications), sensitivity (proportion of 
true classified correct diagnoses), specificity (proportion of true classified incorrect diagno-
ses), positive predictive value (PPV; proportion of true classified correct diagnoses out of all 
diagnoses classified as correct), negative predictive value (NPV; proportion of true classi-
fied incorrect diagnoses out of all diagnoses classified as incorrect), and F1 value (weighted 
average of sensitivity and positive predictive value) were calculated in addition to kappa.

The algorithm with the best average kappa value resulting from the cross-validation 
(training phase) was selected for further analysis and interpretation. For this model, we esti-
mated the relative importance (Chen et al., 2020) of each bigram with the R package “caret” 
(Kuhn, 2020), which indicates how each feature affected the model’s performance (total 
classification accuracy). The higher the variable importance score, the more important the 
feature was for the overall prediction (Fisher et al., 2019). This provided some measure of 
how relevant any specific combination of activities was for the total prediction in relation 
to the others but could not be interpreted concerning size or direction. Machine learning 
models can become highly complex and are therefore sometimes referred to as black boxes 
(Yarkoni and Westfall, 2017), which make it difficult to interpret the individual contribution 
of each feature. However, for this study, we were mainly interested in the total prediction 
rather than in individual feature interpretation.

To address RQ2, the algorithm was then applied to 10 subsets of the original complete 
data, created by splitting the first 1200  s of the total processing time into time intervals 
of 120  s before extracting the features (bigrams). The data sets contained the behaviors 
(bigrams) that participants exhibited at the corresponding time points.

Results
Descriptive statistics

Table 1 presents the numbers of incorrect and correct diagnoses across the behavioral 
strings of physicians and medical students. Physicians and medical students came up 
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with correct diagnoses in 73% and 64% of the cases, respectively. However, this differ-
ence was not statistically significant, X2(1) = 3.52, p = .061. Overall, there was a higher 
proportion of correct diagnoses.

Research question 1

To investigate whether diagnostic accuracy could be predicted from observed behavior 
(RQ1), we first took a closer look at differences in the CDAs between the incorrect and 
correct diagnoses.

Table  2 summarizes the numbers of strings of incorrect and correct diagnoses in 
which the bigrams occurred and the total frequencies in those strings. The three bigrams 
that occurred in only one string of activities in either correct or incorrect diagnoses (HS.
DC, DC.ES, and DC.HS) were excluded from the following analyses, leaving a total of 22 
bigrams. Further, Table 2 presents the results of the Chi-Square feature selection model, 
which shows the differences in the probabilities of the bigrams for participants who 
correctly diagnosed the patient case and those who did not. Bigrams with higher Chi-
Square values were better at discriminating between the two groups.

When looking at the bigrams with only one activity (i.e., the bigrams that indicated 
how much time was spent on that activity), the bigram DC.DC (i.e., spending more time 
drawing conclusions) was by far the most discriminative bigram for participants who 
gave an incorrect diagnosis versus those who gave a correct diagnosis. Spending more 
time drawing conclusions occurred more often among participants who gave a correct 
diagnosis. Next was EE.EE (spending more time eliciting evidence), which was more typ-
ical of participants who gave an incorrect diagnosis, followed by HS.HS (spending more 
time sharing hypotheses) and EG.EG (spending more time generating evidence), both of 
which were more typical of participants who gave a correct diagnosis. For the bigrams 
with two activities (i.e., the bigrams that indicated more frequent transitions from the 
first to the second activity), EE.EG (switching back from the radiological request to the 
health record or to reading radiological test results), ES.EE, and HS.EE (both represent-
ing setbacks during the radiological request) were the most discriminative behaviors, 
all of which were more typical of participants who submitted an incorrect final diag-
nosis. Moreover, both switching between submitting the final diagnosis and requesting 
the agent-based radiologist (DC.EE, EE.DC, ES.DC) and studying the health record (DC.
EG) were among the most discriminative behaviors, all of which were more typical of 
participants who gave an incorrect diagnosis. All of the described bigrams were statisti-
cally significantly able to discriminate between the two groups.

Table 1  Distributions of Incorrect and Correct Diagnoses Across Behavioral Strings of Physicians and 
Medical Students

Number of behavioral strings Total

Incorrect diagnoses Correct diagnoses

Physicians 34 91 125

Medical students 128 223 351

Total 162 314 476
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Subsequently, we trained three different machine learning models to classify 
whether a participant would provide the correct diagnosis for any specific patient case 
on the basis of the 22 remaining bigrams. Table 3 summarizes the results for all mod-
els from the training phase (cross-validation) by presenting the average classification 

Table 2  Frequency of Occurrence of Bigrams in Incorrect and Correct Diagnoses

Note. EG = Evidence generation, EE = Evidence elicitation, ES = Evidence sharing. HS = Hypothesis sharing, DC = Drawing 
conclusions. Higher Chi-Square values indicate more discriminative bigrams. Dir. = Direction of the difference in the 
occurrence of bigrams between learners who diagnosed the case correctly and those who diagnosed the case incorrectly, 
“ + ” represents a more frequent occurrence of the bigram in the strings of learners who correctly diagnosed the case, “ − ” 
represents a more frequent occurrence of the bigram in the strings of learners who incorrectly diagnosed the case

Bigram Frequency in strings Weight Total frequency of bigrams Chi-Square test

Incorrect 
diagnoses

Correct
diagnoses

Incorrect
diagnoses

Correct
diagnoses

χ2 p Dir

Raw Wgt Raw Wgt

EG.EG 162 314 0.03 71,931 410.50 110,662 631.53 144.17  < .001  + 

EG EE 159 312 0.04 405 8.83 521 11.36 0.11 .735  − 

EG ES 38 47 2.27 49 110.59 54 121.87 49.80 <.001  − 

EG HS 14 21 3.04 18 54.56 29 87.91 31.62  <.001  + 

EG DC 156 309 0.06 230 9.63 376 15.74 6.44 .011  + 

EE EG 82 81 1.79 113 200.39 83 147.19 766.49  <.001  − 

EE.EE 162 313 0.03 11,727 113.68 8801 85.32 403.93  <.001  − 

EE ES 151 283 0.17 360 57.84 464 74.55 0.67 .414  − 

EE HS 48 60 2.06 73 149.57 77 157.76 101.46  <.001  − 

EE DC 9 3 3.33 9 29.93 3 9.98 410.76  <.001  − 

ES EG 70 82 1.63 87 141.08 97 157.29 56.34  <.001  − 

ES EE 54 39 2.22 74 163.26 54 119.14 633.63  <.001  − 

ES.ES 157 298 0.14 29,944 3588.27 39,799 4769.22 0.43 .514  − 

ES HS 146 280 0.20 301 57.41 464 88.49 19.51  <.001  + 

ES DC 6 2 3.39 6 20.27 2 6.76 278.01  <.001  − 

HS EG 147 270 0.24 265 59.37 423 94.77 31.10  <.001  + 

HS EE 54 41 2.16 68 146.03 48 103.08 620.17  <.001  − 

HS ES 52 78 1.81 58 104.47 97 174.71 88.15  <.001  + 

HS.HS 159 311 0.06 14,990 537.64 23,578 845.66 257.95  <.001  + 

HS DC 1 4 3.37 1 3.36 4 13.45 89.06  <.001  + 

DC EG 46 60 2.12 83 174.87 85 179.08 149.63  <.001  − 

DC EE 10 4 3.34 11 36.68 4 13.34 462.98  <.001  − 

DC ES 1 2 3.26 1 3.25 2 6.50 9.10 .003  + 

DC HS 0 2 3.10 0 0.00 2 6.19 114.52  <.001  + 

DC.DC 160 313 0.04 20,863 441.81 40,842 864.89 1203.06  <.001  + 

Table 3  Mean Classification Accuracy and Kappa From the Cross-Validation for All Algorithms

Note. CI 95% confidence interval

Measures SVM RF GBM

Mean accuracy .73 .75 .74

CIAccuracy [.71–.76] [.70–.79] [.70–.76]

Mean kappa .33 .37 .36

CIkappa [.24–.42] [.31–.49] [.30–.43]
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accuracy and kappa across all 30 repetitions. Generally, the different model itera-
tions did not differ much, thus suggesting no substantial overfitting. All algorithms 
showed significantly higher average classification accuracy than the no information 
rate (NIR), which indicates how many observations out of all observations would have 
been correctly classified if only the label “correct diagnosis” (the larger class) would 
have been assigned. The NIR of .66 corresponds to the proportion of all correct diag-
noses in all observations (see Table 1). Considering an ideal NIR of .50 (equally dis-
tributed classes; Batista et al., 2004), .66 deviates somewhat from this value but does 
not indicate a substantial skewness in favor of one of the classes. Beyond accuracy, 
the algorithms reached acceptable kappa values (Fleiss et  al., 2003). Moreover, the 
models did not differ significantly in their average classification accuracy values, F(2, 
87) = 0.56, p = .559, η2 = .01, or in their average kappa values, F(2, 87) = 0.72, p = .491, 
η2 = .02. However, since the RF showed descriptively a slightly better average kappa, it 
was selected to finally answer RQ1 and RQ2.

Table 4 presents the evaluation results of all algorithms in the testing data set. As can 
be seen, RF (final tuning parameters: min node size = 1, mtry = 2, and splitrule = gini), 
GBM (final tuning parameters: n.trees = 50, interaction.depth = 1, shrinkage = 0.1, and 
n.minobsinnode = 10), and SVM (final tuning parameter: cost value = 0.25) all achieved 
significantly higher classification accuracy than the NIR as well as acceptable kappa 
values (Fleiss et al., 2003). Strikingly, all models showed high sensitivity, and good PPV 
and F1 values but rather low specificity, indicating that correct diagnoses were substan-
tially better predicted than incorrect diagnoses. However, all models reached accept-
able NPV values, indicating precision in classifying incorrect diagnoses (many of the 
diagnoses classified as “incorrect” were indeed incorrect diagnoses). Overall, the algo-
rithms did not differ greatly in their performance. The final selected algorithm, the RF 
model, achieved acceptable to good values on all measures (classification accuracy = .75, 
kappa = .40, sensitivity = .90, specificity = .46, PPV = .77, NPV = .71, and F1 = .83) and 
was therefore selected for further interpretation and analyses.

Figure  2 illustrates the bigrams’ relative importance in the RF model. By far most 
important for the overall prediction was how much time was spent eliciting evidence 
(EE.EE) followed by the amount of time spent drawing conclusions (DC.DC), shar-
ing evidence (ES.ES), generating evidence (EG.EG), and sharing hypotheses (HS.HS). 

Table 4  Results of the Evaluation of the Algorithms in the Testing Data Set

Note. NIR = Proportion of correct diagnoses in all observations, Acc = Classification accuracy, PPV = Positive predictive value, 
NPV = Negative predictive value

Measures SVM RF GBM

NIR (.66)

Acc .75 .75 .74 

p-value [Acc > NIR] .012 .011 .029

Kappa .39 .40 .40

Sensitivity .91 .90 .84

Specificity .44 .46 .54

PPV .76 .77 .78

NPV .72 .71 .63

F1 .83 .83 .81
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Moreover, the analysis revealed that the most important bigrams with two activities 
were the frequency of switching between evidence generation and evidence elicitation 
(EG.EE; EE.EG) as well as the frequency of transitions from evidence elicitation to evi-
dence sharing (EE.ES).

Research question 2

To investigate how early during diagnosing it is possible to reliably predict diagnostic 
accuracy on the basis of CDAs (RQ2), we applied the final RF model to a sequence of 

Fig. 2  Relative Importance of Each Bigram for the Final RF Model. EG Evidence generation, EE Evidence 
elicitation, ES Evidence sharing, HS Hypothesis sharing, DC Drawing conclusions

Fig. 3  Performance Measures for the Random Forest Model Applied to Increasing Amounts of Data. The 
horizontal lines represent the final values for the RF algorithm based on the original complete data set



Page 16 of 24Richters et al. Large-scale Assessments in Education            (2023) 11:3 

subsets of the complete data that included only the actions observed in the first 120 to 
1200  s. As can be seen in Fig.  3, classification accuracy, kappa, sensitivity, and speci-
ficity approximated the values estimated for the complete data (horizontal lines) after 
1200 s. In the first 120 s, the model did not perform better than the NIR of .66 (clas-
sification  accuracy = .66, sensitivity = 1, kappa = 0, specificity = 0). From second 240, 
the performance slowly increased and asymptotically approached the final values in the 
complete data set. More precisely, in second 360, the accuracy exceeded the NIR until it 
reached approximately its final value in the complete data set at second 1200 with 0.86. 
Similarly, the kappa value increased over time (largest increase between seconds 600 
and 840). At second 120, the RF began with a sensitivity (correct classification of correct 
diagnoses) of 1 (100%) because, in the beginning, the model classified all observations as 
“correct.” Up to second 720, the sensitivity slowly decreased, while kappa and specific-
ity increased, until sensitivity approximately reached its final value in the complete data 
set with .96 after 1200 s. By contrast, at second 120, the model began with a specificity 
(correct classification of incorrect diagnoses) of 0 (0%) but approximately approached 
the final value over time with .69. Overall, it can be seen from the graph that the model’s 
performance took on acceptable predictive values from about second 840. Correct diag-
noses could be predicted particularly well after 600 s (10 min) or after two thirds (66%) 
of the median time (15 min) had been spent on the patient case.

Discussion
This study examined the extent to which and how quickly diagnostic accuracy could 
be predicted from learners’ engagement in CDAs based on log file data from a medical 
simulation with the help of machine learning. Three different classification algorithms 
(SVM, RF, GBM) reached acceptable overall prediction quality. Due to slightly better 
performance, the RF model was selected for further interpretation and analysis of how 
early it is possible to achieve a reliable prediction of diagnostic accuracy during diagnos-
ing on the basis of CDAs. The results showed that after approximately two thirds of the 
median time learners spent on the diagnostic task, the RF algorithm was able to reliably 
predict diagnostic success. Moreover, the time spent on CDAs was especially important 
for predicting diagnostic accuracy and was the best at distinguishing between correct 
and incorrect diagnoses. While spending more time engaged in individual activities (e.g., 
generating evidence and drawing conclusions) was more typical of successful diagnosti-
cians, spending more time engaged in collaborative activities (e.g., eliciting and sharing 
evidence; i.e., interaction with the agent-based radiologist) tended to be behavior that 
was more typical of unsuccessful diagnosticians. These findings are aligned with previ-
ous work that showed somewhat similar results in the context of complex problem solv-
ing. For example, Stadler et al. (2019) found that successful problem solvers spent more 
time reflecting on the task (i.e., they spent more time drawing conclusions), whereas 
unsuccessful problem solvers spent more time performing activities that involved gath-
ering information. However, the equivalent results for unsuccessful diagnosticians in the 
context of our simulation apply only to collaborative engagement with the evidence (i.e., 
spending more time eliciting and sharing evidence as opposed to spending more time 
generating evidence).
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Previous research found that time spent on tasks was moderated by prior knowledge 
level (e.g., Goldhammer et al., 2014). Our study adds to this line of research by qualify-
ing the types of activities within the task. Considering the MOT model (Charlin et al., 
2012), in contrast to unsuccessful diagnosticians, successful diagnosticians should be 
able to identify early case cues, have more specific initial representations, and be bet-
ter able to determine the relevant objectives of the encounter. Applied to our simula-
tion, when successful diagnosticians have a concrete suspected diagnosis, they are able 
to make a more specific radiological request that they know will help them find support 
for or falsify their diagnosis. As a consequence, they consult the radiologist less often 
and elicit less evidence. Instead, they spend more time carefully processing the informa-
tion from the health record and radiological test results, and at the end, they spend more 
time drawing conclusions before settling on a final diagnosis. On the other hand, unsuc-
cessful diagnosticians might have trouble identifying early cues in the patient case and 
determining the appropriate objectives of the patient encounter (Bowen, 2006). Com-
pared with diagnosticians who have a proper initial patient representation, they urgently 
require further radiological information to be able to diagnose the case but might have 
trouble further processing this large amount of weakly organized information (Stadler 
et al., 2019), as they lack a proper initial representation. Thus, these diagnosticians have 
trouble making optimal use of collaboration as a source of information (Radkowitsch 
et al., 2022) because they have both no clue about what additional information to look 
for in the patient and problems with sharing relevant information with the collaboration 
partner (Tschan et  al., 2009), leading to an increasing amount of time spent selecting 
appropriate examinations and sharing evidence from the health record. This interpreta-
tion would be supported by the frequent transitions and setbacks typically encountered 
by unsuccessful diagnosticians while working in the simulation. One reason for frequent 
transitions within the radiological request is that these diagnosticians request a larger 
number of examinations, supporting the assumption that they have a greater need for 
additional radiological evidence. Diagnosticians who displayed frequent switches from 
the radiological request form to the health record may have lacked a concrete idea about 
the patient’s problem at that time, had several possible suspected diagnoses in mind, and 
were unable to retain information from the health record in their working memory while 
simultaneously implementing the requirements of collaboration. Further, switching back 
and forth between submitting the final diagnosis (drawing conclusions) and dealing with 
evidence by either requesting the radiologist and studying the health record (generat-
ing and eliciting evidence) or sharing patient information with the radiologist (sharing 
evidence) are typical behaviors of unsuccessful diagnosticians. This finding most likely 
indicates that these diagnosticians have problems using the evidence appropriately to 
validate or exclude a particular hypothesis from their set of suspected hypotheses (evi-
dence evaluation).

Notably, the Chi-Square feature selection model revealed that the above described 
transitions from one CDA to another and switching between CDAs, both of which are 
related to incorrect diagnoses, better distinguish between successful and unsuccess-
ful diagnosticians than the time spent on these activities. However, in the RF model, 
the time spent on CDAs was clearly most important for the overall prediction. Thus, 
we assume that beyond the Chi-Square test, the prediction of the RF model may have 
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revealed additional nonlinear relationships between CDAs and diagnostic accuracy 
(black box problem; Yarkoni and Westfall, 2017).

Taken together, these findings on the differences between successful and unsuccess-
ful diagnosticians suggest that, at least in the context of our simulation, an adequate 
initial representation of the case is crucial for diagnostic success. The information on 
adequate or inadequate initial representations of the case could be used to provide adap-
tive process-based feedback on whether learners are heading toward correct diagno-
ses. On the other hand, an inadequate representation can hardly be compensated for by 
subsequent collaboration with the agent-based radiologist. Thus, in the context of our 
simulation, the agent tended not to be helpful to diagnosticians who were on the wrong 
track. Further, deviations from the intended structure of the simulation were more likely 
to be indicators of misdiagnoses, thus applying to a wide range of expertise. However, 
referring to the high sensitivity but low specificity achieved by our model, we were able 
to reliably predict correct diagnoses better and earlier than incorrect ones. We assume 
that one reason for the low specificity compared with the high sensitivity is that in our 
sample successful diagnosticians may not differ in their behavior as much as unsuccess-
ful diagnosticians. After reading the health record, successful diagnosticians enter the 
collaboration with an adequate mental representation, through which they can make 
targeted radiologic requests to reduce diagnostic uncertainty regarding suspected diag-
noses, and solve the diagnostic case correctly. In contrast, the misdiagnoses of unsuc-
cessful diagnosticians could be due to cognitive misbehavior of various causes, which 
manifests itself at the simulation level in different behavior. For example, recent analyses 
on the behavior after impasses in the context of the same simulation show that diagnos-
ticians differ in their success in identifying and subsequently compensating for errors in 
the diagnostic reasoning process (Heitzmann et al., 2023). Future research may follow 
this line of research and examine the behaviors that lead to an incorrect diagnosis in 
more detail.

Our study represents a “proof of concept” for one way in which the prediction of suc-
cessful and unsuccessful diagnosticians using the behavior displayed in the simulation 
could be used in microadaptive learning environments. Yet, further research will be 
necessary. Early predictions of learners heading toward a correct diagnosis can inform 
instructors and educators to remove instructional support in real time before it has 
negative effects on learning (Kalyuga et al., 2003). Our prediction of correct diagnoses 
was successful only after two thirds of the diagnostic reasoning process and thus cannot 
necessarily be considered an early prediction, for example, as shown by Ulitzsch et al. 
(2022), when they used only about one third of their examined clickstream data in the 
context of complex problem-solving. However, because we obtained the information 
on diagnostic success before learners completed the diagnostic task, it is still possible 
to adjust the task difficulty in real time or in the upcoming task (Roosevelt, 2008) to 
address learners’ zone of proximal development (Vygotsky, 1978). Moreover, to increase 
the likelihood of building a correct initial case representation that prepares and pre-
structures the individual diagnostic reasoning process for collaborating with the agent-
based radiologist, learners could receive prompts that remind them to review the health 
record and radiological test results properly and help them integrate the information 
into hypotheses. Conceivable types of scaffolding may be reflection prompts (Mamede 
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and Schmidt, 2017), which encourage learners to reflect on the evidence they generated 
in terms of potential hypotheses.

Limitations and further research

In interpreting these findings, there are some limitations to be considered. The first 
relates to the prediction of diagnostic success after beginning the diagnostic reasoning 
process, which was possible only after 10 min because the behavior in the earlier min-
utes was probably not diverse enough.

The reason for this finding can be seen in the rather coarse granulation level of the 
coded log files of the CDAs, which might not have been fine enough to identify early 
subtle differences in the behaviors of successful and unsuccessful diagnosticians. How-
ever, the use of broad diagnostic indicators is also one of the strengths of this study, as 
they can be applied to other diagnostic contexts for generalization at a low threshold. 
Nevertheless, future process analyses could investigate diagnostic behavior at finer cod-
ing levels to uncover further latent differences between successful and unsuccessful 
diagnosticians.

Second, at least to some extent, the use of bigrams limited the insights that could have 
been gained about the behavior of successful and unsuccessful diagnosticians if trigrams 
(e.g., EE.ES.HS), which would have included two transitions, had been used. Alterna-
tively, unigrams (e.g., EE) might have been interpretable in a more straightforward way. 
However, trigrams would have extensively increased the number of possible features 
(k = 125), and unigrams would have indicated only the time spent on CDAs without con-
sidering transitions from one to another. To verify our choice of bigrams, we repeated 
the Chi-Square test with trigrams to control for possible significant sequences of two 
transitions. We found that the ranking of the most important indicators of diagnostic 
success and failure did not change such that, for each strong discriminative bigram (e.g., 
EE.EG.), both possible trigrams (EE.EE.EG; EE.EG.EG) discriminated equally well. Inter-
ested readers can find these analyses on the OSF. Moreover, our approach to feature 
extraction did not consider participants’ pauses between activities, even though pausing 
behavior may provide a valuable source of information (e.g., Tenison and Arslan, 2020). 
Pausing behavior, for instance, may indicate reflective thinking about the diagnostic rea-
soning process or may be linked to behavioral responses following errors or impasses. 
Since the n-gram approach is not necessarily the best one to capture pausing behavior, 
approaches more appropriate for timing data may be considered in future research.

Third, we did not consider case difficulty, case typicality, or the prior knowledge or 
expertise level of diagnosticians in our prediction models. However, the fact that our 
algorithm was able to reliably predict diagnostic accuracy across different cases and 
expertise levels is a strong sign of robustness. Further, another study with the same tasks 
found that changes in difficulty across tasks led to changes in time on task regardless of 
participants’ level of expertise (Stadler et al., 2021), further supporting their equivalence 
in typicality. However, our interpretations of the behavior of successful versus unsuc-
cessful diagnosticians were mainly valid for cases in which early cues already pointed 
to the correct diagnosis (typical cases). The extent to which the algorithms can predict 
similar results exclusively for atypical cases needs to be investigated in further studies.
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Moreover, the present analysis focused on diagnostic accuracy and not on learning as 
a change in knowledge and skills. It is possible that our participants who “gambled the 
radiologist” by sharing and requesting a lot of information may be among those who still 
failed to reach a correct conclusion but still learned a lot from the simulation. Explor-
ing complex problem-solving tasks with the goal of finding out as much as possible, 
without the goal of establishing a well-supported solution or diagnosis may be an effec-
tive approach to learning, as it is connected to lower cognitive load (goal-free instruc-
tion; Sweller et  al., 2019). Finally, the study participants in our setting interacted with 
an agent. A recent study found no differences between agents and human collaborators 
in the assessment of collaborative problem solving in PISA (Herborn et  al., 2020), yet 
agent-based collaboration carries the risk of being a poor substitute for natural collabo-
ration. However, we chose agent-based collaboration for one significant advantage: In 
contrast to human-to-human collaboration, it enabled the standardized measurement of 
collaborative diagnostic reasoning processes by holding the agent’s behavior and knowl-
edge level constant. In addition, the simulation’s interface (request form) and its struc-
ture were carefully developed by learning scientists and medical experts on the basis of 
real clinical situations in which an internist collaborates with a radiologist, who serves as 
a potential additional source of evidence, to reduce further diagnostic uncertainty. Yet, 
future research should address the transfer to human-to-human collaboration in diag-
nostic settings.

Conclusion
Even though having the competence to provide a correct diagnosis collaboratively is rel-
evant in many domains, the fostering of collaborative diagnostic reasoning has yet to 
be thoroughly investigated. Simulations with dynamic individual learning support are 
a promising approach for fostering such complex skills. The present study identified 
behavioral characteristics for successful and unsuccessful diagnosticians in a collabora-
tive medical training simulation based on CDAs—broad theoretical indicators that can 
be found in various diagnostic contexts. We used these indicators to develop a model 
that enabled a reliable and robust prediction of diagnostic accuracy across diagnosti-
cians with varying expertise levels and different diagnostic cases. The study provides 
preliminary evidence that (a) the individual diagnostic reasoning process controls the 
collaborative diagnostic reasoning process and is thus crucial for overall diagnostic suc-
cess and that (b) diagnostic success can be predicted better than diagnostic failure, and 
after only 66% of the average time spent on the diagnostic case, which might be due to 
the fact that diagnostic failure underlies more heterogeneous behavior than diagnostic 
success.

Our study is an example of how log-file-based process data analyses could be further 
used in adaptive learning environments to individually foster collaborative diagnostic 
reasoning skills in a targeted manner. These insights can open up new ways to conduct 
collaborative diagnostic training both within and outside of higher education.
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