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Introduction
Reading and math proficiency are considered crucial for later development of other aca-
demic skills (e.g., Koponen et al., 2020). While the domains are often treated indepen-
dently in practice, research frequently considers them alongside each other, recognizing 
that beyond their individual developmental trajectories there is interplay (e.g., Cameron 
et al., 2019; Koponen et al., 2020; Korpipää et al., 2017; Vanbinst et al., 2020; Bailey et 
al., 2020; Erbeli et al., 2021; Purpura et al., 2017). Learning about these developmental 
dynamics through appropriate models is crucial for improved prediction and identifica-
tion of starting points for potential interventions.

The contribution of this study is twofold. First, we contribute to our knowledge on 
the relationship between math and reading by describing the interplay between the two 
over time using continuous time models. By doing so, we provide further evidence on 
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Introduction  Reading and math proficiency are assumed to be crucial for the 
development of other academic skills. Further, different studies found reading and 
math development to be related. We contribute to the literature by looking at the 
relationship between reading and math using continuous time models. In contrast to 
previous studies, this allows us to (a) report estimates for autoregressive and cross-
lagged effects for a range of possible time intervals while still only estimating one 
set of continuous time parameters and (b) identify peak effects for the relationship 
between the two. Using data from Starting Cohort 3 of the National Educational Panel 
Study, we find, in line with previous evidence, a larger effect of reading on math than 
the other way around. Furthermore, we identify peak standardized cross-lagged effects 
(areading→math ≈ 0.30 , amath→reading ≈ 0.13) for a time interval of approximately 6 
months.
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potential reciprocal effects and the nature of such effects using a novel modeling tech-
nique. This allows us to answer questions such as; do we find further evidence that read-
ing is the leading competency, whose effect on math is stronger than vice versa (e.g., 
Bailey et al., 2020; Erbeli et al., 2021) and for which time interval do we find peak effects? 
However, we can also assess each constructs’ persistence, that is, we can describe for 
which construct past deviations persist into the future for longer. Previous findings, for 
example, suggest that reading might be somewhat more persistent than math (Hecht 
et al., 2001; Korpipää et al., 2017). Furthermore, our application also demonstrates the 
potential of continuous time modeling for the analysis of the interplay between edu-
cational constructs in general and how these models increase comparability and thus 
facilitate the accumulation of knowledge. We do this by showcasing one of the main 
strengths of continuous time models, the ability to describe the entire dynamics between 
two constructs with one set of continuous time parameters, which can be used to cal-
culate model implied discrete autoregressive and cross-lagged effects not just for the 
observed time interval but for a reasonable range.

The remainder of the paper is structured as follows. We firstly provide an overview 
over the current literature regarding the relationship between reading and math pro-
ficiency. Then, we discuss model requirements based on past evidence and data limi-
tations, arguing for continuous time models as a solution for some of the issues. This 
section is followed by an introduction to continuous time models. Subsequently, we 
describe the data and measures. We then present the empirical results and conclude 
with a discussion of these as well as the limitations of our study.

Current evidence on the relationship between math and reading
Previous studies have frequently shown that proficiencies in math and reading are 
related (e.g., Cameron et al., 2019, Bailey et al., 2020, Erbeli et al., 2021, Hübner et al., 
2022, Gnambs & Lockl, 2022). There are various possible reasons why we might observe 
an association:1 (a) Reading skills could influence math skills, (b) math skills could influ-
ence reading skills, (c) both could be true, implying complex dynamics between the con-
structs, (d) the two constructs could share a set of time-constant and/or time-varying 
causes. Although previous empirical evidence is often based on vastly different types of 
empirical models which often lead to parameters that are not strictly comparable (e.g,. 
Orth et al., 2021), results are usually interpreted as providing evidence for one of the 
four mechanisms.

Thus, (a) reading proficiency could be important for math because language shapes the 
development of numbers concepts and learning rules of the number system is similar to 
mastering written language (as symbolic representational system) (LeFevre et al., 2010). 
Also, well developed phonological processing and fluency skills are a prerequisite for 
math. In line with this, Grimm (2008) found early reading skills to be a good predictor 
for success in mathematics and Jordan et al. (2002) reported that reading abilities influ-
ence children’s growth in mathematics. The inverse pathway, (b) math influencing read-
ing proficiency, is also theoretically and empirically grounded. Early math proficiency, 
such as fluent counting, potentially shapes formation and retrieval skills of visual-verbal 
associations in long-term memory, which are crucial for reading fluency (Koponen et 

1  The list is not exhaustive and we focus on simple mechanisms related to a potential causal understanding of the 
relationship between the constructs.



Page 3 of 19Jindra et al. Large-scale Assessments in Education           (2022) 10:22 

al., 2013). In line with this, Duncan et al. (2007) reported that early math skills have the 
greatest predictive power for later learning and that early math skills predicted reading 
better than reading predicted math. Further, Holenstein et al. (2020) found a transfer 
effect of mathematical literacy achievement on different school domains including read-
ing for adolescents. Purpura et al. (2017) suggested mathematical language skills as a 
mediating mechanism for the effect of mathematical skills on later reading.

However, given that there exist studies that provide support for either (a) or (b), it 
seems difficult to exclude (c) as an option, and thus the possibility that there are complex 
dynamics between the variables. Thus the literature in (c) seems in most cases rather 
complementary than competitive to those cited in (a) and (b), unless a specific study 
explicitly seems to find support for one pathway only such as the one by Jordan et al. 
(2002), who find that in their case reading abilities do impact growth in math but not 
the other way around. On the other hand, Schmitt et al., (2017) for example reported a 
bidirectional relationship for certain time spans between kindergarten and preschool. 
Similarly, Cameron et al. (2019) concluded that proficiency in each domain contributes 
to the other in a reciprocal, supportive manner. Bailey et al. (2020) reported bidirec-
tional effects between reading and math but found stronger effects for reading on math 
when using a cross-lagged panel model with random intercepts (RI-CLPM) compared to 
the simple cross-lagged panel model (CLPM). These results are somewhat in line with 
Erbeli et al., (2021) who found bidirectional effects with reading appearing to be a lead-
ing and math a lagging indicator. Hübner et al., (2022) also found a complex relationship 
between the constructs but concluded that reading skills might be particularly impor-
tant for the development of math skills. Gnambs and Lockl (2022) on the other hand 
also demonstrated how sensitive results are towards modeling choices. While results 
from the CLPM and CLPM with lag 2 showed consistent positive bi-directional associa-
tions between the constructs, effects for the RI-CLPM changed over grades even turning 
negative for older students. However, one has to keep in mind that the methodologi-
cal debate on the difficulties of comparing results from the different models is ongoing 
(for example Orth et al., 2021; Lucas, 2022). Recently, Lucas drew attention to the well-
known problem that results from the CLPM are a potentially uninterpretable mix of 
between- and within-effects, whereas the RI-CLPM aims to disentangle both. This is why 
Bailey et al. (2020) argue that the observed reduction in their effect sizes, when using the 
RI-CLPM in contrast to the CLPM, is due to the former accounting for the effects of sta-
ble unmeasured factors, a source of between-effects, which leads to (d), confounders. It 
seems indisputable that both domains are likely to share a set of common causes. These 
could be a broadly defined g-factor, that is, general intelligence, as in the strata-theories 
(Carroll, 1993; Cattell, 1987; Horn, 1988). But also more specific common domain-gen-
eral cognitive correlates were reported. Several studies discuss a variety of factors that 
seem to be correlated with both domains, such as working memory, attentive behavior, 
processing speed, listening comprehension, nonverbal reasoning, serial retrieval fluency, 
phonological awareness, processing speed, and numeral recognition (Fuchs et al., 2013; 
Korpipää et al., 2017; Koponen et al., 2020; Vanbinst et al., 2020; Cirino et al., 2018). 
Furthermore, there are likely other factors that cause the constructs to be related. Previ-
ous evidence, for example, suggests that there is a genetic component to the correla-
tion between reading and mathematics ability (Davis et al., 2014). Additionally, standard 
confounders such as family or language background will lead to an empirical association 
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between the variables unless accounted for. Thus, previous studies provide support for 
all the above stated reasons that could be behind the empirical association. However, 
depending on the underlying data generating process, different statistical strategies seem 
more appropriate, as will be discussed in the following section.

Methodological challenges in the study of reading-math dynamics
It is well known that panel data and standard panel methods can offer some protec-
tion against the threat of time-constant unobserved heterogeneity (Allison, 2009; Bell 
& Jones, 2015; Halaby, 2004; Zyphur et al., 2020).2 Thus, while we have to observe time-
varying confounders to be able to control for them, in the absence of a valid identifica-
tion strategy, we can at least mitigate the risk of time-constant confounding with panel 
data. On the other hand, if researchers are interested in the effect of reading on math 
but cannot exclude the possibility that math influences reading as well, one would need 
to go beyond standard models when simultaneously aiming to control for time-constant 
confounding (Allison et al., 2017; Arellano & Bond, 1991; Moral-Benito, 2013). However, 
it can be argued that if (c) is true, the statistical approach should account for this and any 
dynamics should be modeled explicitly. Thus, given that previous evidence implies that 
we cannot rule out reciprocal effects between math and reading skills and given that it 
seems highly unlikely that the constructs do not share common time-constant causes 
(d), a convincing statistical model should aim to account for both.

Different statistical approaches offer potential solutions, such as the random inter-
cept cross-lagged panel model (RI-CPLM, Hamaker, 2015) or the general cross-lagged 
panel model (GCLM, Zyphur et al., 2020). Both incorporate dynamics in the form of 
autoregressive and cross-lagged parameters. Furthermore, both include correlated ran-
dom intercepts to account for stable elements. While these elements are sometimes 
referred to as traits in the RI-CLPM, the correlated random intercepts approach in the 
GCLM corresponds more closely to what social scientists call a fixed effects approach 
to control for stable unobserved confounders (Allison, 2009; Halaby, 2004; Wooldridge, 
2010; Zyphur et al., 2020; Bollen & Brand, 2011).3 While we are not aware of an applica-
tion that uses the GCLM to understand the dynamics between reading and math, Bai-
ley et al., (2020) as well as Gnambs & Lockl (2022) have shown that results from the 
CLPM and the RI-CLPM differ substantially. The former attribute the reduction in effect 
sizes to controlling for time-constant traits. Thus, a high correlation between the ran-
dom intercepts might indicate support for the idea of a substantial overlap between 
these time-constant factors. Besides the CLPM and the RI-CLPM, other longitudinal 
models to examine reciprocal relations exists, for example, the the stable trait autore-
gressive trait and state model (STARTS; Kenny & Zautra, 2001; also known as the trait-
state-error (TSE) model, Kenny & Zautra, 1995), the latent curve model with structured 
residuals (LCM-SR; Curran et al., 2014), the autoregressive latent trajectory model (ALT; 
Bollen & Curran 2004; Curran & Bollen, 2001), and the latent change score model (LCS; 

2  We use the term time-constant unobserved heterogeneity for confounding factors that are constant over time and 
potentially unobserved, in contrast to time-varying confounding which can change over time. While standard models 
usually assume time-constant effects for these factors, research highlights that this assumption can be relaxed using 
specific modeling strategies (Bollen & Brand, 2011; Zyphur et al., 2020).
3 There are substantive differences between the approaches. However, a full discussion is beyond the scope of the 
paper. One crucial difference is that the random-intercepts in the GCLM have indirect effects on future outcomes via 
autoregressive and cross-lagged paths, while the traits in the RI-CLPM only adjust the intercept of the observed vari-
able at the time but do not allow for indirect effects (Usami, 2021).
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Hamagami & McArdle 2001; McArdle & Hamagami, 2001). Usami et al.,(2019) provide 
a general framework to “facilitate the understanding of the strengths and weaknesses of 
these models” which “helps to clarify the conceptual and statistical differences” (p. 654). 
For longitudinal educational research, especially for large-scale assessment studies like 
PISA, Lohmann et al., (2022) discuss the advantages of the LCM-SR, one of which being 
that “systematic (linear) trends are disentangled from the autoregressive and cross-
lagged parameters” (p. 8). In this vein, Curran and Bollen (2001) speak of the “best of 
both worlds” as linear growth and dynamics are combined into one model while retain-
ing their typical interpretation. All these models share the property of being discrete-
time models which is associated with some issues that we discuss next.

In practice, we observe a considerable amount of variation in the time intervals 
between measurements across studies. Codding et al. (2015), for example, analyze data 
from three measurement points distributed over a short time period, namely fall, win-
ter, and spring of one academic year. Rinne et al. (2020) collect data for six measure-
ment points distributed over three years, while Bailey et al. (2020) use data from four 
measurement points collected over four years. These variations represent a challenge 
for the interpretation and comparability of coefficients across studies, complicating the 
accumulation of knowledge as effects from standard discrete time models pertain to the 
specific time interval of the respective study only (Oud & Delsing, 2010). Furthermore, 
time intervals between measurements do not only vary between studies but frequently 
within studies as well. In large studies, such as the National Educational Panel Study 
(NEPS; Blossfeld et al., 2019), or the Early Childhood Longitudinal Study (ECLS; e.g., 
Tourangeau et al., 2018) this can already be due to the fact that field work is often taking 
place over a considerable amount of time (for examples in other fields see Steptoe et al., 
2013; Sonnega et al., 2014). For the purpose of analyses, information on the exact timing 
of the measurements is sometimes discarded and measurements are subsumed under 
the year of the fieldwork for a specific wave. Similarly, studies often do not measure each 
construct across all waves, complicating the analysis as constructs are missing for some 
waves. While dynamic discrete time models struggle with these issues, continuous time 
models can handle different time intervals between and within studies (Oud & Delsing, 
2010; Voelkle et al., 2012, 2018; Hecht et al., 2019; Hecht & Zitzmann, 2020) and can 
help to explore the unfolding of effects over time (Hecht & Zitzmann, 2021). Given that 
these models are further able to model complex dynamics between constructs and are 
potentially able to account for time-constant unobserved heterogeneity, they are well 
suited for research questions such as the interplay between reading and math proficien-
cies over time.

The advantages of continuous-time models over discrete-time models have been excel-
lently described and illustrated in other works (e.g., Voelkle et al., 2012; Ryan et al., 2018; 
Hecht et al., 2019; Hecht & Zitzmann, 2021; Lohmann et al., 2022; Hecht et al., 2022). To 
shortly reiterate: Continuous-time modeling conceptualizes longitudinal data as “snap-
shots” that inform the estimation of continuously evolving processes. Thus, data from 
all time points can be used for estimation. This lifts the usual spacing restrictions in dis-
crete-time models and allows the usage of flexible longitudinal designs with intra- and 
interindividual varying spacing between measurement occasions. Once the continuous-
time model is estimated, it can be used to calculate corresponding discrete-time model 
parameters for any desired time interval length. This helps to compare discrete-time 
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model results from studies with differently spaced measurement occasions. For instance, 
if one programme uses 1-year intervals and another programme 3-year intervals, both 
programmes could estimate a continuous-time model, then calculate discrete-time 
parameters for the same time interval (e.g., 2 years or any other desired interval length) 
and hence arrive at comparable results. Another advantage of continuous-time models 
which is frequently discussed in the literature (and particularly highlighted by Hecht & 
Zitzmann, 2021) is that the unfolding and dissipation of dynamic effects can be explored. 
This is usually done by plotting the dynamic parameter of interest (y axis) against the 
discrete-time interval length (x axis). We use this technique later in the present work to 
identify for which time interval length the reciprocal relationship of students’ reading 
and math proficiencies is maximal (which could be termed “peak cross-lagged effects”, 
Hecht & Zitzmann, 2021). This exploration with the help of continuous-time modeling 
is interesting and relevant because researchers often (implicitly or explicitly) search for 
these effects, but might not be able to identify these effects when applying discrete-time 
models.

Continuous time modeling

We develop the main idea behind continuous time modeling following Voelkle et al. 
(2012), starting with a simple discrete time multivariate autoregressive model. We then 
move from an intuitive approach of dealing with variations in time intervals between 
studies in discrete time models to the continuous treatment of time. The starting point 
for our discussion is an autoregressive model of the following form:

xj (t) = A (∆t) × xj (t − ∆t) + wj (∆t) � (1)

All variables are assumed to be in deviation form, which allows us to ignore intercepts 
for now. In Eq. 1, xj (t) and xj(t − ∆t) each represent a K × 1 vector of the same K  
variables for individual j, once observed at discrete time point t  and previously at time 
t − ∆t . Given that they appear on both sides of the equation, each variable can be an 
outcome and explanatory variable at the same time. The variables are linked to each 
other over time via theK × K  matrix A (∆t) , containing the autoregressive param-
eters on its diagonal and cross-lagged effects on the off-diagonals. wj (∆t)is a K × 1 
vector of stochastic error terms, which are assumed to be uncorrelated over time. Both, 
A (∆t)  and wj (∆t), are a function of the time between measurements, indicated by ∆t

. However, while they are a function of time, the underlying data generating process is 
nonetheless assumed to be constant over time. Hence, the equation just highlights that, 
while actual processes most often evolve continuously over time, our measurements are 
usually observed in discrete time intervals at specific time points and therefore, results 
based on discrete time methods will result in parameters that are a function of the study 
specific time intervals (∆t ). Consequently, they are not directly comparable.

An intuitive approach to make parameters from studies with varying time intervals 
comparable would be to predict normalized changes, (xj (t) − xj (t − ∆t))/∆t , instead 
of levels. Thus, ignoring error terms, we can relate the normalized changes to previous 
levels as follows:

∆xj (t)
∆t

= A∗ × xj (t − ∆t)� (2)
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Voelkle et al. (2012) call A∗  a crude approximation of the underlying continuous time 
process. It is important to note that A∗ is independent of the study specific time interval. 
However, the parameters are related and can be transformed into each other via the fol-
lowing equation:

A (∆t) = A∗ × ∆t + I � (3)

Thus, once we have either A∗  or A (∆t)  and the time interval, we can easily move 
between the two. While simple and intuitive, Voelkle et al. (2012) highlight two main 
shortcomings of this approach. Firstly, while it represents an approximation of the 
underlying continuous process, it is just a crude approximation of the so-called drift 
matrix that represents the data generating process in continuous time modeling. Sec-
ondly, the approach can only be used if the time intervals between measurements 
are constant over time. Thus, while intuitive, the structure of some data prevents us 
from using this simple approach, which brings us to the exact approach. The intuitive 
approach still relies on a discrete understanding of time as we predict change between 
discrete measurement points. In continuous time models, change is still the dependent 
variable. However, given that time is treated as continuous variable, instead of predicting 
the normalized change between discrete measurement points, we now describe the rela-
tionship between xj (t) and the first derivative of xj (t) with respect to time:

dxj (t)
dt

= A × xj (t)� (4)

Thus, the change in xj (t) over an infinitesimally small time interval, the first derivative, 
is a function of xj (t)  itself and all the relevant parameters describing this relationship 
are contained in drift matrix A . The solution of the differential equation from above is 
given by

xj (t) = eA(t−t0)xj (t0) , � (5)

where xj (t0)  represents the value of the variables in the model at the initial time t0 . 
Taking the first derivative of Eq. 5 with respect to time (t ) yields Eq. 4. In order to dis-
tinguish parameters in A  from those in A (∆t) , their naming conventions differ. Those 
on the diagonal are called auto-effects, while those off the diagonal are called cross-
effects (in contrast to autoregressive and cross-lagged effects in the discrete time case; 
see Table 1 in the work of Hecht & Voelkle, 2021, for an overview of discrete-time and 
continuous-time terms). Like in the case of the intuitive approach, parameters in A can 
be transformed into discrete time parameters. Voelkle et al. (2012) show that the nonlin-
ear relationship is given by the matrix exponential

A (∆t) = eA×∆t � (6)

Thus, as in the intuitive approach, we can move between discrete and continuous time 
parameters. However, unlike in the intuitive approach, the relationship in Eq. 6 repre-
sents the exact relationship between continuous and discrete time parameters, not just 
an approximation, and can be used to adequately describe the relationship between the 
variables over time.
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Until now, we have ignored error terms, intercepts and time-constant unobserved het-
erogeneity in our discussion.4 Including those leads to the following model

dxj (t)
dt

= A × xj (t) + ξj + G
dWj (t)

dt
(7)� (7)

Briefly, Wj (t)  represents the continuous time error process, a so-called Wiener process 
or Brownian motion. dWj (t)  is the stochastic error term, an infinitesimally small incre-
ment of the Wiener process, while G represents the effect of the stochastic error term 
on the change in xj (t). Together, these terms can be used to describe the noise in the 
continuous time process.

The random variables ξj  are assumed to follow a normal distribution with means µξ  
and variance-covariance matrix Ψ . Thus, the vector µξ  denotes the continuous time-
intercepts and variance and covariances across subjects are contained in the matrix Ψ . 
Together they account for nonzero mean trajectories. By modeling random intercepts for 
both domains, we allow individuals to deviate from the overall intercepts. More impor-
tantly, permitting a covariance between the random intercepts is argued to account for 
unobserved time-constant heterogeneity (compare Zyphur et al., 2020).

So far, our model is suitable for describing stable equilibrium processes, that is, pro-
cesses that converge to final means over time. In educational research, such a model 
might be implausible, because development often occurs over sustained periods. To 
incorporate such trends, Lohmann et al. (2022, in this same issue) developed the contin-
uous-time latent change score model with structured residuals (CT-LCM-SR). The basic 
idea is to add an additional continuous-time process (for each variable) to the model 
that is specified in such a way that linear trends are captured. Thus, this model com-
bines central components from both dynamic and descriptive models, the dynamics of 
the variables and the linear growth in the variables. As the focus of the present work is 
on the dynamics, we use ideas of the CT-LCM-SR to control for linear trends in the data 
so that the targeted dynamics can be properly estimated. An alternative option would 
be to detrend the data beforehand, but this might come with other disadvantages (e.g., 
the common problem of 2-step analyses of how to transfer the uncertainty of parameter 
estimates from the step-1 to the step-2 model). With respect to the interpretation of dis-
crete-time dynamic effects, with controlling for the linear trends in the LCM-SR (or in 
its continuous-time version, the CT-LCM-SR) we fabricate an equivalent interpretation 
as in corresponding dynamic models that assume no trends, except that the reference 
line around which the state values fluctuate is the linear trend and not a flat line (which 
is, however, actually also just a linear trend with a zero slope).

Method
Sample

We use data from the German NEPS study (Blossfeld & Roßbach, 2019). The study 
has a multicohort sequence design, consisting of several representative cohorts either 
defined by age or by specific points in the educational system. We analyse data from 
Starting Cohort 3 (SC3), a representative sample of students attending grade 5 in school 

4  Given that we do not include additional time-varying or time-constant predictors in our model, we do not further 
discuss these here. However, both types of predictors can be incorporated (see for example Oud and Delsing 2010; 
Driver et al. 2017).
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year 2010/2011 who were subsequently followed over time. Students were selected using 
a stratified multistage sampling design (Skopek et al., 2012). Schools were sampled in 
the first stage, stratified by school type. Subsequently two classes in each school were 
selected in the second stage and all students in those classes were eligible for interviews. 
We use the five waves for which competency scores in math and reading are available 
(see Table 1). In waves 1 (grade 5), 3 (grade 7), and 9 (grade 12), students took tests in 
both math and reading. In wave 5 (grade 9), students took math tests only, while read-
ing tests were administered around five months later, in wave 6 (grade 9). We include 
all students with at least one non-missing value on the competency scores in our analy-
sis, leading to an effective sample size of 7,639 students.5 Mean age at wave 1 wave is 
10.5 (SD = 0.64, min. = 8, max. = 15), while mean age at wave 9 is 17.4 (SD = 0.59, min. = 16, 
max. = 19). The share of female students at wave 1 is 0.48.

As described above, time intervals vary between waves and furthermore within each 
wave, testing took place over a period of several months, resulting in unequal time 
intervals between measurement points (see Table 2). We use the month with the first 
observed competence score as our baseline (t = 0) and express subsequently elapsed time 
between measurements in years and months from baseline.

Competence scores

Reading (Gehrer et al., 2013) and mathematics proficiency (Neumann et al., 2013) were 
measured by the NEPS competence tests, which are constructed to adequately measure 
the respective construct in all age cohorts assessed. Students were tested by paper-based 
competence tests. The tests were scaled and linked based on IRT models. Individual 
scores (WLEs) based on the linked tests are available for different waves as described 
above and were placed on a common scale to facilitate meaningful mean-level com-
parisons across time. The first wave serves as a reference scale and values can thus be 
interpreted as developmental trajectories across measurement points (see Kutscher et 
al., 2020, and Petersen et al., 2020, for a detailed description). WLE reliabilities range 
between 0.721 and 0.812 across time and between domains.

Data analysis

The continuous time model is estimated via Structural Equation Modeling (Bollen, 1989) 
in R (R Core Team, 2021) by imposing restrictions on the relevant parameters (Oud 
& Delsing, 2010; Voelkle et al., 2012). Specifically, the R package ctsemOMX (Driver 

5  As recommended by Skopek et al. (2012), we exclude the subsample of students with special education needs in our 
analyses.

Table 1  Competence measures in NEPS SC3 by wave
Wave Field work Reading Math
1 Autumn 2010 -Spring 2011 ✔ ✔
2 Autumn 2011 - Spring 2012 - -

3 Autumn 2012 - Spring 2013 ✔ ✔
4 Autumn 2013 - Spring 2014 - -

5 Autumn/Winter 2014 ✔
6 Spring 2015 - ✔
7 Autumn 2015 - Spring 2016 - -

8 Autumn/Winter 2016 - -

9 Autumn/Winter 2017 ✔ ✔
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et al., 2021), which is based on OpenMX (Boker et al., 2021), was used for the analy-
ses. In order to account for growth over time, we added a linear trend component to 
the continuous time model. In our case, growth intercepts and slopes are assumed to 
be “fixed”, that is, they do not vary over persons and thus have no random component. 
Random intercepts are however included in the models as trait variables to control for 
time-constant unobserved heterogeneity (Driver et al., 2017). The model specification 
can be found as a path diagram in Figure S1 in the Supplementary Materials. The model 
is estimated using Full Information Maximum Likelihood (FIML), thus missing values 
are accounted for. Descriptive statistics were computed using Stata 16.1 SE (StataCorp, 
2019). Growth curve models for validating the continuous time model trend component 
were estimated in Stata.

Results
Descriptive statistics can be found in Table 3. We report results for each domain by wave 
alongside the correlations between the domains across waves. Additionally, we provide 
summary statistics on the time between measurement points. All summary statistics 
are calculated using the maximum number of cases available for the specific statistic. 
Descriptive means show an increase of average proficiency in both domains over time 
in our sample. Correlations show strong associations between proficiency scores in the 
same domain across waves, though decreasing with increasing time intervals between 
measurement occasions. However, compared to reading, descriptive results show stron-
ger correlations across waves for math. Furthermore, we also find strong correlations 
across domains with the similar pattern of decreasing associations for increasing time 
intervals.

Parameters from the continuous time model are displayed in Table 4. The parameters 
accounting for a linear trend (trmath and trreading) can be interpreted in a similar fashion 
to those in standard growth curve models. Both indicate, as expected, growth in each of 

Table 2  Fieldwork for competence tests in NEPS SC3 by wave
Wave N Timing N Timing N Timing N Timing N Timing
1 5 2010-10

1 2177 2010-11

1 2889 2010-12

1 130 2011-1

3 3223 2012-11

3 2229 2012-12

3 21 2012-6

3 721 2013-1

5 1583 2014-11

5 3207 2014-12

5 98 2015-1

6 1237 2015-4

6 2358 2015-5

6 818 2015-6

6 3 2015-7

9 401 2017-11

9 4248 2017-12

9 75 2018-1
Note. Timing refers to the year and month of measurement. In case information on the timing of measurement was not 
available, we used the mode of the respective wave.
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the domains over time. A comparison of our estimates to those from growth curve mod-
els with random intercepts shows that estimates from the continuous time model are 
nearly identical to those from the simpler models (see Section S2 in the Supplementary 
Materials).

The main parameters of interest, describing the dynamics, the auto- and cross-effects, 
are all statistically significant at the 5% level against the null hypothesis that the respec-
tive parameter is equal to 0. Due to the complex nature of these parameters, we provide 
discrete-time equivalents for varying time intervals for interpretation in Fig. 1. One way 
of interpreting Fig. 1 is that the plots show the autoregressive and cross-lagged effects 
we would expect based on our model for a range of plausible time intervals in hypotheti-
cal studies. For example, in case of the discrete-time cross-lagged parameters, a hypo-
thetical study with a time-interval between measurements that approaches zero would 
provide us with estimates close to zero. This is a standard result as the effects would still 
have to develop.

Discrete-time autoregressive parameters for time intervals between zero and four years 
are shown in the upper panel of Fig. 1. For our model, we find a strong decline in the size 
of the autoregressive parameters for reading (dashed line). In contrast, the decline in the 
effect size for the discrete-time autoregressive parameters for math is less rapid and it 
takes longer time intervals for the coefficients to go to zero (solid line). Thus, results 
for our data suggest that any deviations from mean math proficiency levels in earlier 
waves transmit to more distant later waves. Discrete-time versions of the cross-effects 
(i.e., cross-lagged effects), are displayed in the bottom panel of Fig.  1. Effects of math 
on reading are displayed as a dashed line, while those for reading on math are displayed 
as a dotted line. The general shape of the relationship between time interval length and 
the discrete versions of the parameters is largely comparable, with effects peaking at a 
time interval of around six months (areading→math ≈ 0.30, amath→reading ≈ 0.13), followed 
by a subsequent strong decline in effect sizes. Thus, our model suggests that studies with 
time-intervals of around six months between measurements would find the strongest 
effects for the cross-lagged parameters. For our data, the effect of reading on math is 
larger than the effect of math on reading for nearly all time intervals before finally con-
verging and dissipating.

Discussion
In the present article we investigated the dynamics between reading and mathematics 
achievement in 10- to 19-year-olds. Reading and math proficiency are important fac-
tors for successful participation in society and understanding their interplay allows pre-
diction and identification of starting points for prevention and intervention. In order to 
understand the interplay of reading and mathematics development, we estimated a con-
tinuous time model including linear trend components. In this approach, central com-
ponents from both, dynamic and descriptive models, are combined: the dynamics of the 
variables and the linear growth in the variables. The model provided us with a set of con-
tinuous-time coefficients that describe the underlying processes’ persistence and their 
cross-effects, controlled for linear trends and time-constant unobserved confounders.

Applying the model to the NEPS SC3 data revealed that the interplay between math 
and reading followed patterns that were similar to recently reported findings: We found 
evidence for both paths, effects of reading on math and effects of math on reading. The 
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former appears to be somewhat stronger than the latter, which is in line with Erbeli 
et al. (2021), results from the RI-CLPM in the study by Bailey et al. (2020) as well as 
the conclusions in the study by Hübner et al. (2022). Further, math appeared to be the 
more persistent construct. However, our findings also extend previous research in sev-
eral respects. First, our continuous time modeling strategy allows us to discretize our 
auto- and cross-effects for different time intervals and identify for which time intervals 

Table 4  – Continuous time model parameter estimates for math and reading
Parameter Estimate SE
Auto effect areading -4.54 1.405

amath -1.47 0.230

Cross effect areading→ math 1.84 0.680

amath→ reading 1.14 0.413

Diffusion variance σ2
reading

5.49 1.688

σ2
math

0.91 0.093

Diffusion covariance σ2
reading↔math

− 0.99 0.428

Interceptst0 breading 0.27 0.014

bmath 0.28 0.014

Linear trend trreading 0.25 0.002

trmath 0.33 0.002

Variance traits ψreading 0.98 0.021

ψmath 1.06 0.022

Covariance traits ψreading↔math 0.86 0.019

Notes: N = 7639.

Fig. 1  - Discrete-time autoregressive and cross-lagged parameters for varying time intervals
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we expect peak effects between the domains. For example, Bailey et al. (2020) and Erbeli 
et al. (2021) reported effects for time intervals of one year, whereas Rinne et al. (2020) 
examined time intervals of approximately six months and Korpipää et al. (2017) of six 
years. Discretizing the continuous time parameters to these intervals (see Fig. 1) suggests 
that autoregressive effects of reading decrease rapidly, leveling off at an interval above six 
months. This does not hold for math, where, based on our results, we would expect to 
observe substantial effects of past changes even after two years. Thus, our results suggest 
that any deviations from mean reading levels (which may, e.g., be due to an intervention 
aimed at improving reading skills) might dissipate rather quickly. Similarly, for the cross-
effects we estimated the maximum mutual influence of both constructs on each other at 
a time interval around six months. For all time intervals, we found the effect of reading 
on math to be stronger than the effect of math on reading. Thus, our results also suggest 
that interventions to improve reading skills might have larger positive spillover effects 
on math skills than the other way around. We would like to highlight some potential 
practical implications of our results. Firstly, any changes in one of the variables due to 
an exogenous one-off intervention targeted at one of the domains would, based on our 
model, not lead to long lasting effects as can be seen by the decreasing effects sizes for 
larger time-intervals. Secondly, any intervention targeted on reading would seem to have 
larger, potentially unintended, effects on math than the other way around. But, given 
that the effects disappear in our model, another implication would be that interventions 
might have to be sustained for long term effects. However, our approach does not have a 
valid identification strategy and we cannot claim to have identified any potential causal 
effects. Thus, until further research has confirmed our results, any implications need to 
be viewed with caution.

Second, we can compare our results to findings stemming from different analyses of 
different age groups. Very many studies examining the interplay of reading and math 
focus on children in primary school or preschoolers (e.g., Cameron et al., 2019; Kopo-
nen et al., 2020; Bailey et al., 2020; Erbeli et al., 2021; Purpura et al., 2017; Vukovic et al., 
2013), whereas only a few studies examine development up to the end of lower second-
ary age, like Chen and Chalhoub-Deville (2016), Codding et al. (2015) and Grimm (2008) 
examining up to 14-year-olds or Korpipää et al. (2017) examining up to 15-year-olds. 
But none investigated the full secondary track age up to 18-year-olds as was the case in 
our sample.

There are several limitations to our study. NEPS has a complex survey design includ-
ing unequal selection probabilities, clustering, stratification and a refreshment sample. 
Additionally, like in other panel studies, we observe non-response as well as attrition. 
While NEPS provides weights as a way to potentially account for some of these issues, 
the use of sampling weights is currently not implemented in the ctsemOMX pack-
age and hence we report results for the unweighted sample. Consequently, we cannot 
exclude bias in our estimates due to effect heterogeneity or endogenous sampling (Solon 
et al., 2015). On the other hand, given that the models are estimated using FIML, non-
response as well as drop out should be accounted for. However, it is currently not pos-
sible to include auxiliary variables to improve the performance of FIML (Collins et al., 
2001) for this type of model. Hence, the benefits of this approach might be somewhat 
limited in our case. Furthermore, not considering the complex survey design, including 
the clustering of students in schools, also implies that we are likely to underestimate the 
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standard errors (Heeringa et al., 2010). However, accounting for complex survey designs 
in continuous time modeling is an ongoing area of research.

One of the major appeals of models such as the RI-CLPM, the GCLM and the con-
tinuous time model for applied research is the potential to control for time-constant 
confounding by including correlated random intercepts. There are, however, substantive 
differences between the approach in the RI-CLPM and the one implemented in ctse-
mOMX, the latter being more comparable to the GCLM. Given that recent research dis-
cusses scenarios under which the RI-CLPM might not perform as expected (Lüdtke & 
Robitzsch, 2021), further research might be necessary to fully understand the conditions 
under which the correlated random intercepts, as implemented in ctsemOMX, control 
for time-constant confounding. Crucially, we do not include any potential time-varying 
confounders, such as changes in classroom composition. Thus, independent of the meth-
odological debate surrounding the effectiveness of the RI-CLPM approach to account 
for time-constant confounding, we cannot claim to have identified causal effects and the 
remaining effects might disappear when adding further controls. Thus, although we find 
significant cross-effects between the constructs which may indicate potential for inter-
ventions, our results alone are not sufficient to draw any strong recommendations for 
policies aimed at improving proficiencies. Similarly, we use a linear trend to account for 
changes over time. However, if the underlying change over time is non-linear our model 
would not account properly for this, which might affect the estimation of the parameters 
in our model. Future research using data with more measurement points should ideally 
explore if another model for the trend is more appropriate.

With the presented continuous-time model we were able to calculate discrete-time 
dynamic model parameters (autoregressive and cross-lagged effects) for any arbitrary 
time interval (and hence explore the dependency of these parameters on the length of 
the time interval, see Fig.  1), although the assessments were conducted with specific 
time interval lengths (of around one year, see Table  2). However,  Voelkle et al.-(2012) 
warn that one has to be careful when inter- or extrapolating to discrete time points that 
have not been observed empirically. In a similar fashion, Hecht and Zitzmann (2021) 
caution that peak cross-lagged effects might be located in regions with no or sparse data 
and that the quality of inter- or extrapolations into such regions might depend on design 
characteristics. These issues can be seen as providing some support for the call for 
potentially different survey designs that, instead of having repeated measures at equidis-
tant intervals, maximise the potential to accurately estimate the effects for different time 
intervals by varying the length between measurements. Thus, further research should 
confirm our results by applying continuous time models to survey data with different 
time intervals than the ones observed in NEPS.

One of the assumptions we have to make is that the nature of the process itself does 
not change over time. There is some recent evidence that this might not hold for our 
sample (Gnambs & Lockl, 2022). Hence, future research should look into the potential 
consequences for our model and ways of relaxing the assumption.

Continuous-time modeling provides a natural way of integrating longitudinal data 
with differently spaced measurement occasions. Alternatives might be the Mplus’ 
TSCORE option, which can, however, only be used to define growth models (Muthén & 
Muthén, 2017, p. 614) or the “phantom variable approach”. Oud and Voelkle (2014) and 
Voelkle and Oud (2015) discuss this approach’s potential to account for unequal time 
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intervals with the conclusion that it is rather limited. Instead, they argue for using con-
tinuous-time modeling.

In sum, this paper is the first to analyze the interplay of math and reading proficiency 
in a large representative sample of German students using continuous time models. We 
find evidence that math is the more persistent domain and further evidence math and 
reading are positively coupled over time with reading having a stronger effect on math 
than math on reading. The effects are most pronounced for a time interval of approxi-
mately six months.
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