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Abstract 

The purpose of this paper is to extend and evaluate methods of Bayesian historical bor-
rowing applied to longitudinal data with a focus on parameter recovery and predictive 
performance. Bayesian historical borrowing allows researchers to utilize information 
from previous data sources and to adjust the extent of borrowing based on the similar-
ity of current data to historical data. We examine the utility of three static historical 
borrowing methods including complete pooling, Bayesian synthesis with aggregated 
data-dependent priors, traditional power priors, and two dynamic borrowing methods 
including Bayesian dynamic borrowing and commensurate priors. Using data from two 
administrations of the United States Early Childhood Longitudinal Study, we evaluate 
these methods in terms of in-sample simulation statistics, as well as pseudo out-of-
sample measures of predictive performance. A case study examining growth in reading 
competency over time revealed that for one historical cycle, most methods of historical 
borrowing perform similarly with respect to predictive performance and parameter 
recovery. Pooling and power priors performed relatively poorly across the conditions in 
this study, particularly when the current data and the historical data were heterogene-
ous. Results from a comprehensive simulation study revealed that the advantages of 
different historical borrowing methods vary across different evaluation criteria. Overall, 
Bayesian dynamic borrowing and commensurate priors are no worse, and in some 
cases better, than other methods in terms of parameter recovery and predictive per-
formance, and considering a previous paper by Kaplan et al. (Psychometrika, 10.1007/
s11336-022-09869-3, 2022) found clear benefits of Bayesian dynamic borrowing over 
other methods of historical borrowing in the multilevel context using data from the 
Program for International Student Assessment (PISA) with five historical cycles, this 
paper argues that Bayesian dynamic borrowing or commensurate priors is a prudent 
choice for borrowing information from previous cycles of longitudinal data.

Introduction
With the increased availability of large-scale longitudinal surveys and assessments, 
researchers can address critical questions of growth and development. Such endeavors 
as the German National Educational Panel Study (NEPS) (Blossfeld & Roßbach, 2019) 
or the US Early Childhood Longitudinal Studies Program (ECLS; NCES, 2018) provide 
extensive data on the academic, behavioral, and social development of children through-
out the school years and beyond. These data can be used to estimate rates of change in 
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relevant academic and non-academic outcomes over the waves of the study as well as to 
model variation in rates of change over children as a function of a very large number of 
covariates collected on children, their families, and their schools.

In addition to providing estimated rates of growth in academic and non-academic 
outcomes, longitudinal studies can be leveraged for the purposes of forecasting growth 
beyond the extant waves of the study. Although such uses are rare in education  (see 
however Kaplan & Huang, 2021), it still remains an important use of longitudinal data. 
This paper is concerned with the question of whether it is possible and desirable to bor-
row information from an analysis of the waves of a previous cycle of longitudinal data to 
inform the analysis of the waves of a current longitudinal study, particularly with respect 
to the estimation of growth and predictive performance. With a focus on the ECLS Kin-
dergarten cohorts (ECLS-K), the question concerns specifically whether estimation of 
the growth rates in reading performance from the 2010 to 2011 cohort (referred to as 
ECLS-K:2010-11) can be improved by systematically including information about the 
growth rates from the 1998 to 1999 cohort (referred to as ECLS-K:1998-99).

The methods we examine in this paper are generally referred to as Bayesian histor-
ical borrowing, a class of procedures that have long been applied in the clinical trials 
field (e.g. Pocock, 1976; Hobbs et al., 2011; Hobbs et al., 2012; Schmidli et al., 2014; Viele 
et al., 2014), and recently developed and applied to large-scale and cross-sectional edu-
cational data (see Kaplan et al., 2022). Two general approaches to historical borrowing 
can be identified in the literature. The first are static borrowing methods where prior 
strength does not automatically vary based on the similarity between the historical data 
and the current data. For example, with static borrowing, fixed prior strength might be 
based on a researcher’s judgement regarding the similarity between the historical data 
and current data, but this prior strength would not automatically be adjusted based on 
the heterogeneity between historical data and current data to supplement the research-
er’s judgement. Methods under static borrowing that we will study in this paper include 
pooling, also known as integrative data analysis (Bainter & Curran, 2015; Curran & Hus-
song, 2009), Bayesian synthesis using augmented or aggregated data-dependent priors 
(Marcoulides, 2017), and power priors (Ibrahim & Chen, 2000; Chen et al., 2000; Chen 
et al., 2015).

In contrast to static borrowing, dynamic borrowing methods allow for a joint prior 
distribution to be specified over both the historical and current data to encode the 
researcher’s judgement regarding the similarity between the historical data and the 
current data. The similarity is controlled by the variance of the joint prior distribution. 
Methods under dynamic borrowing that will be examined in this paper include Bayesian 
dynamic borrowing (see Viele et al., 2014; Kaplan et al., 2022) and commensurate priors 
(Hobbs et al., 2011, 2012). For a review of the static and dynamic borrowing methods 
examined in this paper, one may refer to Kaplan et al. (2022).

The organization of this paper is as follows. In the next section, we specify growth 
curve modeling as a Bayesian hierarchical model. Although growth curve modeling is 
not the only method that can be applied to longitudinal data, we focus on this method 
because of its extensive use and its flexibility in addressing specific issues of growth. In 
the following two sections, we extend static and dynamic borrowing methods to growth 
curve models. Following this, we then discuss the methodology for how to evaluate such 
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models - particularly using statistics that assess in-sample and pseudo out-of-sample 
predictive performance. This is then followed by the design and results of our case study 
and simulation study. Future research directions are outlined in the Conclusions section.

Bayesian growth curve modeling
To fix terminology and notation, we use the term cycle to refer to the different survey 
administrations (i.e. ECLS-K:1998-99 and ECLS-K:2010-11), and use the term wave to 
refer to the repeated measurements within the cycle. Let superscript 0 represent the 
current cycle, ECLS-K:2010-11, and h ( h = 1 . . .H ) represent the historical cycle(s), 
where for our paper H = 1 with ECLS-K:1998-99 as the only historical cycle. The level-1 
(within-student) model can be written as follows. Let

where y0ig be a T × 1 vector of T waves of measurement for student i ( i = 1, . . . , ng ) in 
school g ( g = 1, . . .G) ; �0 be a T × Q matrix of fixed constants that, for notational sim-
plicity, are assumed to be the same for all participants across all schools. These fixed 
constants serve to parameterize the growth model as a structural equation model (see 
Willett & Sayer, 1994). Further, let η0ig be a Q × 1 vector of random growth parameters 
for student i in school g. In our study, Q = 3 , representing the intercept, linear growth 
component, and quadratic growth component for each student in each school; and ǫ0yig is 
a T × 1 vector of residuals, with diagonal covariance matrix �0

y . Here, we assume con-
stant variances across students and schools, and so

The level-2 (between-student) model allows the random growth parameters to be related 
to a set of time-invariant predictors. The level-2 model can be written as

where Ŵ0
g is a Q × P matrix of regression coefficients associated with the time-invariant 

predictors which vary over schools, x0ig is a P × 1 vector of time-invariant predictors 
whose values vary over students and schools, and ǫ0ηig is a Q × 1 (i.e., intercept, slope and 
quadratic growth component in our study with Q = 3 ) vector of residuals with symmet-
ric covariance matrix �0

η . We assume constant variances across students and schools, 
and so
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which allows for the random growth parameters (i.e., intercept, slope, and quadratic 
components) to be correlated conditional on the predictors as shown in Eq. (4). The 
assumption of constant �0

η could, in principle, be relaxed.
The level-3 (between-school) model can be written as

where vec(·) is the vectorization operator that turns a matrix into a long column vector, 
�0 is a QP ×M matrix of between-school regression coefficients, wg is a M × 1 vector of 
school-level predictors, and ǫ0Ŵg

 is a QP × 1 vector of residuals with covariance matrix 
�0

Ŵ . We assume constant variances across schools, and so

Bayesian hierarchical growth curve model

A Bayesian hierarchical specification of the growth curve model in Eqs. (1–6) can be 
written as 

 where �0 and �0
� are fixed and known parameters. Prior distributions on the residual 

covariance matrices are assumed to be inverse-Wishart (IW). For the current data, fol-
lowing the notation in Eq. (2), we assume all the diagonal elements of �0

y are equal to 
(σ 0

y )
2 , where σ 0

y  indicates the standard deviation of level-1 residual. The prior distribu-
tions for the variation parameters are specified as follows: 
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Static borrowing for growth curve models
Extensions of growth curve models to pooling and to aggregated data-dependent pri-
ors are relatively straightforward. In particular, assuming the conditions for pooling of 
longitudinal data are met (see Hofer & Piccinin, 2009), pooling of data would be rela-
tively straightforward. Similarly, the aggregated data-dependent prior approach of Mar-
coulides (2017) would require obtaining averages of the parameters of interest from the 
historical cycles and implementing them as the hyperparameters of informative prior 
distributions for the current cycle. This section concentrates instead on expanding the 
power prior to longitudinal data.

The power prior for growth curve models

Consider again the Bayesian hierarchical specification of the GCM models in Eqs. (7a–
7d). Among the entire set of model parameters, the top level parameters in the growth 
curve models � are the common parameters across cycles that will borrow from his-
torical data through power priors. The lower level parameters are cycle specific and thus 
there is no direct borrowing. The probability distribution of the historical data given 
both the common and the unique parameters across cycles can be written as

From here, the power prior can be expressed as

where a controls the strength of borrowing from historical data on p(� | y1, . . . , yh, a) . 
Notice that when a = 0 , the prior does not depend on the historical data, and when 
a = 1 , the prior is the posterior distribution from the previous study.

Dynamic borrowing for growth curve models
As noted earlier, static borrowing methods do not incorporate information about the 
current cycle into the prior specification. In contrast, dynamic borrowing methods do 
incorporate the current cycle into the prior specification of the model parameters. In 
this section, we extend methods of dynamic borrowing to growth curve models, concen-
trating on Bayesian dynamic borrowing and commensurate priors.

Extensions of Bayesian dynamic borrowing to growth curve models

We adapt the cross-sectional multilevel modeling notation of Kaplan et  al. (2022) to 
the case of growth curve models. We begin by borrowing from historical cycles to esti-
mate the growth parameters. This requires defining a joint distribution of the growth 
parameters over the historical cycles (denoted as cycles 1 to H) and the current cycle 
(denoted as cycle 0), which is assumed to be a multivariate Guassian distribution with 
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the Q(H + 1)× 1 mean vector µηig
 and Q(H + 1)× Q(H + 1) block-diagonal covariance 

matrix Tη.

where following Eq. (7b), µηig
= vec
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resents a Q × P vector of the time-invariant regression coefficients for the hth historical 
cycle and Ŵ0

g represents a Q × P vector of the current time-invariant regression 
coefficients.

The covariance matrix of the random growth parameters can be written as

where each element of Eq. (12) is a symmetric matrix as in Eq. (4).
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sents a QP ×M matrix of the school-level regression coefficients for the hth historical 
cycle, and �0 represents a QP ×M matrix of the school-level regression coefficient for 
the current cycle.

The covariance matrix of the time-invariant regression coefficients over the current 
and historical cycles, TŴ , is specified as being block diagonal,

where the elements of TŴ contain the variances and covariances of the regression coef-
ficients within each historical or current data set. We assume that elements outside the 
block diagonal of TŴ are null matrices.

Finally, the joint distribution of �0,�1, . . . ,�H is also assumed to be multivari-
ate Gaussian with a QPM × 1 mean vector µ� and QPM × QPM covariance matrix T� 
—namely

(11)vec
(

η0ig , η
1
ig , . . . , η

H−1
ig , ηHig

)

∼ N (µηig
,Tη),

(12)Tη =

















�0
η

�1
η

. . .

�H−1
η

�H
η

















,

(13)vec(Ŵ0
g ,Ŵ

1
g , . . . ,Ŵ

H
g ) ∼ N (µŴg

,TŴ),

(14)TŴ =















�0
Ŵ

�1
Ŵ

. . .

�H−1
Ŵ

�H
Ŵ















,

(15)vec
(

�0,�1, . . . ,�H
)

∼ N (µ�,T�).



Page 7 of 30Kaplan et al. Large-scale Assessments in Education            (2023) 11:2 	

The covariance matrix T� can be diagonal with elements τ 2 , which controls the degree 
of borrowing across cycles. Note that �0,�1, . . . ,�H follows the same mean vector µ� 
and covariance matrix T� as shown in Eq. (15) and thus the elements of µ� and T� are 
not cycle specific, indicating that borrowing across cycles takes place at the top level of 
the hierarchy.

Commensurate priors

Hobbs et  al. (2011) proposed dynamic versions of power priors, referred to as com-
mensurate power priors, where the coefficient used to downweight the historical data 
is viewed as random and estimated based on a measure of the agreement between the 
current and historical data. Hobbs et  al. (2011) also proposed general commensurate 
priors where the prior mean for the current parameters of interest is conditioned on the 
historical population mean and the prior precision τ , referred to as the commensurabil-
ity parameter, which reflects the commensurability between the current and historical 
parameters.1 Hobbs et  al. (2011) evaluated commensurate priors in a scenario of bor-
rowing one historical trial to analyze a single-arm trial, that is, assuming there is only 
one historical study and one parameter of interest, β . The location parameter or mean 
for β is µ0

β for the current data and µH
β  for the historical data. Then the commensurate 

prior for µ0
β can be specified as µ0

β ∼ N(µH
β ,1/τ).

As discussed in Hobbs et al. (2012), the commensurate prior in Hobbs et al. (2011) suf-
fers from the fact that diffuse priors could actually become undesirably informative and 
that the historical likelihood is considered as a component of the prior rather than data. 
Therefore, Hobbs et al. (2012) proposed a modified commensurate prior that incorpo-
rates historical data as part of the likelihood for the current parameter estimation and 
employs empirical and fully Bayesian modifications for estimating the commensurate 
parameter τ (e.g., as illustrated in Eq. 1 of their paper). They also extended the method to 
general and generalized linear mixed regression models in the context of two successive 
clinical trials.

The modified commensurate priors approach in Hobbs et  al. (2012) was compared 
to several meta-analytic models where priors for the historical parameters and cur-
rent parameters were jointly modeled, but historical data were not incorporated in the 
likelihood of the current parameter estimation and thus the priors were not commen-
surate or dynamic. Commensurate priors were shown to provide more bias reduction 
compared to the meta-analytic approaches they evaluated. The bias reduction was larger 
when there was only one historical study compared to when there were two or three his-
torical studies.

Although Kaplan et  al. (2022) extended Bayesian dynamic borrowing to cross-sec-
tional single-level and multilevel models with covariates, they did not examine commen-
surate priors. For this paper, we consider the modified commensurate prior in Hobbs 
et al. (2012) and implement it in the multilevel setting with multiple historical studies in 
the following way. For regression coefficients, we assume:

1  Note that in Hobbs et al. (2011; 2012), τ refers to prior precision. But in this paper, we use τ 2 to indicate prior variance 
following the notation in Viele et al. (2014).
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where β1, . . . ,βH are regression coefficients of interest for each historical cycle. 
Although regression coefficients are likely to be different within a historical cycle, the 
common regression coefficients (e.g., intercepts) are assumed to be equal across histori-
cal cycles and denoted as βHist , where βHist can be given a vague Gaussian prior.

The parameters for the current cycle (denoted as cycle 0) follow a prior distribution 
with the historical regression coefficients as the prior mean as follows:

where �β can be specified as a diagonal matrix, diag (σ 2
1 , . . . , σ

2
P , ) , for P regression coef-

ficients, and each element of the diagonal matrix can be provided its own prior distribu-
tion, such as inverse-gamma (IG), half-Cauchy (see e.g. Gelman, 2006), spike-and-slab 
(Mitchell & Beauchamp, 1988), etc.

Considering a two-level setting such as students nested in schools, the priors for the 
school-level covariance matrices for historical cycles can be specified as follows: 

 where �1, . . . ,�H are covariance matrices for each historical cycle. The common ele-
ments of the covariance matrices (e.g., variances) are assumed to be equal across histori-
cal cycles and denoted as �Hist , and � is a correlation matrix following the Lewandowski 
et al. 2009 (LKJ) prior.2

For the current cycle (denoted as cycle 0), the inverse of covariance matrix can follow a 
prior distribution conditioning on the historical covariance matrix as

For multilevel settings with three levels or more, the higher level covariance matrices 
may follow the similar prior specifications as the above.

Note that Bayesian dynamic borrowing differs from commensurate priors insofar as 
the joint prior distribution for the former contains the current cycle, while commensu-
rate priors place a prior on the common historical parameters of interest first and then 
the current parameter has a prior distribution with the historical regression coefficients 
as the mean as shown in Eq. (17).

(16)β1 = · · · = βH = βHist ,

(17)β0 ∼ N (βHist ,�β),

(18a)�1 = · · · = �H = �Hist

(18b)�Hist = σ�σ

(18c)σ ∼ half-Cauchy(0, 1)

(18d)� ∼ LKJCorr(1),

(19)(�0)−1 ∼ Wishart(ν, ν(�Hist)−1).

2  The LKJ correlation prior is suitable as a prior distribution for correlation matrices. Its density satisfies 
LKJCorr(� | δ) ∝ [det(�)]δ−1 , so δ = 1 leads to a uniform prior over all possible correlation matrices while δ > 1 leads to 
a prior that places more mass near the identity matrix (Lewandowski et al., 2009).
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Extensions of commensurate priors to growth curve models

Our extension of commensurate priors to growth curve models closely follows the nota-
tion for commensurate priors in multilevel settings. We consider a multilevel growth 
curve model with multiple time points within an individual and individuals nested in 
groups such as students nested in schools. To simplify the notation, we stack regres-
sion coefficients of the growth curve model, including growth parameters and regres-
sion coefficients of individual-level time-invariant predictors and group-level predictors, 
together to be β . We let �I and �G denote the corresponding individual-level and group-
level covariance matrices.

The prior specification for historical regression coefficients β1, . . . ,βH can follow 
those in Eq. (16) and the prior specification for current regression coefficients β0 can fol-
low those in Eq. (17). Similarly, the prior specification for historical covariance matrices 
�1

I , . . . ,�
H
I  and �1

G , . . . ,�
H
G can follow those in Eq. (18) and the prior specification for 

current covariance matrices �0
I  and �0

G can follow those in Eq. (19).
We introduce a modification to the estimation of the commensurate prior for this 

study. Instead of using the spike-and-slab prior (Mitchell & Beauchamp, 1988) used by 
Hobbs et  al. (2012) for the commensurability parameter, for computational simplicity 
and numerical stability, we utilize an extension of the horseshoe prior (Carvalho et al., 
2010) developed by Piironen and Vehtari (2017) to account for commensurability. The 
horseshoe prior is a global-local shrinkage prior that combines together two priors: a 
global prior for all of the coefficients in the current cycle, which has the effect of shrink-
ing all coefficients toward historical coefficients, and a local prior for each of the predic-
tors in the current cycle, which has the effect of relaxing the shrinkage due to the global 
prior for coefficients that are away from historical coefficients.

Following the notation in Betancourt (2018), the horseshoe prior for the pth element of 
β0 can be specified as follows: 

 where τ0 is a hyperparameter that controls the behavior of the global shrinkage prior τ 
(Carvalho et al., 2010).3

A limitation of the conventional horseshoe prior relates to the regularization of the 
large coefficients. Specifically, it is still the case that large coefficients can transcend the 
global scale set by τ0 with the impact being that the posteriors of these large coefficients 
can become quite diffused, particularly in the case of weakly-identified coefficients 
(Betancourt, 2018). To remedy this issue, Piironen and Vehtari (2017) proposed a regu-
larized version of the horseshoe prior (also known as the Finnish horseshoe prior) that 
has the following form: 

(20a)β0
p ∼ N (0, τ�p)

(20b)�p ∼ half-Cauchy (0, 1)

(20c)τ ∼ half-Cauchy (0, τ0),

3  The horseshoe prior gets its name from the fact that under certain conditions, the probability distribution of the 
shrinkage parameter associated with horseshoe prior reduces to a Beta(1

2
, 1
2
) distribution, which has the shape of a 

horseshoe.
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 where s2 is the variance for each of the p predictor variables, assumed to be constant, 
and c is the slab width. The hyperparameters of the inverse-gamma distribution in Eq. 
(21d) induce a Student-tν(0, s2) distribution for the slab (see Piironen & Vehtari, 2017, 
for more detail). For our paper, two changes were implemented to the regularized horse-
shoe. First, we set the mean of β0

p to βhist
p  rather than to zero in order for shrinkage to be 

toward the historical mean, i.e., β0
p ∼ N (βhist

p , τ �̃p) . Second, we set s2 = 1 due to stand-
ardization of the data.

Evaluating predictions under historical borrowing
For this paper, we evaluate historical borrowing for longitudinal data using two distinct 
approaches. The first is based on classic approaches developed in the econometrics lit-
erature based on so-called in-sample simulations wherein the growth record predicted 
by the model under various methods of borrowing is compared to the actual growth 
record. This approach was used by Kaplan and George (1998) as a general framework 
for the evaluation of frequentist growth curve models without relying on conventional 
goodness-of-fit tests. The second approach is based on the use of scoring rules to evalu-
ate the overall predictive accuracy of probabilistic forecasts. We refer to these methods 
as pseudo out-of-sample performance measures because they will be used to compare 
the predicted distribution of the outcome from the last wave of the cycle to the known 
distribution of the outcome.

In‑sample simulations

Following closely the discussion in Kaplan and George (1998) in the context of latent 
variable growth models, an alternative form of model assessment that does not rely 
solely on conventional goodness-of-fit statistics in structural equation models (see e.g. 
Kaplan, 2009) concerns how well the model can reproduce the known growth trajectory. 
In the context of economic forecasting, this type of model evaluation is referred to as in-
sample simulation (Pindyck & Rubinfeld, 1991). Given the estimated parameters of the 
model and estimated average values of any exogenous predictors, in-sample simulations 
can be used to predict the known growth record. These in-sample simulation statistics, 
to be described below, can then be applied to assess how well the model-based predic-
tions fit the known growth record. The result of such an exercise is a form of model eval-
uation that goes beyond simply assessing overall goodness-of-fit and considers the utility 

(21a)β0
p ∼ N (0, τ �̃p)

(21b)�̃p =
c�m

√

c2 + τ 2�2m

(21c)�p ∼ half-Cauchy (0, 1)

(21d)c2 ∼ inv-gamma
(ν

2
,
ν

2
s2
)

(21e)τ ∼ half-Cauchy (0, τ0),



Page 11 of 30Kaplan et al. Large-scale Assessments in Education            (2023) 11:2 	

of the model for some other purpose. In this case, one might be concerned with simula-
tion adequacy when considering the use of these models for subsequent forecasting.

Based on the early work of Theil (1966, see also; Pindyck & Rubinfeld, 1991; Kaplan & 
George 1998), we use three in-sample simulation measures to assess how well the fitted 
growth trajectory compares to the actual growth trajectory. While other measures are 
available, these three are considered classic measures in the econometric literature.

Theil’s inequality coefficient

The first measure we consider is Theil’s 1966 inequality coefficient, defined as

where T is the number of time periods, ys is the simulated (i.e., predicted) value at time 
t and ya is the actual value at time t. In the context of this paper, ys is the model based 
predicted value of y at time t under different scenarios of dynamic borrowing, and ya is 
the actual mean (over individuals) of y at time t for the current cycle ECLS-K:2010-11. 
From Eq. (22), it can be seen that a value of U = 0 indicates a perfect fit of the simulated 
growth record to the actual growth record. On the other hand, if U = 1 , the simulation 
adequacy is as poor as possible.

Theil’s bias proportion

As shown by Theil (1966) and also discussed in Pindyck and Rubinfeld (1991), the ine-
quality coefficient can be decomposed into measures that provide different perspectives 
on the quality of simulation performance. The first component of Theil’s U is the bias 
proportion, defined as

where ȳs and ȳa are the means of the simulated and actual growth record, respectively, 
calculated across the T time periods. The bias proportion provides a measure of system-
atic error because it considers deviations of average actual values from average simulated 
values. The ideal would be a value of UB = 0. A suggested rule of thumb is that values 
over 0.1 or 0.2 are indicative of systematic bias (Pindyck & Rubinfeld, 1991, p. 341).

Theil’s variance proportion

Another component of Theil’s U is the variance proportion defined as

(22)U =

√

1

T

T
∑

t=1

(yst − yat )
2

√

1

T

T
∑

t=1

(yst)
2 +

√

1

T

T
∑

t=1

(yat )
2

,

(23)
UB =

(ȳs − ȳa)2

1

T

T
∑

i=1

(yst − yat )
2

,

(24)
UV =

(σ s − σ a)2

1

T

T
∑

i=1

(yst − yat )
2

,
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where σs and σa are the standard deviations of the simulated and actual growth records, 
respectively, calculated across the T time periods. The variance proportion provides a 
measure of the extent to which the model tracks the variability in the growth record. As 
noted by Pindyck and Rubinfeld (1991), if UV  is large, it suggests that the actual (or sim-
ulated) growth record varies a great deal while the simulated (or actual) growth record 
does not deviate by a comparable amount.4

Pseudo out‑of‑sample scoring rules for probabilistic forecasts

A central characteristic of statistics is to develop accurate predictive models (Dawid, 
1984). Indeed, as pointed out by Bernardo and Smith (2000), all other things being equal, 
a given model is to be preferred over other competing models if it provides better pre-
dictions of what actually occurred. Thus, a critical component in the development of 
accurate predictive models is to decide on rules for gauging predictive accuracy—often 
termed scoring rules. Scoring rules provide a measure of the accuracy of probabilistic 
forecasts, and a prediction can be said to be “well-calibrated” if the assigned probabil-
ity of the outcome matches the actual proportion of times that the outcome occurred 
(Dawid, 1982).

A large number of scoring rules have been reviewed in the literature (see e.g., Win-
kler, 1996; Bernardo & Smith, 2000; Jose et al., 2008; Merkle & Steyvers, 2013; Gneit-
ing & Raftery, 2007). Here, however, we focus on two strictly proper scoring rules that 
are commonly used to evaluate predictive distributions: the Kullback-Leibler divergence 
score and expected log point-wise predictive density implemented through leave-one-out 
cross-validation.

Kullback‑Leibler Divergence score

For this paper, we evaluate the quality of predictions using the Kullback-Leibler Diver-
gence (KLD) score (Kullback & Leibler, 1951; Kullback, 1959; 1987). Consider two dis-
tributions, p(y) and g(y|θ) , where p(y) could be the distribution of observed reading 
literacy scores, and g(y|θ) could be the prediction of these reading scores based on a 
model. The KLD between these two distributions can be written as

where KLD(f, g) is the information lost when g(y|θ) is used to approximate p(y). For this 
paper, the actual reading outcome scores will be compared to the predicted outcome 
using different methods of borrowing from historical data, including not borrowing his-
torical data at all. The model with the lowest KLD measure is deemed best in the sense 
that the information lost is lowest when approximating the actual reading outcome dis-
tribution with the distribution predicted on the basis of the model.

(25)KLD (f , g) =

∫

p(y) log

(

p(y)

g(y|θ)

)

dy,

4  A final measure based on the decomposition of the inequality coefficient is the covariance proportion UC , which 
measures the error that remains after having removed deviations from average values. According to Theil (1966), it is 
unreasonable to expect that predicted and actual values will lie on a straight line and thus large values of the covariance 
proportion are not deemed as serious as large values of UB of UV . Note that UB + U

V + U
C = 1 . We do not include the 

covariance proportion measure in this paper.
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Leave‑one‑out cross validation information criterion (LOOIC)

In addition to KLD, we also examine the predictive performance of Bayesian histori-
cal borrowing methods using the leave-one-out cross validation information criterion 
(LOOIC). Leave-one-out-cross-validation (LOOCV) is a special case of k-fold cross-val-
idation (k-fold CV) when k = n , with n indicating the number of observations. In k-fold 
CV, a sample is split into k groups (folds) and each fold is taken to be the validation set 
with the remaining k − 1 folds serving as the training set. For LOOCV, each observation 
serves as the validation set with the remaining n− 1 observations serving as the train-
ing set. For each observation, the expected log point-wise predictive density (ELPD) is 
calculated and serves as a score of the predictive accuracy for n data points taken one at 
a time (see Vehtari et al., 2017)5 An information criterion referred to as the LOOIC can 
then be obtained as function of the estimated ELPD. Among a set of competing models, 
the one with the smallest LOOIC is considered the best from an out-of-sample point-
wise predictive point of view. For this paper, we evaluated two different LOOIC indices 
with students being left out one at a time and with schools being left out one at a time. 
We obtain the Bayesian LOOIC provided by the loo software program (Vehtari et  al., 
2019), available in R (R Core Team, 2022).

Data source: the Early Childhood Longitudinal Study
This paper will utilize data from the two extant cycles of the Early Childhood Longitu-
dinal Study (ECLS). Specifically, we will focus on the ECLS kindergarten cohort of 2011 
(ECLS-K:2010-11) and utilize the ECLS kindergarten cohort of 1998-99 as prior infor-
mation to inform our simulation studies as well as using these data sources for our case 
study. The ECLS program was sponsored by the National Center for Education Statistics 
(NCES) and is a component of the NCES Longitudinal Studies Program. The main pur-
pose of ECLS is to provide policymakers, researchers, and the interested community at 
large with a rich description of children’s early experiences in school.

ECLS‑K:1998‑99

The database used in this paper to provide priors for the analysis of ECLS-K:2010-11 
is the 1998-1999 ECLS-K cohort (NCES, 2001). ECLS-K:1998-99 implemented a multi-
stage probability sample design to obtain a nationally representative sample of children 
attending kindergarten in 1998-99. The primary sampling units at the base-year of data 
collection (Fall Kindergarten) were geographic areas consisting of counties or groups 
of counties. The second stage units were schools within sampled PSUs. The third- and 
final-stage units were children within schools.

For ECLS-K:1998-99, detailed information about children’s kindergarten experiences 
as well as transition into the formal schooling from Grades 1 through 8 was collected in 
the fall and the spring of kindergarten (1998-99), the fall and spring of 1st grade (1999-
2000), the spring of 3rd grade (2002), the spring of 5th grade (2004), and the spring of 
8th grade (2007), seven time points in total. For more detail regarding the sampling 
design for ECLS-K:1998-99, please see Tourangeau et al. (2009).

5  Specifically Pareto-smoothed importance sampling LOO (PSIS-LOO) is implemented in the loo software to account 
for the known instability in the loo weights (Vehtari et al., 2017).
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ECLS‑K:2010‑11

As with ECLS-K:1998-99, the ECLS-K:2010-11 is a nationally representative sample of 
approximately 18,200 children who enrolled in 970 schools during the 2010-11 school 
year and participated in the base-year of the ECLS-K:2010-11. The children attended 
both public and private schools. The sample includes children from different racial/eth-
nic and socioeconomic backgrounds.

As with ECLS-K:1998-99, a multistage sampling design was employed for the ECLS-
K:2010-11 cohort. The first stage of national sampling involved the selection of 90 pri-
mary sampling units, which consisted of counties and county groups. In the second 
stage, schools were selected from a sampling frame that was developed based on the 
NAEP 2010 assessment and came from the NCES 2006 to 2007 Common Core of Data 
Universe File. Private schools in the NAEP frame were derived from the NCES 2007 to 
2008 Private School Survey. In the third stage of sampling, approximately 23 Kindergart-
ners were selected from a list of all enrolled Kindergartners or students of Kindergarten 
age being educated in an ungraded classroom in each of the sampled schools.

Similar to the ECLS-K:1998-99 study, the children in the ECLS-K:2010-11 comprised 
a nationally representative sample selected from both public and private schools attend-
ing both full-day and part-day Kindergarten Fall of 2010. The children came from diverse 
socioeconomic and racial/ethnic backgrounds, and the sample includes both children 
in Kindergarten for the first time and Kindergarten repeaters. Also participating in the 
study were the children’s parents, teachers, schools, and before- and after-school care 
providers.

The ECLS-K:2010-11 follows the same children from Kindergarten through the fifth 
grade. Information was collected in the fall and the spring of Kindergarten (2010-11), 
the fall and spring of first grade (2011-12), the fall and spring of second grade (2012-
13), the spring of third grade (2014), the spring of fourth grade (2015), and the spring of 
fifth grade (2016), 9 time points in total with 6 time points being the same grade levels 
as those collected in the ECLS-K:1998-99 study (i.e., fall and spring of kindergarten, fall 
and spring of first grade, the spring of third grade and the spring of fifth grade). Note 
that although the study refers to later rounds of data collection by the grade the major-
ity of children were expected to be in (that is, the modal grade for children who were 
in Kindergarten in the 2010-11 school year), children were included in subsequent data 
collections regardless of their grade level.

Design of the case study
We conducted a comprehensive case study to evaluate the predictive performance of 
various Bayesian historical borrowing methods via a growth curve model with longitu-
dinal assessments. For the historical cycle ECLS-K:1998-99, we used the data from six 
time points that are in common with ECLS-K:2010-11, including the fall and spring of 
kindergarten, the fall and spring of first grade, the spring of third grade and the spring 
of fifth grade. The spring of eighth grade is not used considering that this time point was 
not collected for ECLS-K:2010-11.

We evaluated the effects of socio-economic status (SES) at the student level and the 
percentage of free lunch eligible students (denoted as FLunch) at the school level on the 
growth trajectory of students’ reading scores from fall kindergarten to spring of third 
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grade and then used the model to predict the reading score of fifth grade for the current 
cycle of ECLS-K:2010-11. Missing data was addressed by performing multilevel multiple 
imputation for each cycle separately using the Blimp software program (Enders et  al., 
2018; Keller & Enders, 2019). For simplicity, we used the first imputed data set for our 
analyses.6 Summary statistics for SES and free lunch eligible student percentage as well 
as for reading scores at different time points for ECLS-K:1998-99 and ECLS-K:2010-11 
are shown in Table 1. The time points are coded based on the number of semesters from 
the fall of kindergarten with the fall kindergarten denoted as time point 0. For example, 
the spring of kindergarten is one semester away from the fall of kindergarten and thus its 
time point is 1. For ECLS-K:2010-11, we used the first eight time points (Time 0 to 5, 7 
and 9) to estimate growth curve parameters via different historical borrowing methods 
and then evaluated their performance on predicting students’ reading scores at the last 
time point (Time 11), which is the spring of fifth grade.

Model specification

A Bayesian multilevel growth curve model is fit with reading scores at different time 
points as level-1, student as level-2, and school as level-3, which is consistent with 
the design of both cycles. The reading score is the outcome, SES is the student-level 

Table 1  Summary statistics for ECLS-K:1998-99 and ECLS-K:2010-11

SES: Socioeconomic status; FLunch: Percentage of students eligible for free lunch; Time 0: Fall of Kindergarten; Time 1: 
Spring of Kindergarten; Time 2: Fall of 1st Grade; Time 3: Spring of 1st Grade; Time 4: Fall of 2nd Grade; Time 5: Spring of 2nd 
Grade; Time 7: Spring of 3rd Grade; Time 9: Spring of 4th Grade; Time 11: Spring of 5th Grade

ECLS-K:1998-99 N Mean SD Range Skewness Kurtosis SE of the Mean

SES 3588 −0.06 0.75 7.11 −0.15 3.37 0.01

FLunch 3588 32.89 25.11 93.00 0.71 −0.33 0.42

Reading at Time 0 3588 34.61 10.20 117.27 3.36 20.60 0.17

Reading at Time 1 3588 45.85 13.70 134.12 2.19 8.24 0.23

Reading at Time 2 3588 51.83 17.27 136.62 2.12 6.39 0.29

Reading at Time 3 3588 75.79 23.66 156.92 0.83 0.69 0.40

Reading at Time 7 3588 125.09 28.33 144.76 −0.16 −0.51 0.47

Reading at Time 11 3588 148.45 26.64 136.95 −0.42 −0.21 0.44

 ECLS-K:2010-11 N Mean SD Range Skewness Kurtosis SE of the Mean

SES 3904 −0.19 0.81 4.77 0.45 −0.31 0.01

FLunch 3904 52.13 32.49 100.00 −0.06 −1.37 0.52

Reading at Time 0 3904 53.35 11.35 131.19 1.97 7.56 0.18

Reading at Time 1 3904 67.36 13.74 100.30 1.30 3.07 0.22

Reading at Time 2 3904 75.46 16.25 100.58 0.89 0.71 0.26

Reading at Time 3 3904 92.55 17.56 102.66 −0.07 −0.39 0.28

Reading at Time 4 3904 99.25 17.67 115.18 −0.06 −0.24 0.28

Reading at Time 5 3904 110.18 17.36 98.88 −0.38 −0.05 0.28

Reading at Time 7 3904 118.53 15.74 89.56 −0.41 0.04 0.25

Reading at Time 9 3904 127.10 15.24 80.64 −0.65 0.69 0.24

Reading at Time 11 3904 134.16 15.96 85.23 −0.77 0.42 0.26

6  We recognize that it would be optimal to use all the multiply imputed data sets, but evaluating growth trajectories 
based on multiple imputed data sets is beyond the scope of this paper.
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predictor, and percentage of free lunch eligible students is the school-level predictor. 
The intercept, linear and quadratic terms of time were included in the model to evalu-
ate students’ starting points, growth rates and acceleration rates of reading achievement. 
The interaction between linear and quadratic terms with SES were also included. The 
student-level intercept and slope (starting point and growth rate) and the school-level 
intercept were allowed to be random (Bollen & Curran, 2006; Kaplan, 2009).

As the scales of variables included in the models vary greatly, all the variables were 
standardized first and their z-scores were used in the estimation. Then, all the param-
eters were converted back to their original scales after the estimation.

Sample size

We evaluated the performance of different priors using the sample of female students 
only ( N = 1861 ). The results for the male students were virtually identical across all con-
ditions of the case study and are available in the supplementary material. To evaluate 
the impact of sample size on the performance of different Bayesian historical borrow-
ing methods, in addition to the full female sample, a small subsample of female students 
from high poverty schools was obtained (defined as 75% or above of students in a school 
who are free lunch eligible). The female subsample has N = 620 students.

Choice of priors

We evaluated the performance of dynamic priors, which incorporate the potential heter-
ogeneity between historical data and current data through a joint prior distribution, and 
compared it to regular priors with predetermined prior values and strength. Specifically, 
for dynamic priors, we varied the IG prior for τ 2 at IG (1, 1) and IG (1, 0.001) to allow 
for different degrees of borrowing for coefficients. Moreover, the precision matrix of the 
random intercept and random slope has a Wishart distribution prior7, W (ν, νS−1) where 
ν takes on the values 2 (weak borrowing) or 20 (strong borrowing) and S = �′

S��S is 
the baseline covariance matrix where �S is a diagonal matrix whose diagonal elements 
are distributed as half-Cauchy(0,1) and � ∼ LKJCorr(1) (Lewandowski et  al., 2009). 
For commensurate priors, we also used a Wishart prior for the precision matrix of the 
random intercept and random slope, W (ν, νS−1) , where ν takes on the value of 2. For 
power priors, we varied the a parameter using values of .25, .50 and .75. For aggregated 
data-dependent priors, the estimated coefficients from historical data were used as the 
prior mean and the prior variances of historical coefficients were used as the prior vari-
ances. For comparison purposes, two extreme kinds of borrowing, complete pooling 
and no borrowing of the historical data sets were also examined. We specified a weakly 
informative half-Cauchy (0,1) prior for the standard deviation σ of the individual-level 
error term, and a non-informative N (0, 102) prior for the school-level coefficients across 
all cycles ( Ŵ0 ) in BDB and the mean school-level coefficients in the current cycle ( µ ) 
in the non-informative prior conditions. All analyses were conducted within the R 

7  Note that we utilized the Wishart prior for the student-level precision matrix in both the case study and the simulation 
study as it demonstrated better convergence properties compared to using the inverse-Wishart distribution. We then 
scaled the results back to a covariance matrix.
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programming environment (R Core Team, 2022) using rstan (Stan Development Team, 
2021). All code for the case study are available in the supplementary material.

Results of the case study
As mentioned earlier, there are two different scenarios evaluated in the case study, 
namely, female students in high poverty schools and the full sample of female students. 
For these scenarios, results are presented in two tables with the first for regression coef-
ficient and variation estimates and the second for predictive performance. These results 
are presented in Tables 2 and 3 for female students in high poverty schools, and Tables 4 
and 5 for all female students, respectively.

Across different borrowing methods, Bayesian dynamic borrowing and commensu-
rate priors provided similar coefficient and variation estimates to those with no bor-
rowing, indicating that the historical data and current data are heterogeneous. Pooling 
and power priors with greater amounts of borrowing (i.e., a = 0.5 and a = 0.75 ), on the 
other hand, provided similar coefficient and variation estimates and showed differences 
from no borrowing and dynamic borrowing priors, particularly on the coefficient and 
variation estimates of student-level and school-level intercepts.

In terms of predictive performance, overall, different borrowing methods performed 
similarly for full samples and high poverty school samples. Theil’s equality coefficients 
were nearly identical, with pooling and power priors having slightly smaller variance 
proportions. Pooling, aggregated data-dependent priors, and power priors had relatively 
smaller RMSE between predicted and observed reading scores at the spring of 5th grade 
and smaller KLD. No borrowing provided larger RMSE and KLD, but the smallest LOO-
ICs. Bayesian dynamic borrowing under IG(1, 0.001) had a smaller LOOIC compared to 
pooling and power priors. Across all the prediction evaluation criteria, aggregated data-
dependent priors performed well overall (i.e., smaller RMSE and KLD compared to no 
borrowing and smaller LOOICs compared to pooling, power priors and dynamic bor-
rowing methods). Due to the heterogeneity between the historical data and the current 
data as reflected in Table 1, Bayesian dynamic borrowing methods did not outperform 
other borrowing methods, but would still be a reasonable choice in terms of providing 
smaller LOOICs compared to pooling and smaller RMSEs compared to no borrowing.

Design of the simulation study
The results of the case study indicate that the cycles of ECLS-K:1998-99 and ECLS-
K:2010-11 are relatively heterogeneous in terms of the effects we evaluated such that 
Bayesian dynamic borrowing and commensurate priors borrow less due to data hetero-
geneity and provide estimates similar to Bayesian multilevel growth curve model with 
non-informative priors (i.e., no borrowing). In order to study the performance of differ-
ent Bayesian historical borrowing methods under different levels of data heterogeneity 
as well as varying levels of sample size, a comprehensive simulation study was further 
conducted.

Model specification and estimation

For the simulation study, a Bayesian multilevel linear growth curve model was used 
(details to follow). For the Markov chain Monte Carlo simulations, 2000 iterations 
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(where the first 1000 were used as warm-up iterations and discarded) were run for each 
of the four chains. We ran 500 replications, out of which the model converged well for at 
least 489 replications. Only the replications with converged models were used. The rep-
lications with split-chain potential scale reduction factors R̂ ≥ 1.05 were discarded (see 
e.g. Gelman et al., 2014).

Data generation and simulation conditions

For our simulation study, we evaluated the impact of the number of schools, school size, 
heterogeneity of historical information, and prior choice. We used the historical cycle 
ECLS-K:1998-99 as the base to generate the data of the current cycle. Let G denote the 
number of schools and let n denote the number of students per school. We examined 
four different sample sizes: (1) G = 10, n = 20; (2) G = 10, n = 40, (3) G = 20, n = 20, 

Table 3  Prediction performance of different borrowing methods for the sample of female students 
in high poverty schools

Theil Inequ Coef: Theil’s inequaility coefficient; Theil Bias Prop: Theil’s bias proportion; Theil Var Prop: Theil’s variance 
proportion; RMSE: root mean squared error of the predicted reading score vs. observed reading score at the spring of 
5th grade; KLD: Kullback-Leibler Divergence Score; LOOIC (Student): Leave-one-out cross validation information criterion 
with each student left out one at a time; LOOIC (School): Leave-one-out cross validation information criterion with each 
school left out one at a time; BLR: Bayesian Linear Regression; AGDP: aggregated data-dependent prior; PP: power prior; 
BDB: Bayesian dynamic borrowing; IG: inverse-gamma prior for time-level variance of the joint prior distribution, which 
determines the degree of time-level borrowing; W2: Wishart prior with weak borrowing for student-level (the former) 
or school-level (the latter) precision matrix (results were converted back the covariance matrix); W20: Wishart prior with 
strong borrowing for student-level (the former) or school-level (the latter) precision matrix (results were converted back the 
covariance matrix); CP: commensurate prior

Theil inequ 
coef

Theil bias 
prop

Theil var 
prop

RMSE KLD LOOIC 
(Student)

LOOIC (School)

BLR Nonin-
formative

0.03 0.01 0.11 9.93 0.07 33967.63 33621.26

BLR Pooling 0.03 0.01 0.06 8.72 0.02 34192.96 33837.50

BLR AGDP 0.03 0.01 0.12 8.81 0.03 34027.67 33692.09

PP (0.25) 0.03 0.01 0.09 8.91 0.03 34124.25 33794.19

PP (0.5) 0.03 0.01 0.07 8.83 0.02 34145.22 33802.78

PP (0.75) 0.03 0.01 0.06 8.78 0.02 34191.10 33838.18

BDB IG(1,1) 
W2,W2

0.03 0.01 0.13 9.89 0.07 34090.48 33779.65

BDB 
IG(1,0.001) 
W2,W2

0.03 0.01 0.13 9.83 0.07 34093.57 33788.90

BDB IG(1,1) 
W2,W20

0.03 0.01 0.13 9.90 0.07 34086.56 33796.26

BDB 
IG(1,0.001) 
W2,W20

0.03 0.01 0.13 9.85 0.07 34089.09 33784.94

BDB IG(1,1) 
W20,W2

0.03 0.01 0.13 9.90 0.07 34107.72 33780.68

BDB 
IG(1,0.001) 
W20,W2

0.03 0.01 0.13 9.84 0.07 34097.21 33777.34

BDB IG(1,1) 
W20,W20

0.03 0.01 0.13 9.91 0.07 34085.33 33784.04

BDB 
IG(1,0.001) 
W20,W20

0.03 0.01 0.13 9.84 0.07 34084.31 33770.53

CP W2,W2 0.03 0.01 0.13 9.84 0.07 34087.65 33786.41
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and (4) G = 20, n = 40. For the historical data ECLS-K:1998-99, a random sample strati-
fied by schools was selected with one of the sample size scenarios mentioned above. The 
selected within-student variables included the reading score and a linear (t) and quad-
ratic ( t2 ) component of time. Same as the case study, the between-student variable in the 
simulation study is SES, and the school-level variable is percentage of students who are 
eligible for free lunch in each school.

Data for the current cycle with each of the above four sample sizes were generated 
with different degrees of heterogeneity compared to the historical data. A Bayesian mul-
tilevel linear growth curve model was fit on the ECLS-K:1998-99 data with the reading 
score as the outcome, t and t2 as within-student predictors, SES as the student-level pre-
dictor, and the percentage of free lunch eligible students in each school as the school-
level predictor. The interaction terms between the linear and quadratic components of 

Table 5  Prediction performance of different borrowing methods for the full sample of female 
students

Theil Inequ Coef: Theil’s inequaility coefficient; Theil Bias Prop: Theil’s bias proportion; Theil Var Prop: Theil’s variance 
proportion; RMSE: root mean squared error of the predicted reading score vs. observed reading score at the spring of 
5 th grade; KLD: Kullback-Leibler Divergence Score; LOOIC (Student): Leave-one-out cross validation information criterion 
with each student left out one at a time; LOOIC (School): Leave-one-out cross validation information criterion with each 
school left out one at a time; BLR: Bayesian Linear Regression; AGDP: aggregated data-dependent prior; PP: power prior; 
BDB: Bayesian dynamic borrowing; IG: inverse-gamma prior for time-level variance of the joint prior distribution, which 
determines the degree of time-level borrowing; W2: Wishart prior with weak borrowing for student-level (the former) 
or school-level (the latter) precision matrix (results were converted back the covariance matrix); W20: Wishart prior with 
strong borrowing for student-level (the former) or school-level (the latter) precision matrix (results were converted back the 
covariance matrix); CP: commensurate prior

Theil inequ 
coef

Theil bias 
prop

Theil var 
prop

RMSE KLD LOOIC 
(Student)

LOOIC (School)

BLR Nonin-
formative

0.03 0.01 0.11 10.99 0.17 103859.87 102848.58

BLR Pooling 0.03 0.02 0.04 8.84 0.06 107146.03 105905.94

BLR AGDP 0.03 0.01 0.13 7.86 0.04 105155.18 104154.24

PP (0.25) 0.03 0.02 0.05 8.48 0.05 106807.01 105608.49

PP (0.5) 0.03 0.02 0.05 8.67 0.05 107018.84 105753.76

PP (0.75) 0.03 0.02 0.04 8.76 0.06 107087.27 105811.26

BDB IG(1,1) 
W2,W2

0.03 0.02 0.18 10.89 0.21 105698.48 104927.28

BDB 
IG(1,0.001) 
W2,W2

0.03 0.02 0.18 10.93 0.21 105682.55 104901.07

BDB IG(1,1) 
W2,W20

0.03 0.02 0.18 10.89 0.21 105675.18 104894.27

BDB 
IG(1,0.001) 
W2,W20

0.03 0.02 0.18 10.92 0.21 105670.24 104912.10

BDB IG(1,1) 
W20,W2

0.03 0.02 0.17 10.89 0.20 105690.84 104929.72

BDB 
IG(1,0.001) 
W20,W2

0.03 0.02 0.17 10.91 0.21 105674.95 104929.79

BDB IG(1,1) 
W20,W20

0.03 0.02 0.17 10.88 0.20 105686.13 104938.19

BDB 
IG(1,0.001) 
W20,W20

0.03 0.02 0.17 10.92 0.21 105663.53 104920.70

CP W2,W2 0.03 0.02 0.18 10.92 0.21 105761.37 104970.18
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time and student-level SES as well as school-level free lunch eligible percentage were 
also included. The student-level intercept and slope, which are students’ starting points 
and growth rates, were allowed to be random. The school-level intercept was treated 
as random. Fixed effect and random effect estimates from the historical cycle were 
obtained and used to generate the current cycle’s data. That is, for the current cycle, pre-
dictor values were sampled from the ECLS-K:2010-11 data with a certain sample size, 
while the outcome (reading score) was generated with different generating coefficients. 
For the homogeneous condition, the regression coefficient estimates obtained based on 
the historical cycle were used as the generating coefficients to generate data for the cur-
rent cycle. For the heterogeneous condition, the historical regression coefficient esti-
mates with adjustments ranging from − 10% to + 150% were used to generate the data 
of the current cycles so that the regression coefficients in the current cycle would be het-
erogeneous compared to the historical regression coefficients (specific adjustments are 
included in the supplemental material). The growth trajectories of one simulated data 
set are illustrated in Fig.  1 for historical cycle (upper), homogeneous condition of the 
current cycle (middle) and heterogeneous condition of the current cycle (bottom), one 
plot per sample size. Data for the current cycle were generated with the same proportion 
of schools in each of the four poverty categories differentiated by percentage of students 
who are eligible for free lunch.

Regarding prediction, we used the same method as discussed in the case study. That 
is, for the current cycle, we used the first eight time points (Time 0 to 5, 7 and 9) to 
estimate growth curve parameters via different historical borrowing methods and then 

Fig. 1  Growth trajectories of one simulated data set for different sample size and heterogeneity conditions
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evaluated their performance on predicting students’ reading scores at the last time point 
(Time 11), which is the spring of fifth grade.

With regard to prior choice, similar to the case study, we assessed the performance of 
dynamic priors and compared it to the no borrowing case, aggregated data-dependent 
priors, complete pooling, and power priors. Specifically, for Bayesian dynamic borrow-
ing, we varied the inverse-Gamma prior for τ 2 at IG(1, 1) and IG(1, 0.001). The preci-
sion matrices of the student-level random intercepts and random slopes have Wishart 
distribution W (ν, νS−1) where ν takes 2 (weak borrowing) or 20 (strong borrowing) and 
S = �′

S��S is the baseline precision where �S is a diagonal matrix whose diagonal ele-
ments are distributed as half-Cauchy(0, 1) and � ∼ LKJCorr(1) . For commensurate pri-
ors, Wishart prior with ν = 2 was used for both student-level and school-level random 
effects. For power priors, again, we varied ah at 0.25, 0.50 and 0.75. All code for the simu-
lation study are available in the supplementary material.

Results of the simulation study
Two sets of results from the simulation study are presented, one being the evaluation of 
growth curve model parameter recovery as illustrated in Fig. 2 (for regression coefficient 
estimates) and Fig.  3 (for variation estimates), and the other being the quality of pre-
diction on students’ reading score at the spring of 5th grade across different borrowing 

Fig. 2  Root Mean Squared Error (RMSE) of regression coefficient estimates for different sample size and 
heterogeneity conditions
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methods as illustrated in Fig. 4 (for the homogeneous condition) and Fig. 5 (for the het-
erogeneous condition).

Figures  2 and  3 display three columns of plots indicating no borrowing, static bor-
rowing (pooling, aggregated data-dependent prior, and power prior), and dynamic bor-
rowing (BDB and commensurate prior). The x-axis indicates two different heterogeneity 
(hm—homogeneous; ht—heterogeneous) by four different sample size conditions (G—
number of schools; n—number of students per school), in total eight different condi-
tions. The rows indicate different regression coefficients (in Fig. 2) or random variations 
(in Fig.  3), including student-level variance and covariance of random intercept and 
slopes, school-level variance of random intercept, and variance of residuals.

Root mean squared errors (RMSEs) between the generating/true parameters and esti-
mated parameters are used to evaluate the accuracy of parameter estimates by differ-
ent borrowing methods. Figure 2 shows that overall, RMSEs for regression coefficient 
estimates were smaller when sample sizes were larger and when the current data was 
more homogeneous to the historical data. Under the same sample size and heterogeneity 
condition, dynamic borrowing methods were better or similar to no borrowing across 
different regression coefficients. For example, BDB under the IG (1, 0.001) hyperprior 
and commensurate prior provided smaller RMSEs for the coefficient of FLunch than 
no borrowing. The static borrowing methods provided similar RMSEs to those with no 

Fig. 3  Root Mean Squared Error (RMSE) of variation estimates for different sample size and heterogeneity 
conditions
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Fig. 4  Prediction performance of different borrowing methods under the homogeneous condition

Fig. 5  Prediction performance of different borrowing methods under the heterogeneous condition
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borrowing and dynamic borrowing methods under the homogeneous condition, but the 
performance varied under the heterogeneous condition. Specifically, under the hetero-
geneous condition, the aggregated data-dependent priors provided the smallest RMSE 
for the quadratic term of time (acceleration rate), but the largest RMSEs for the intercept 
(starting point) and the linear term of time (growth rate). The power prior methods pro-
vided the same or better RMSEs for the regression coefficient estimates overall.

For the variation estimates shown in Fig. 3, no borrowing, aggregated data-dependent 
priors, and dynamic borrowing provided similar RMSEs for student-level random varia-
tion estimates. Nevertheless, BDB under IG(1, 0.001) and Wishart(20) hyperpriors pro-
vided the smallest RMSE for school-level random intercept variation. No borrowing and 
AGDP provided the smallest RMSEs for the variance of residuals. Power priors, in con-
trast, provided the largest RMSEs for the variance of residuals. Under the heterogeneous 
condition, power priors yielded the largest RMSEs for all the variation estimates.

In terms of predictive performance, the Theil inequality coefficients, bias and variance 
proportions, RMSE between the observed and predicted reading score at the spring of 
5th grade, KLD, LOOIC with one student left out at a time and LOOIC with one school 
left out at a time were adopted to evaluate the prediction quality of different borrow-
ing methods under different sample size and heterogeneity conditions. As Fig. 4 shows, 
when the current data and the historical data were relatively homogeneous, we found 
that no borrowing, AGDP, and dynamic borrowing performed similarly in terms of pre-
diction. There were minor differences in Theil’s inequality coefficients, bias proportion 
and variance proportion, where no borrowing and AGDP performed slightly better. 
Based on RMSE for prediction and KLD, power priors performed worse than other bor-
rowing methods. Pooling was slightly better than power priors, but also did not out-
perform no borrowing, AGDP, or dynamic borrowing methods. Across different sample 
sizes, the predictive performance based on the LOOIC across different borrowing meth-
ods was similar.

When the current data and the historical data were heterogeneous, as Fig. 5 shows, 
pooling performed worse on prediction compared to its performance under the homo-
geneous condition and had the largest RMSE of prediction and KLD. Power priors also 
had large RMSE of prediction and KLD compared to no borrowing, AGDP and dynamic 
borrowing. BDB and commensurate priors performed similarly to no borrowing and 
AGDP in terms of prediction. Similar to the homogeneous condition, the predictive per-
formance based on the LOOIC across different sample size conditions was similar.

Conclusion
As we noted in the introduction, longitudinal data are becoming increasingly available 
and are powerful data collection strategies that allow for the study of important out-
comes in education and the social and behavioral sciences. That said, longitudinal data 
are also extremely expensive to collect, and except in rare cases, few longitudinal studies 
exist that have gone beyond two separate cohorts. Thus, it becomes even more critical 
that new methodologies be developed to leverage information across longitudinal stud-
ies while accounting for the heterogeneity that can be induced by cohort effects as well 
as other changes in the data collection strategies across cycles.
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The purpose of this study was to build on recent work by Kaplan et  al. (2022), and 
examine a variety of methods under the umbrella of Bayesian historical borrowing with 
a specific focus on models for growth in longitudinal studies. Outcomes of interest in 
our study were the parameter recovery and predictive performance of growth models 
under a variety of historical borrowing methods. We utilized both a case study and a 
simulation study in the context of one historical cycle insofar as this is a relatively real-
istic situation. We note that this is in contrast to Kaplan et  al. (2022), who examined 
Bayesian historical borrowing for cross-sectional multilevel models based on the struc-
ture of PISA and with five historical cycles.

Our findings show that in the case of one historical cycle, most methods of histori-
cal borrowing perform similarly with respect to predictive performance and parameter 
recovery. We note that in the present paper, and consistent with Kaplan et  al. (2022), 
pooling and power priors performed relatively poorly across the conditions in this study, 
particularly when the current data and the historical data were heterogeneous. The find-
ings regarding power priors are not surprising insofar as previous studies have shown 
relatively poor performance of power priors in a variety of settings (see Du et al., 2020, 
and references therein), though power priors were not examined in the case of longi-
tudinal studies with a focus on prediction. The findings regarding pooling under the 
homogeneous condition are a bit surprising insofar as the homogeneous condition of 
our simulation study mimicked the desirable conditions for combining data from lon-
gitudinal studies as described in Hofer and Piccinin (2009), e.g. common time points 
and identical measurements. However, the current data and the historical data might 
still not have been homogeneous enough given that the generating model is a complex 
multilevel growth curve model. Overall though, the findings show that using aggregated 
data-dependent priors or simply using the current cycle of data with non-informative 
priors performed well. We speculate that this is because we only examined the realistic 
condition of one historical study. Note, however, that Kaplan et  al. (2022) found clear 
benefits of Bayesian dynamic borrowing over other methods of historical borrowing in 
the cross-sectional multilevel case study using PISA (OECD, 2002; 2019) with five his-
torical cycles, and so, in line with Kaplan et al. (2022), we argue that Bayesian dynamic 
borrowing or commensurate priors is a prudent choice for borrowing information from 
previous cycles of data and that sensitivity analyses examining a variety of borrowing 
procedures to gauge the extent of homogeneity or heterogeneity across data sets would 
be advisable. Also, future research should expand the current study to consider more 
cycles of longitudinal data.8

It is important to point out some limitations of this study as they pertain specifically 
to the application of these methods to longitudinal data. First, we did not account for 
the sampling weights, which are critical in large-scale assessments. The problem of sam-
ple weighting in Bayesian models generally has been discussed in Gelman (2007), who 
declared at the time that “Survey weighting is a mess” (pg. 153). Since then, however, 
there have been important developments in the implementation of sampling weights for 
Bayesian analyses with applications to problems of survey data (see e.g. Goldstein, 2011; 

8  As of this writing, the United States National Center for Education Statistics in the process of designing and launching 
the Early Childhood Longitudinal Study: Kindergarten Class of 2023-24.
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Trendtel & Robitzsch, 2021). Another approach advocated by Gelman (2007) would be 
multilevel regression with post-stratification (Gelman & Thomas, 1997). This approach 
is mostly impractical in the context of large-scale assessments insofar population counts 
would be required for all variables used in an analysis, and such counts are typically only 
available for demographic variables. In any case, both approaches would require con-
siderable future research, which was beyond the scope of this paper. Second, our paper 
suffers from limitations common to methodological research—namely that real data 
can not be expected to mimic ideal conditions found in simulation studies, and simula-
tion studies can not examine all possible conditions that would be encountered in real 
data scenarios. Nevertheless, on the basis of the findings in this paper, we conclude that 
Bayesian historical borrowing methods should be given serious consideration, and that 
a comparison of methods based on in-sample and pseudo out-of-sample performance 
measures should be a routine part of the workflow when multiple cycles of longitudinal 
data are available from which to borrow from and when prediction is of central focus.
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