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Abstract 

In educational and psychological research, it is common to use latent factors to 
represent constructs and then to examine covariate effects on these latent factors. 
Using empirical data, this study applied three approaches to covariate effects on 
latent factors: the multiple-indicator multiple-cause (MIMIC) approach, multiple group 
confirmatory factor analysis (MG-CFA) approach, and the structural equation model 
trees (SEM Trees) approach. The MIMIC approach directly models covariate effects 
on latent factors. The MG-CFA approach allows testing of measurement invariance 
before latent factor means could be compared. The more recently developed SEM 
Trees approach partitions the sample into homogenous subsets based on the covari-
ate space; model parameters are estimated separately for each subgroup. We applied 
the three approaches using an empirical dataset extracted from the eighth-grade U.S. 
data from the Trends in International Mathematics and Science Study 2019 database. 
All approaches suggested differences among mathematics achievement categories for 
the latent factor of mathematics self-concept. In addition, language spoken at home 
did not seem to affect students’ mathematics self-concept. Despite these general find-
ings, the three approaches provided different pieces of information regarding covariate 
effects. For all models, we appropriately considered the complex data structure and 
sampling weights following recent recommendations for analyzing large-scale assess-
ment data.

Keywords:  Confirmatory factor analysis, MIMIC model, Multiple group analysis, SEM 
Trees, TIMSS

Background
In educational and psychological research, it is common to use latent factors to repre-
sent constructs. Latent factors are often established using the common factor model that 
includes both exploratory and confirmatory factor models. After factor models are run 
and tested against empirical data, there is usually a need for further analysis that involves 
effects of other covariates. For example, researchers may be interested in knowing 
whether the same factor structure would work for a normative sample vs. a referral sam-
ple (e.g., Parkin & Wang, 2021) or whether student sex and grade would be significant 
predictors of classroom engagement (e.g., Wang et  al., 2014b). Within the framework 
of structural equation modeling (SEM), there are typically two methods for covariate 
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effects on latent factors. The first is the multiple-indicator multiple-cause (MIMIC) 
approach. With this approach, the covariates are included in the model as predictors of 
the latent factors; the direct effects of covariates on the latent factors are interpreted in 
the same way as regression coefficients. Statistical significance and effect sizes can also 
be obtained. The second approach, particularly when the covariates are categorical vari-
ables, invokes multiple group analysis where data are divided according to the values on 
the categorical variables and equality of model parameters (e.g., factor loading, indicator 
intercepts, latent factor means) across groups can be tested.

These two approaches have been widely used. With the MIMIC approach, it is easy 
to accommodate many covariates and both continuous and categorical covariates can 
be used. However, the MIMIC model assumes that latent factors are measured in the 
same way for different values of the covariates. Further, only linear (and variants of lin-
ear) relationships between the covariates and latent factors are allowed.

In contrast, for multiple group analysis, model parameters are allowed to vary and 
invariance between groups can be tested. It is also advised that measurement invari-
ance testing precedes comparisons of the groups on the latent factors (Meredith, 1993; 
Millsap, 1997; Rensvold & Cheung, 1998). Compared to MIMIC, multiple group analysis 
is typically limited to a small number of groups, although Bayesian methods have been 
proposed for handling many groups (Muthen & Asparouhov, 2014).

Recently, structural equation model trees (SEM Trees; Brandmaier et al., 2013) have 
been proposed. SEM Trees are a generalization of decision trees that build a tree struc-
ture to separate data into subsets. The same SEM model is fit to data from each subset, 
but model parameters are separately estimated for each subset. The splitting of the data 
into subsets is based on covariates and done recursively with some criteria and stopping 
rules. SEM Trees have advantages in examining covariate effects because they can han-
dle many different types of covariates and the relationships between the covariates and 
latent factors can be nonlinear. Further, it is not necessary to pre-specify the relation-
ships, allowing data-driven explorations.

In this paper, we compare and contrast the three methods to examine the effects of 
covariates on the latent factor of mathematics self-concept using the U.S. eighth-grade 
data from the Trends in International Mathematics and Science Study (TIMSS) 2019 
database (Fishbein et al., 2021).

Confirmatory factor analysis

Confirmatory Factor Analysis (CFA) is a popular measurement model used by research-
ers in educational, psychological, and social science fields. Under CFA, it is hypothe-
sized that a latent factor is measured by multiple indicator variables. The latent factors 
would typically represent some type of unobserved constructs (e.g., motivation, engage-
ment, attitudes) that are manifested by the observed indicator variables. One of the 
main advantages of CFA is that the latent factors are free from measurement errors. 
With CFA, all measurement error is assumed to be part of the observed indicator vari-
ables, and the latent factors represent the pure, shared variance among the indicators. 
Due to this, the effects of covariates on the latent factors are not affected by attenuated 
relationships.
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CFA is a type of common factor model (Brown, 2006; Thurstone, 1947). The com-
mon factor postulates that each measured variable is a linear function of one or more 
common factors and a unique variable. Once the common factor(s) are removed, the 
observed variables are uncorrelated with each other. The unique variable is a combina-
tion of measurement error and specific error that is due to the selection of the measured 
variable. Suppose there are data of N participants on p observed variables and the score 
for the ith person on the jth variable is denoted as Yij . The linear factor model can be 
written as

In matrix form, the response vector of participant i can be written as

where yi is a p × 1 vector of p observed variables, v is the p × 1 vector of item intercepts, 
� is a p × m matrix of factor loadings, ηi ∼ N (κ ,�) is an m × 1 vector of common fac-
tors and � is an m × m matrix of factor covariance matrix, εi ∼ N (0,�) is a p × 1 vector 
of unique factors and � is a p × p matrix of unique variances and covariances.

Further, it is assumed that
E(ηi) = 0 , E(εi) = 0 , and Cov(ηi, εi) = 0.
Under these assumptions, the population mean vector µ and the population covari-

ance matrix � of the p observed variables can be written, respectively, as

where � is a p × p population covariance matrix of the observed variables, � is an 
m × m matrix of factor covariance matrix, � is a p × p matrix of unique variances and 
covariances.

Because latent factors are unobserved, it is necessary to set a location and metric for 
each latent factor. Two methods are commonly used: (a) putting the latent factors on a 
scale of zero mean and standard deviation of 1; and (b) choosing a marker indicator and 
set its loading to 1 and intercept to 0. Another method, called the effects coding method, 
imposes linear constraints on the unstandardized pattern coefficients to identify the 
model and can also be used (Little et al., 2006).

Covariate effects on latent factors

Whereas CFA, as a measurement technique, is often used for scale development and 
validation (typically together with exploratory factor analysis—another common factor 
model; e.g., Pratscher et al., 2019), it is also widely used in examining covariate effects. 
These covariates could represent demographical differences among individuals, or 
they could be attitudinal, psychological, situational, or trait variables. For example, the 
researcher may be interested in whether age is related to the latent factor means (e.g., 
Frisby & Wang, 2016). Covariates could be observed variables, or they themselves could 

Yij = vj + �j1η1i + �j2η2i + ...+ �jkηki + εij
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be unobserved and constructed from measurement models such as CFA. For this study, 
only observed covariates are considered.

MIMIC approach to covariate effects

For (observed) covariate effects on latent factors, based on Eq. (1), we further have

where xi is a q × 1 vector of observed covariates, Ŵ is an m × q matrix of regression coef-
ficients representing the covariate effects on latent factors, ζi is an m × 1 vector of distur-
bances, ζi ∼ N (0,�) , and α is an m × 1 vector of intercepts of the latent factors that are 
typically set to be zero.

The model parameter vector then is θ = (v,�, κ ,�,�,Ŵ,� ,α) . For model identifi-
cation, it is often the case that diag(�) = I , κ = 0 , v = 0 , α = 0 (see Wu & Estabrook, 
2016).

The MIMIC model is a single-group analysis and a special type of the full SEM model. 
In a MIMIC model, covariates directly affect the latent factor(s) and the path coefficients 
from the covariates to the latent factor(s) represent their effects. With a categorical 
covariate with more than two categories, some coding scheme (e.g., dummy coding) is 
used to create dummy variables. The effects of dummy variables on the latent factor(s) 
represent group differences, controlling for the other covariate(s).

The MIMIC approach is a direct extension of the linear regression model. The regu-
lar assumptions for regression models (independence of observations, linearity, and no 
correlations between covariates and the disturbance) also apply to the MIMIC model. 
A practical difference between the MIMIC model and the regression model is that the 
coefficients from dummy variables to the latent factor(s) in the MIMIC model should be 
standardized with respect to the latent factors because the scale of the latent factors is 
arbitrary, whereas in regression the unstandardized coefficients reflect group compari-
sons on the dependent variable.

The MIMIC approach is a standard method in SEM software packages such as Mplus 
(Muthén & Muthén, 1998–2017) and the “lavaan” R package (Rosseel, 2012).

Multiple group confirmatory factor analysis

When the covariates are categorical variables with a relatively small number of catego-
ries, their effects can be and often are examined using multiple group CFA (MG-CFA). 
The advantage of using MG-CFA is that cross-group equality of different types of param-
eters (e.g., factor means, factor variances, and covariates) can be tested. In addition to 
structural level parameters that involve latent factors and relationships between them, 
measurement level parameters—which represent relationships between latent factors 
and the observed indicators variables—are often investigated as well. There is a large 
body of literature on measurement invariance under the CFA framework, both meth-
odologically (e.g., Liu et al., 2017; Meredith, 1993; Millsap, 2011), and empirical applica-
tions (e.g., Chan et al., 2019).

MG-CFA for covariate effects can be thought of as an extension of the analysis of vari-
ance (ANOVA) for group differences on observed means. Population parameters for 

(4)ηi = α+ Ŵxi + ζi
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different groups are specified and tested, typically through null hypothesis significance 
testing (NHST). For ANOVA, the population parameters for NHST are the means, and 
the testing assumes that the groups have the same variance on the outcome variable in 
the population. When MG-CFA is used for covariate effects, the population parameters 
to be tested under NHST usually include mean differences on the latent factors (for 
identification purposes, the latent factor means for a reference group are usually con-
strained to zero), factor variances and covariances; however, other parameters can also 
be tested.

For MG-CFA, group sizes should be large enough to run CFA using data from indi-
vidual groups. In addition, when there are many groups, even small differences between 
model parameters would be statistically significant, although Bayesian methods could be 
used for testing measurement invariance among many groups (Muthen & Asparouhov, 
2014). When the covariate is continuous, some categorization is necessary before con-
ducting MG-CFA.

When a covariate x represents group membership, instead of explicitly modeling the 
effect of x on latent factors as in Eq. (4), the covariate is used to subset data in MG-CFA. 
When there are multiple covariates, the researcher can either run multiple MG-CFA 
models, each time with a single covariate, or construct groups based on these covari-
ates before conducting MG-CFA. The latter method may suffer from small sample sizes 
when the data are sliced in more ways. With G groups, Eqs. (5) and (6) show the popula-
tion mean vector and the population covariance matrix of the p observed indicator vari-
ables, respectively, for a specific group g.

The parameter vector θ is expanded to include parameters for multiple groups. For 
model identification, it is necessary to constrain parameters for each group (Millsap, 
2011). When there are no equality constraints across groups, identification constraints 
for each group are similar to those for single group CFA (e.g., identifying the scale of 
latent factors). With equality constraints across groups (e.g., equal factor loadings, equal 
item intercepts), identification constraints are typically different for one group (e.g., the 
first group) compared to the other groups.

The biggest advantage of using MG-CFA is testing equality of different types of param-
eters across groups (i.e., invariance testing). In fact, invariance testing has been increas-
ingly used in the development and validation and scales that involve CFA (e.g., Wang 
et al., 2014b). Like the MIMIC approach, MG-CFA is a standard method in SEM soft-
ware packages such as Mplus (Muthén & Muthén, 1998–2017) and the “lavaan” R pack-
age (Rosseel, 2012).

Decision trees

Decision trees, also called trees, classification and regression trees (CART; Breiman 
et  al., 2017; Loh, 2011), or recursive partitioning, are methods to split (i.e., partition) 
the space of covariates into subsets. Response values are similar within each subset but 

(5)µg= vg+�gκg

(6)�g = �g�g�g
′
+�g
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different between subsets. The partitioning is repeated recursively until no splitting 
could be done based on some stopping criteria. When the outcome is a categorical varia-
ble, classification trees are built; when the outcome is numeric, regression trees are built.

Decision trees have been extended to incorporate parametric models (model-based 
recursive partitioning; MOB; Zeileis et al., 2008). With MOB, a stochastic model (e.g., 
a regression model) is assumed (called the template model); and the sample is split into 
groups with different values of model parameters. For example, if the template model is 
a regression model, the intercept and slopes may vary between subgroups according to 
some covariates. Therefore, in an example of regressing achievement on motivation, the 
intercept and slope may differ for students with different socioeconomic status (SES); 
therefore, a tree could use SES to divide participants based on differences in the regres-
sion model parameters.

MOB has been used to incorporate different stochastic models (e.g., Item Response 
Theory models) and decision trees (Brandmaier et  al., 2013; Jeon & De Boeck, 2019; 
Merkle et  al., 2014; Spratto et  al., 2021; Wang et  al., 2014a). SEM Trees (Brandmaier 
et al., 2013) combine recursive partitioning and SEM. SEM Trees use the likelihood ratio 
test or score-based tests to split observations based on covariates.

SEM Trees

For each covariate, data are split along all possible points of that covariate to create 
homogeneous groups according to some criteria (typically the likelihood but score-based 
tests are also available). These splits are binary splits, meaning that when a split happens, 
data are split into two groups (i.e., two nodes). For each candidate split, the log-likeli-
hood values before and after the potential split are obtained. Because the model before 
the split is nested within the model after the split, a likelihood ratio test can be used to 
compare models. The partition of the covariate that leads to the greatest improvement in 
the model is retained. The process continues until a stopping criterion is reached. Stop-
ping criteria could be a maximum tree depth, a minimum number of observations in a 
node, the p-value for the likelihood ratio test, etc.

There are a few different packages that can be used to implement SEM Trees. The 
“semtree” R package (Brandmaier et al., 2013) is a tree algorithm designed specifically 
for SEM. The package is based on the “OpenMx” package (Boker et al., 2011), which is a 
flexible R package that allows estimation of a wide variety of advanced multivariate sta-
tistical models including SEM. The “semtree” package can also be used together with the 
“lavaan” (Rosseel, 2012), a most popular R package for SEM. Another R package, “par-
tykit” (Zeileis et al., 2008), is a general framework for MOB. To implement SEM Trees 
with the “partykit” package, some preliminary work is necessary to set up the SEM. It is 
possible to set up the SEM model with “lavaan”.

Both “semtree” and “partykit” are solely based on the R language. Another package, 
“MplusTrees” is based on Mplus (Muthén & Muthén, 1998–2017) and the “MplusAuto-
mation” R package (Hallquist & Wiley, 2018) that serves as an interface between Mplus 
and R (Serang et al., 2021). Mplus Trees taking advantage of the comprehensive Mplus 
software, allows users to specify complex SEM models using the regular Mplus syntax. 
The splitting procedure for the tree to grow is determined by the complexity parameter 
(cp) due to the package’s reliance on the “rpart” package (Therneau & Atkinson, 1997). 
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cp reflects the relative improvement in the model fit for the split to be retained. If a can-
didate split improves the -2logL of the root node by a factor of at least cp, the split is 
made. The smaller the cp, the more complex the final tree is likely to be. Other stopping 
criteria such as the minimum number of observations within a node needed to attempt 
a split, the minimum observations within a terminal node, the maximum depth of the 
tree, the p-value for likelihood ratio tests can also be used/added.

Methods
Dataset description

To illustrate the three approaches, we used an empirical dataset from TIMSS 2019 (Mar-
tin et al., 2020). Specifically, we used the eighth grade U.S. data and only considered a 
subset of variables but data from all eighth graders who participated and were included 
in the public-use database were used. The sample size is 8,698. The variables for this 
study were seven indicators for the latent factor of mathematics self-concept, student’s 
sex, home resources, language spoken at home, and mathematics achievement category. 
The seven indicator variables were: (a) I usually do well in mathematics; (b) Mathemat-
ics is not one of my strengths; (c) I learn things quickly in mathematics; (d) Mathematics 
makes me nervous; (e) I am good at working out difficult mathematics problems; (f ) My 
teacher tells me I am good at mathematics; and (g) Mathematics makes me confused. 
They were rated on a 4-point Liker scale (1 = Agree a lot, 2 = Agree a little, 3 = Disagree 
a little, 4 = Disagree a lot). The four positively worded items (a, c, e, and f ) were reverse 
coded so that a higher numeric rating would represent more mathematics self-concept. 
We coded the student sex variable as “0” for boys and “1” for girls. For the language spo-
ken at home variable, always or almost always speaking English at home was coded as 
“1” and sometimes or never speaking English at home was coded as “0”. Home resources 
was a categorical variable with three categories “Many resources”, “Some resources”, and 
“Few resources”. It was dummy coded with “Some resources” as the reference group for 
MIMIC analysis. There were five mathematics achievement categories based on the first 
plausible value of mathematics achievement (Level 1 = Below 400, Level 2 = At or above 
400 but below 475, Level 3 = At or above 475 but below 550, Level 4 = At or above 550 
but below 625, Level 5 = At or above 625. These cutoffs and levels are from TIMSS. See 
Martin et al., 2020). The mathematics achievement category variable was dummy coded 
with Level 3 as the reference group for MIMIC analysis.

The study was reviewed by the Institutional Review Board at the author’s university, 
which determined that this project does not constitute human subjects research accord-
ing to the Department of Health and Human Services regulatory definitions. Informed 
consent is not applicable as this study analyzes publicly available data which do not 
include identifiable information.

Data analysis

For all models, we appropriately considered the complex data structure and sampling 
weights following recent recommendations (Stapleton, 2006a; Wang et al., 2019). Miss-
ing data for SEM models, including CFA, MIMIC, MG-CFA, and the template SEM 
model for SEM Trees were dealt with using the full information maximum likelihood 
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estimation for which both complete and partial data points were used. Specifically, 
observations with a missing value on any of the covariates involved in a particular anal-
ysis were deleted and observations with missing values on all indicator variables were 
removed. Missing data on the covariates for partitioning for the SEM Trees were dealt 
with using surrogate split. These are the default methods for these approaches.

All SEM models were estimated in Mplus using the “MplusAutomation” R package. 
For SEM Trees, we used the “MplusTrees” R package. The estimator for all SEM models 
was the robust maximum likelihood estimator (MLR) which adjusts standard errors of 
parameter estimates and rescales model chi-square values.

CFA without any covariates was applied to obtain an initial model that was later 
used as a template for MIMIC, MG-CFA, and SEM Trees. For the MIMIC model, all 
covariates, dummy coded if necessary, were tested simultaneously. For MG-CFA mod-
els, three measurement invariance tests (configural, metric, and scalar) were con-
ducted for each of the covariates separately. We evaluated model fit in two ways. First, 
model fit for each model according to commonly used methods: comparative fit index 
(CFI) ≥ 0.95, Tucker–Lewis index (TLI) ≥ 0.95, root mean square error of approxima-
tion (RMSEA) < 0.06, and standardized root mean square residual (SRMR) < 0.08 (Hu & 
Bentler, 1999). Second, decreases in CFI and/or increases in RMSEA for testing factor 
loading and item intercept invariance. Chen (2007) and Cheung and Rensvold (2002) 
recommended that a decrease of at least 0.01 in CFI and an increase of at least 0.015 in 
RMSEA would suggest that the more constrained model fit the data significantly worse 
than the less constrained model. It should be noted that Δχ2 tests for nested models that 
are based on the Satorra-Bentler scaled χ2 values could have been used as well. However, 
it is well known that the Δχ2 test, just like the χ2 test, is sensitive to sample size. When 
the sample size is large, as is the case in this project, a small discrepancy would likely 
lead to a statistically significant Δχ2 test.

For SEM Trees in this study (i.e., Mplus Trees), we tested two cp values of 0.001 and 
0.01, following recommendations by Serang et al. (2021). In addition, it is common to 
use other stopping criteria such as the minimum number of observations within a node 
needed to attempt a split, the minimum observations within a terminal node, the maxi-
mum depth of the tree, the p value for likelihood ratio tests, etc. For this study, we set 
the maximum depth of the tree to four, and the minimum number of observations in any 
terminal node to 100.

Results
Confirmatory factor analysis

The original single-factor CFA model with seven indicators for the construct of math-
ematics self-concept did not fit the data well: CFI = 0.879, TLI = 0.819, SRMR = 0.062, 
RMSEA = 0.090 with 90% CI [0.085, 0.095]. After examining the modification indices, 
covariances among the three negatively worded indicators were added, resulting in a 
well-fitting model: CFI = 0.989, TLI = 0.980, SRMR = 0.019, RMSEA = 0.030 with the 
90% confidence interval [0.025, 0.036]. Table 1 has model fit information. Standardized 
factor loadings ranged from 0.398 to 0.802 with an average of 0.670.
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MIMIC model

The MIMIC model was based on the one-factor CFA with correlated residuals among 
the three negatively worded items. The model fit the data well: CFI = 0.963, TLI = 0.951, 
SRMR = 0.028, RMSEA = 0.032 with 90% CI [0.030, 0.035]. Regarding covariate effects, 
girls had statistically significantly lower mathematics self-concept than boys (standard-
ized coefficient = -0.107, p < 0.001). Language spoken at home and home resources did 
not have statistically significant effects on math self-concept. Students in lower math-
ematics achievement categories (Levels 1 and 2) had statistically significantly lower 
mathematics self-concept than those in the middle category (Level 3). Students in higher 
mathematics achievement categories (Levels 4 and 5) had statistically significantly 
higher mathematics self-concept than those in the middle category (Level 3).

Multiple group CFA

Table 1 has model fit information. Based on the model fit of individual models as well 
as model comparisons, scalar invariance existed between boys and girls, between those 
who mainly spoke English at home and those who mainly spoke another language at 
home, and between students with many, some, or few home resources. However, meas-
urement invariance did not seem to exist among the achievement category groups. In 
other words, students’ mathematics self-concept could be compared across sex, lan-
guage, and home resources groups, but not among the achievement groups. Further 
examination suggested that girls had lower mathematics self-concept than boys. Stu-
dents’ mathematics self-concept did not differ statistically significantly between those 
who mainly spoke English at home and those who spoke another language at home. For 
students with many resources at home, their mathematics self-concept would be signifi-
cantly higher than those with some or few resources at home.

SEM Trees

The template CFA model was the single-factor CFA with correlated residuals among the 
three negatively worded items (i.e., Model 2 in Table 1). The covariates were the same as 
in the MIMIC model and as the grouping variables for MG-CFA models. We grew two 
trees. The first had a cp of 0.001, and the second had a cp of 0.01. Figures 1 and 2 show 
the final trees for cp = 0.001 and cp = 0.01, respectively.

Figure 2 has the first three nodes and therefore a subtree of Fig. 1. In both trees, the 
initial split was based on mathematics achievement categories. Those in Levels 1, 2, and 
3 were more homogenous than those in Levels 4 and 5. In Fig. 1, following the initial 
split, those in the lower mathematics achievement categories (Levels 1, 2, and 3) were 
further split by whether they were in the lowest mathematics achievement category 
(Level 1), and then whether they were boys or girls. For those in the higher mathematics 
achievement categories (Levels 4 and 5), they were also split by sex. Variables for the lan-
guage spoken at home and home resources did not show up as split variables in the tree.

There were six terminal nodes in the first tree and two terminal nodes in the second 
tree. The estimates of parameters (factor loadings, item intercepts, variance of the latent 
factor, residual variances, and residual covariances for the three negatively worded 
items) for the terminal nodes are in Tables 2 and 3 for Tree 1 and Tree 2, respectively.
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Fig. 1  Mplus Tree with Complexity Parameter (cp) = 0.001. The left branch at each partition point has 
observations that meet the condition (i.e. the result of testing the condition is “yes”). The right branch at each 
partition point has observations that do not meet the condition (i.e. the result of testing the condition is “no”)

Fig. 2  Mplus Tree with Complexity Parameter (cp) = 0.01. The left branch at each partition point has 
observations that meet the condition (i.e. the result of testing the condition is “yes”). The right branch at each 
partition point has observations that do not meet the condition (i.e. the result of testing the condition is “no”)
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One advantage of SEM Trees is that we do not have to specify the interaction effects 
beforehand. Instead, the tree would identify the interaction effects. From Tree 1 (Fig. 1), 
the covariate effects can be thought of as interaction effects. There was an interaction 
effect between achievement category and student sex on the factor structure of the 
latent factor of mathematics self-concept. From Tree 2 (Fig. 2), there was only a main 
effect of mathematics achievement category. The terminal nodes of both trees include 
the splitting of observations. The parameter estimates for those nodes should be consist-
ent with those obtained for the model if we subset the sample according to the splitting 
rules from the trees.

Discussion
The MIMIC model and MG-CFA have been widely used to examine covariate effects on 
latent factors. In this study, we included an additional method, SEM Trees, to examine 
covariate effects. SEM Trees allow examination of nonlinear interaction effects through 
recursive partitioning of the sample. SEM Trees separate the template SEM model from 
potential covariates. The sample is split in the covariate space based on data; and the 
SEM model is theory-driven. Therefore, SEM Trees combine theory-based and data-
based approaches and allow theory-driven exploration (Brandmaier et al., 2016).

We used an empirical dataset to illustrate the three approaches to covariate effects on 
latent factors. The empirical data were about eighth-grade students’ mathematics self-
concept and two personal (sex and mathematics achievement) and two environmental 
(language spoken at home and home resources) covariates. There were some consist-
ent findings across the three approaches. First, mathematics achievement was related 
to mathematics self-concept, both in terms of the factor structure (lack of measurement 
invariance from MG-CFA and data partitioning in SEM Trees) and in terms of the mag-
nitude (statistically significant coefficient in the MIMIC model). This is not surprising 
because when students responded to items on mathematics self-concept, they would 
likely evaluate their mathematics ability. In this study, we used mathematics achieve-
ment as a covariate and mathematics self-concept as the outcome. This is consistent 
with the line of inquiry of the big-fish-little-pond effect (BFLPE; e.g., in Koivuhovi et al., 
2020; Wang, 2020; Wang & Bergin, 2017) that looks into both personal and contextual 
effects in the formation of academic self-concept. In contrast, in the research area of 
achievement motivation, self-concept is typically modeled as a predictor of mathematics 
achievement and studies have found relationships between the two constructs as well 
(e.g., Wang et al., 2012; Wigfield & Eccles, 2000).

The other consistent finding across the three approaches was that the language spoken 
at home did not seem to have an effect on mathematics self-concept. This may be good 
news as the U.S. is a “melting pot” with many different languages and cultures. However, 
the nonsignificant finding may be due to the academic subject. It would be interesting 
to see if the finding could be generalized to other academic subjects such as English lan-
guage and literacy.

Regarding differences between sex groups, the factor structure of mathematics self-
concept was likely to be similar (scalar invariance from MG-CFA, Mplus Tree 2) but 
that factor structure may be unstable for different achievement groups. Mplus Tree 1 
suggests an interaction between mathematics achievement and student sex. In addition, 
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from both MIMIC and MG-CFA, girls tended to have lower mathematics self-concept 
than boys. Other studies have also found gender differences favoring boys (e.g., Koi-
vuhovi et  al., 2020) but there is also research that showed no gender differences (e.g., 
Ghasemi & Burley, 2019).

Having many home resources seemed to be beneficial from MG-CFA results, although 
home resources was not found to be a significant predictor of mathematics self-concept 
using the MIMIC or SEM Trees approaches. This could be due to the positive relation-
ship between home resources and academic achievement. In MG-CFA, when home 
resources was examined, it was considered separately from the other covariates, whereas 
in MIMIC and SEM Trees, it was considered simultaneously with the other covariates.

One particular limitation of Mplus Trees is parameter constraints across nodes. After 
the sample is split, the SEM model is essentially estimated with each subset of the data. 
Although it is possible to fix and/or constrain parameters within the SEM model for 
each node, our understanding is that it is not possible to constrain and test parameter 
relationships between nodes. This could be an important limitation for analysis such 

Table 2  Parameter estimates for terminal nodes from Mplus tree with complexity parameter of 
0.001

The stopping criteria for tree growth were a maximum tree depth of four, a minimum number of observations in any 
terminal node of 100, and complexity parameter (cp) = 0.001. The first factor loading was fixed to 1 for model identification. 
Node 8 was the group of boys in mathematics achievement category 1. Node 9 was the group of girls in mathematics 
achievement category 1. Node 10 was the group of boys in mathematics achievement categories 2 and 3. Node 11 was the 
group of girls in mathematics achievement categories 2 and 3. Node 6 was the group of boys in mathematics achievement 
categories 4 and 5. Node 7 was the group of girls in mathematics achievement categories 4 and 5

Parameter Node 8 Node 9 Node 10 Node 11 Node 6 Node 7

SC.BY BSBM19A 1.000 1.000 1.000 1.000 1.000 1.000

SC.BY BSBM19C 0.367 0.252 0.915 0.956 1.354 1.681

SC.BY BSBM19D 1.085 0.985 1.101 1.119 1.322 1.363

SC.BY BSBM19E − 0.360 0.095 0.485 0.622 0.655 1.012

SC.BY BSBM19F 0.663 1.023 1.164 1.073 1.328 1.310

SC.BY BSBM19G 0.904 0.906 0.864 0.917 0.926 0.944

SC.BY BSBM19I 0.097 0.322 0.810 0.812 1.118 1.272

BSBM19C.WITH BSBM19E 0.359 0.379 0.303 0.216 0.131 0.101

BSBM19C.WITH BSBM19I 0.498 0.451 0.343 0.261 0.105 0.090

BSBM19E.WITH BSBM19I 0.389 0.424 0.354 0.299 0.241 0.200

Intercepts BSBM19A 2.680 2.506 3.042 2.954 3.539 3.541

Intercepts BSBM19C 2.125 1.845 2.422 2.176 3.161 3.004

Intercepts BSBM19D 2.472 2.211 2.770 2.564 3.224 3.129

Intercepts BSBM19E 2.555 2.310 2.782 2.521 3.188 2.898

Intercepts BSBM19F 2.452 2.017 2.592 2.337 3.101 2.897

Intercepts BSBM19G 2.462 2.310 2.713 2.479 2.895 2.829

Intercepts BSBM19I 1.973 1.926 2.423 2.236 2.950 2.743

Variances SC 0.659 0.589 0.496 0.539 0.262 0.238

Residual.Variances BSBM19A 0.357 0.460 0.309 0.303 0.171 0.188

Residual.Variances BSBM19C 1.035 1.014 0.836 0.721 0.452 0.363

Residual.Variances BSBM19D 0.286 0.463 0.299 0.256 0.217 0.239

Residual.Variances BSBM19E 1.026 1.114 0.951 0.923 0.652 0.716

Residual.Variances BSBM19F 0.803 0.447 0.293 0.346 0.229 0.319

Residual.Variances BSBM19G 0.614 0.623 0.667 0.676 0.694 0.735

Residual.Variances BSBM19I 0.966 0.968 0.809 0.737 0.553 0.512
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as measurement invariance testing, for which equality constraints on parameters are 
routinely tested. The “semtree” package allows invariance testing through either global 
invariance (fixing selected parameters to the sample estimation before the tree is grown) 
and local invariance (chosen parameters cannot differ while growing the tree). Such 
invariance options are supported with OpenMx, but not with lavaan to specify the SEM 
model.

As one reviewer pointed out, the mathematics achievement category variable is cat-
egorized based on the first plausible value. Technically speaking, that plausible value, 
along with the other four plausible values for the same measure, is not an observed 
variable; and results might change if a different plausible value were to be used. Plau-
sible values in large-scale assessments are generated based on item response modeling, 
latent regression, and multiple imputation (von Davier, 2020). Multiple plausible values 
are typically used in analysis to allow for the calculation of total variances of estimates 
which consist of within- and between-imputation variances. However, for the purpose 
of this article, we focus on comparing the three approaches instead of using plausible 
values. Readers interested in best practices of using plausible values from large-scale 

Table 3  Parameter estimates for terminal nodes from Mplus tree with complexity parameter of 0.01

The stopping criteria for tree growth were a maximum tree depth of four, a minimum number of observations in any 
terminal node of 100, and complexity parameter (cp) = 0.01. The first factor loading was fixed to 1 for model identification. 
Node 2 was the group of students in mathematics achievement categories 1, 2, and 3. Node 3 was the group of students in 
mathematics achievement categories 4 and 5

Parameter Node 2 Node 3

SC.BY BSBM19A 1.000 1.000

SC.BY BSBM19C 0.823 1.529

SC.BY BSBM19D 1.105 1.361

SC.BY BSBM19E 0.442 0.852

SC.BY BSBM19F 1.060 1.346

SC.BY BSBM19G 0.895 0.943

SC.BY BSBM19I 0.702 1.216

BSBM19C.WITH BSBM19E 0.315 0.126

BSBM19C.WITH BSBM19I 0.365 0.101

BSBM19E.WITH BSBM19I 0.379 0.230

Intercepts BSBM19A 2.920 3.540

Intercepts BSBM19C 2.237 3.083

Intercepts BSBM19D 2.604 3.177

Intercepts BSBM19E 2.608 3.044

Intercepts BSBM19F 2.419 3.000

Intercepts BSBM19G 2.553 2.862

Intercepts BSBM19I 2.255 2.847

Variances SC 0.555 0.245

Residual.Variances BSBM19A 0.335 0.184

Residual.Variances BSBM19C 0.858 0.416

Residual.Variances BSBM19D 0.290 0.226

Residual.Variances BSBM19E 1.017 0.704

Residual.Variances BSBM19F 0.390 0.275

Residual.Variances BSBM19G 0.667 0.716

Residual.Variances BSBM19I 0.846 0.536
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assessments can refer to many resources on this topic. Among them are Rutkowski et al. 
(2014), von Davier et al. (2009), Wang (2020) and Wu (2005).

In this article, we only used observed covariates. Although conceptually the meth-
ods can be extended to include latent covariates, we think there are still some tech-
nical challenges. The MIMIC approach is relatively easy to include latent covariates. 
The MG-CFA approach inherently relies on observed grouping variables as covariates 
although it can be extended to latent classes as covariates under the mixture mod-
eling framework. It is challenging, in our opinion, to using latent, instead of observed, 
covariates with the SEM Trees approach due to the recursive partitioning of the sam-
ple. However, we are optimistic and look forward to new advancements in SEM (as an 
example, Merkle & Zeileis, 2013).

The data used were nationally representative and had a complex structure. Such 
large-scale assessment data are available for researchers to conduct substantive and 
methodological research (Rutkowski et  al., 2014; Wang, 2017). There have been 
methodological advancements on how to analyze such data (e.g., Asparouhov, 2006; 
Asparouhov & Muthen, 2006; Hahs-Vaughn et al., 2011; Muthen & Satorra, 1995; Sta-
pleton, 2006b; Trendtel & Robitzsch, 2020; Wu & Kwok, 2012), as well as software 
development (Bailey et al., 2020; Caro & Biecek, 2017; Oberski, 2014). In this study, 
we considered both the complex data structure and sampling weights, taking advan-
tage of Mplus. The “lavaan” and “OpenMx” packages can both handle some aspects 
of complex data structures but additional research is needed for more user-friendly 
tools.

Conclusions
Using empirical data from TIMSS 2019, this study applied MIMIC, MG-CFA, and 
SEM Trees approaches to covariate effects on latent factors. The MIMIC and MG-
CFA have been widely used in educational and psychological research. The SEM Trees 
approach is a more recent development. Applied researchers can take advantage of 
the new method with the availability of several packages. This study is one application 
that demonstrates the use of SEM Trees and hopefully will generate more interest in 
using it with large-scale assessment data.
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