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Introduction
The core purpose of national and international large-scale assessments (LSAs), such 
as National Assessment of Educational Progress (NAEP), the Programme for Interna-
tional Student Assessment (PISA), and the Programme for the International Assessment 
of Adult Competencies (PIAAC) is a comparison of education qualities among regions, 
states, and nations. Such comparisons provide important insights for educational 
researchers and policymakers to evaluate the current educational system and students’ 
academic progress over time (e.g., Cosgrove & Cartwright 2014; Neumann et al., 2010). 
To achieve this, constructing high-level scale comparability is a critical requirement. 
Scale comparability refers to the condition in which assessments are comparable across 
all country- or state-level groups and across assessment cycles, such that the group-level 
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We investigated the potential impact of differential item functioning (DIF) on group-
level mean and standard deviation estimates using empirical and simulated data 
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scores are on the same metric (e.g., Mazzeo & von Davier 2014; Oliveri & von Davier, 
2014).

In LSAs, item response theory (IRT) methodology has been implemented in the scal-
ing procedure to establish a common metric allowing for comparability across partici-
pating groups and assessment cycles. IRT analysis also allows researchers to investigate 
psychometric properties of items (i.e., slopes and difficulties), reliability, and valid-
ity of the assessments in general. For example, both PISA and PIAAC incorporated a 
two-parameter logistic model (2PLM; Birnbaum 1968) and generalized partial credit 
model (GPCM; Muraki 1992) as measurement models for dichotomous and polytomous 
response items, respectively. Moreover, multigroup IRT scaling (a.k.a. concurrent cali-
bration; Bock & Zimowski 1997; Kolen & Brennan, 2014) has been implemented since 
the PISA 2015 main survey to put the multiple country-by-language-by-cycle scores on 
the same metric (OECD, 2016). Specifically, items are calibrated simultaneously with the 
equality constraint on their parameters across the participating countries and economies 
and assessment cycles in the multigroup IRT model (von Davier et al., 2019). These esti-
mated item parameters are also referred to as international or common item parameters 
that contribute to the scale comparability.

Recently, educational researchers and practitioners have raised a practical question 
regarding common item parameters in LSAs: Does item calibration with an equality 
constraint present a scaling approach that is too restrictive? (e.g., Rutkowski et al., 2010; 
Rutkowski & Svetina, 2014; Svetina & Rutkowski, 2014; Switzer et al., 2017). Wu (2010) 
also noted that LSAs generally include the various sources of error induced by measure-
ment, sampling, and equating procedures, and the scaling procedure should identify the 
source and magnitude of error to increase the validity of the results. It has been explic-
itly argued that these sources of error tend to create item misfits from the set of com-
mon item parameters for a particular group or assessment cycle (Oliveri & von Davier, 
2011; Oliveri & Davier, 2014). For example, in PISA, the target population is consider-
ably diverse in the sense that each student’s country, language, culture, ethnicity, socio-
economic status, and background are different within the assessment sample (de Jong et 
al., 2007; Kreiner & Christensen, 2014; Sachse et al., 2016). Several cross-country stud-
ies have also reported that the scale comparability is not easily retained, and country-, 
language- or culture-specific item parameter calibration should be carefully investigated 
(e.g., Ercikan 2002; Ercikan & Koh, 2005; Gierl & Khaliq, 2001).

For these reasons, the heterogeneity of item parameters in LSAs should be considered 
in the scaling process, and several studies have suggested a group-specific or assess-
ment cycle-specific item parameter approach to increase the validity of the scores as 
well as to improve the measurement precision (Oliveri & von Davier, 2011; Oliveri & 
von Davier, 2014). In addition, for trend items, which refer to items that were previously 
administered in past assessment cycles, fixed item parameter calibration (FIPC) has 
been suggested and implemented in the operational scaling procedure. FIPC links the 
previously administered scales to the current assessment scales by “fixing” the estimated 
item parameters from the previous assessment cycles, including both international and 
country-specific item parameters. Using this approach, the linking error from cycle to 
cycle can be substantially reduced without losing the validity of the scales. A previous 
study demonstrated the benefits of the FIPC approach in the context of PISA (König et 
al., 2021).
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Regardless of group- or assessment cycle-specific item parameters, the item misfit 
should be precisely addressed in the IRT scaling procedure to obtain accurate group 
performance proficiency estimates that are comparable across groups and cycles. The 
term, item misfit, is also referred to as the lack of measurement invariance (Meredith, 
1993), item bias (Lord, 1980), differential item functioning (DIF; Holland & Thayer 1988), 
or item-by-country interaction (OECD, 2016) in educational measurement literature. 
Because the main scope of the study is closely related to this type of item misfit in the 
context of LSAs, we, henceforth, refer to the misfit of items as DIF throughout the paper. 
In addition, it is worthwhile note that in this study we considered the DIF as the fixed 
effect in the context of LSAs, which is consistent with the PISA operational approach. 
However, previous LSA studies also have considered DIF as the random effect and 
incorporated the hierarchical random effect model to examine the effect of DIF (De Jong 
et al., 2007; Fox & Verhagen, 2018).

DIF Adjustment and Group Score Estimation
To address DIF items in IRT scaling, the unique item parameter calibration approach 
has been proposed and implemented in operational settings (OECD, 2016, 2019). Spe-
cifically, in subsequent IRT scaling procedures, unique item parameters (group-specific 
or cycle-specific) are separately estimated for the items detected as DIF. This adjustment 
for DIF items has several advantages in terms of psychometric properties and scale com-
parability in the context of LSAs. First, estimating unique item parameters significantly 
improved the overall model fit (Joo et al., 2021; Oliveri & von Davier, 2011; Oliveri & 
von Davier, 2014; Rutkowski & Svetina, 2014, 2017). For example, Oliveri & von Davier 
(2011) applied various IRT models to the PISA 2006 cognitive domain data and com-
pared the fitted models. They concluded that the multigroup 2PLM with partially unique 
item parameters was the best fitting model based on several model fit indices, including 
the Akaike Information Criterion (AIC; Akaike 1974) and the Bayesian Information Cri-
terion (BIC; Schwarz 1978).

Second, the group-specific unique item parameter approach for addressing DIF items 
can reduce the bias in the group score estimates and increase the stability of group 
rankings (Rutkowski & Rutkowski, 2018). Note that the bias in group means depends 
on the interplay of the distribution of DIF effects and the chosen linking method (Rob-
itzsch, 2021). In this study, we mainly focus on the bias of the group mean caused by 
the DIF distribution. Although the true group mean parameters and group rankings 
are unknown in real data applications, it has been shown via simulation studies that the 
group-specific unique item parameter estimation can produce accurate group mean 
parameter estimates. More specifically, group specific unique item parameters reduce 
the bias which is defined as the difference between the generating and estimated group 
mean parameters. For example, Rutkowski et al., (2016) conducted a simulation study 
that mimicked the PISA 2009 main survey design and investigated the country achieve-
ment estimates. They compared several approaches for computing country achievement 
estimates by varying the samples for item parameter calibration. Their results showed 
that the most restrictive sample, with common item parameters, produced bias in the 
country achievement estimates up to 12.49 on the PISA scale, and the less restrictive 
sample reduced the gap between the true and estimated country achievement estimates.
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Purpose
Although several previous studies have shown the psychometric benefits of allowing 
unique item parameters for DIF items, it is yet unknown the degree to which the pro-
portion of unique item parameters can be acceptable without harming the comparability 
of test results across participating groups and cycles. For example, in operational LSA, 
several groups are investigated further in IRT scaling when they require a large pro-
portion of unique item parameters, indicating possible data quality or integrity issues 
that may affect group score comparability. We defined the group score comparability as 
the proportion of international item parameters (i.e., invariant item parameters) across 
country and language groups in this study (OECD, 2019). Although Rutkowski et al., 
(2016) reported that a less restrictive calibration sample showed a less biased result of 
the country performance scores, it is unknown whether allowing country-, language-, or 
cycle-specific unique item parameters can still produce comparable group score results. 
More importantly, a simulation study that manipulates a different level of DIF items is 
needed to systematically examine the extent to which the group scores are biased by the 
DIF items and how effectively the DIF adjustment corrects the bias.

Therefore, the purposes of the study are (a) to examine the issue with DIF items in the 
context of LSAs, (b) to quantify their impact to help researchers and practitioners inter-
pret group-level score results more carefully, and (c) to provide an empirically-based 
recommendation for addressing the issues with DIF items. To achieve such purposes, 
we conducted two studies: In the first study, we compared the precision and reliability 
of country-level score estimates computed with and without the DIF adjustment using 
the PISA 2018 main survey data. We incorporated the Jackknife sampling method to 
obtain the country score difference and standard error estimates. In the second study, we 
conducted a simulation study to investigate the impact of DIF items and the adjustment 
on the group mean and standard deviation estimates using the multigroup IRT scaling 
approach.

Study 1
PISA 2018 main survey data

To empirically investigate the impact of the unique item parameter approach on the 
group scores in the context of LSAs, we analyzed the PISA 2018 cognitive domains 
(Reading, Mathematics, and Science) main survey data. In the PISA 2018 main survey, 
Reading was the major domain in that Reading items were administered to all students, 
and Mathematics and Science were the minor domains in that one of the domains, either 
Mathematics or Science, was administered. Depending on the participating countries, 
the PISA also have been administered in either computer-based assessment (CBA) or 
paper-based assessment (PBA) mode since the 2015 cycle. In 2018, 70 countries par-
ticipated in CBA and nine countries participated in PBA. A total of 244 Reading items 
was administered for CBA countries, consisting of 172 new items and 72 trend items. 
For PBA countries 72 Reading trend items were administered. For Mathematics, 83 
items were administered to both CBA and PBA countries, and for Science, 115 items 
were administered to CBA countries and 85 to PBA countries, all of which had been 
administered in the previous cycle. In this analysis, we considered all cognitive major 
and minor domain data and also included both CBA and PBA countries. Moreover, we 
considered country-by-language groups where countries that have multiple languages 
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were divided into multiple language groups. Thus, the total number of country-by-lan-
guage groups comprised 85 for CBA countries and 12 for PBA countries. Note that the 
country-by-language group approach is consistent with the PISA 2018 operational pro-
cedure (OECD, 2019).

As typical for LSAs, PISA also incorporates the balanced incomplete block (BIB) 
design for test administration. In the BIB design, students are required to respond to 
only a subset of the total item pool. The BIB design is a commonly used test adminis-
tration design, especially for LSAs, because large-scale surveys generally cover a broad 
range of content and information. Using the BIB design, unbiased group-level score esti-
mates can be obtained without overwhelming participating students with a large num-
ber of items. However, because only a subset of items is administered to students, a large 
proportion of data is missing by design. In this analysis, these missing responses were 
excluded from the IRT scaling, and they do not contribute to the item parameter estima-
tion. Finally, we used senate weights so that the sample size per country to be equal as 
5,000 (OECD, 2019).

IRT scaling and group score estimation

To analyze PISA cognitive domain data, we conducted multigroup IRT calibration (Bock 
& Zimowski, 1997). We initially applied the equality constraint across all country-by-
language groups. More specifically, for new items, item parameters of all groups were 
estimated to be the same across groups. For trend items, item parameters were fixed 
at the estimates from previous assessment cycles. Note that the fixed item parameters 
were concurrently calibrated from data collected from PISA cycles 2006 to 2015. This 
fixed item parameter calibration approach is commonly used in operational settings 
to put the current assessment cycle scales on the same metric. Data from each PISA 
cognitive domain (Reading, Mathematics, and Science) was separately calibrated with 
the IRT models, such as 2PLM for dichotomous responses and GPCM for polytomous 
responses. The multigroup 2PLM (Eq.  1) and GPCM (Eq.  2) probability functions are 
described as:

P (Xijg = 1|θig) =
exp [Daj (θig − bj)]

1 + exp [Daj (θig − bj)]
� (1)

P (Xijg = k|θig) =
exp

[∑k
r=0Daj (θig − bj + tjr)

]

∑mj

u=0 exp [
∑u

r=0Daj (θig − bj + tjr)]
� (2)

where θig  is latent trait parameter for the ith student for gth group, aj  is discrimination 
parameter, bj  is difficulty parameter, and tjr  is category threshold parameter of the jth 
item. D is the scaling constant for the logit link function, assumed to be 1.7. For the 
GPCM, mj  is the total number of categories – 1 for the jth item (e.g., Xijg  = 0, 1, …, 
mj ), and the category threshold parameter has additional constraints tj0 = 0  and 
∑k

r=1 tjr = 0. In the multigroup structure, θig  is assumed to be distributed as N(µg , σ2
g ), 

where µg  is the mean and σ2
g  is the variance of the gth group. The parameters of the mul-

tigroup 2PLM and GPCM were estimated using marginal maximum likelihood (MML) 
estimation with expectation-maximization (EM) algorithm (Bock & Aitkin, 1981).
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To evaluate the group-level score accuracy and precision, we estimated the group-spe-
cific posterior mean and standard deviation estimates from the multigroup IRT model. 
The mean and standard deviation estimates were estimated for each country-by-lan-
guage group, and the estimates were rescaled to the PISA scale using the transforma-
tion coefficients. The transformation coefficients consist of scaling (A) and centering (B) 
factors and can be used to make a linear transformation from the logit scale to the PISA 
scale for group scores.

PISAg = Aµg +B � (3)

Each of the PISA cognitive domains has different transformation coefficients. In this 
study, we used the transformation coefficients that have been provided in the PISA 2015 
Technical Report (OECD, 2016). For example, the scaling factor A was 131.58, and the 
centering factor B was 437.95 for the Reading domain. Similarly, for Mathematics and 
Science, respectively, the scaling factors A were 135.90 and 168.32, and the centering 
factors B were 514.18 and 494.54. The detailed description about computing the trans-
formation coefficients is delineated in the PISA 2015 Technical Report (OECD, 2016). 
It is important to note that the rescaled group score estimates considered in this study 
are different than the typical LSA operational procedure. In operational settings, a latent 
regression model is generally used to address the heterogeneity of the group population 
distribution (Mislevy, 1984; Mislevy et al., 1992). Moreover, several plausible values (PV) 
are randomly drawn from the posterior distributions for individuals to compute the pro-
ficiency estimates for groups (von Davier et al., 2009). However, our preliminary studies 
found high Pearson correlation between rescaled PISA country mean scores and PV-
based PISA country mean scores (above 0.95 across all domains). In addition, because 
the main purpose of the study is to investigate the impact of DIF on group score esti-
mates, we used the direct estimates of the group scores from the multigroup IRT model 
and transformed the estimates to the PISA scale. This approach can also reduce possible 
confounding effects from the latent regression model and the PV procedure.

DIF detection and adjustment

After the initial multigroup IRT scaling was done, we evaluated item fit using the two 
quantities: mean deviation (MD) and root mean squared deviation (RMSD), for each 
item-by-group. The MD and RMSD for item j were computed as:

MDjg =

∫ [
Pobs
jg (θ)− Pexp

jg (θ)
]
fg (θ) dθ � (4)

RMSDjg =

√∫ [
Pobs
jg (θ)− Pexp

jg (θ)
]2
f
g
(θ) dθ � (5)

where Pobs
jg (θ)indicates the group-specific observed item characteristic curve (ICC) of 

item j, and Pexp
jg (θ)indicates the group-specific expected ICC of item j. fg (θ) also rep-

resents the estimated group density function for group g. The integrals in Eqs. 4 and 5 
are approximated with Gaussian-Hermite quadrature points ranging from − 5 to 5 (von 
Davier, 2005).

To compute the observed ICC probability, we used the following definition:
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Pobs
jg (θ) =

N∑

i=1

xijgLig (θ|X)Ag (θ)∑Q
q=1Lig (θq|X)Ag (θq)

� (6)

where xijg  is the observed response from examinee i of group g for item j, Ag (θ) is the 
normalized group weight for group g, and Lig (θ|X)  is the likelihood function for exam-
inee i of group g. The likelihood function is defined as:

Lig (θ|X) =
∏

j

P (Xijg = xijg|θ)� (7)

where P (Xijg = xijg|θ) is the category response probability for xijg . To compute the 
expected ICC probability in Eqs. 4 and 5, we used the item response probability func-
tions defined in Eqs. 1 and 2. Note that in this study, we computed the RMSD quanti-
ties based on sample statistics following the PISA operational scaling procedure (OECD, 
2019). However, readers are referred to Köhler et al., (2020) for detailed descriptions and 
differences of the population and sample RMSD statistics.

The DIF item for each group was determined by using an RMSD cutoff of 0.12. That 
is, if the RMSD value for an item-by-group is greater than or equal to 0.12, then the 
item is flagged as DIF. Although various RMSD statistics and their cutoffs have been 
suggested (Robitzsch & Lüdtke, 2020, 2022), and a fixed RMSD cutoff could be unrea-
sonable (Köhler et al., 2020; Robitzsch, 2022), in the current study, we used the conven-
tional RMSD cutoff of 0.12 to detect DIF because the RMSD of 0.12 is currently used in 
the PISA and PIAAC operational scaling procedure for cognitive domains (OECD, 2016, 
2019; Yamamoto et al., 2013). To be consistent with the operational procedure in LSAs 
and to increase the generalizability of the study, it is important to use the same RMSD 
cutoff value to detect DIF. In addition, the validity of the RMSD cutoff of 0.12 has been 
empirically evaluated in terms of scale comparability, overall model-data fit, and group 
score reliability (Joo et al., 2021).

To adjust the DIF in the multigroup IRT model, we re-estimated the unique item 
parameters in the subsequent scaling procedure. Specifically, item parameters detected 
as DIF were re-estimated for the DIF detected groups (i.e., DIF groups). In addition, we 
considered partially unique item parameters for the DIF groups. That is, if DIF items 
have the same direction of MD (positive or negative) for the DIF groups, the same 
unique item parameters were estimated across the DIF groups for the DIF item. Note 
that the partially unique item parameters approach has several advantages in the con-
text of LSAs in that it could increase the scale comparability across the DIF groups and 
still hold partial invariance (Byrne et al., 1989). The DIF adjustment in the multigroup 
IRT model was iteratively conducted and continued until no DIF item-by-groups were 
detected.

Group score difference and Jackknife sampling

To investigate the impact of DIF on group score estimates, we compared the group 
scores with and without DIF adjustment. Specifically, we separately computed the res-
caled PISA group (i.e., country-by-language group) scores from the initial IRT scaling, 
where no adjustment to misfit was considered, denoted as µ̂g0  for g = 1, … G, and the 
rescaled PISA group scores from the final IRT scaling, where adjustments to misfit took 
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place, denoted as µ̂gF . Then the rescaled PISA group scores difference d (µ̂g) were com-
puted as:

d (µ̂g) = µ̂gF − µ̂g0� (8)

We directly computed the group mean differences from the full invariance and partial 
invariance models. However, Robitzsch & Lüdtke (2022) recently proposed the adjusted 
and weighted group mean estimates and their statistical inference in the partial invari-
ance approach. To estimate the standard error of the group mean difference estimate, 
we incorporated the Jackknife sampling method (Efron & Tibshirani, 1994). Using the 
Jackknife sampling approach, the sampling distribution of the group mean difference 
estimate can be formed and used to estimate the standard error of the group mean dif-
ference estimate. We first stratified the PISA item response data by respondents. More 
specifically, for each country-by-language group and senate weight, we stratified the 
samples, computed the statistic, and created the sampling distribution.

To describe the Jackknife sampling procedure more formally, suppose a stratum is 
denoted as Xs , for s = 1, …, S. We then first subtracted the stratum from the total PISA 
data denoted as X−s . Note that the stratum was created and subtracted for each coun-
try-by-language group and senate weight, respectively, then combined to obtain X−s

. Once X−s  is constructed, we applied the multigroup IRT scaling described in Eqs. 1 
and 2 and computed the group score difference statistic using Eq. 8, denoted as d−s (µ̂g)

. This procedure was conducted iteratively and continued until the number of iterations 
reached S. To summarize and report the result, we computed the following statistics:

d̂ (µ̂g) =
1

S

S∑

s=1

d−s (µ̂g)� (9)

SE
[
d̂ (µ̂g)

]
=

√√√√ S

S − 1

S∑

s=1

[
d−s (µ̂g)− d̂ (µ̂g)

]2
� (10)

Note that the group score difference statistic was separately computed for each cogni-
tive domain and each assessment type (CBA and PBA). To explore the results consistent 
with the PISA score reporting, we aggregated the results to the country-level groups, 
denoted as d̂ (µ̂c), and SE

[
d̂ (µ̂c)

]
, c = 1, …, C by using senate weights:

d̂ (µ̂c) =

Lc∑

l=1

wl(c)∑Lc
m=1wm

d̂
(
µ̂l(c)

)
� (11)

SE
[
d̂ (µ̂c)

]
=

Lc∑

l=1

wl(c)∑Lc
m=1wm

SE
[
d̂
(
µ̂l(c)

)]
� (12)

where µ̂l(c)  is the group score and wl(c)  is the senate weight of the lth language group for 
the cth country, and Lc  indicates the total number of language groups for the cth country.
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Study 1 Results
Proportion of DIF items

Figure 1 shows the proportion of DIF items for each country across PISA scores. The 
results were summarized by each cognitive domain and assessment type. As shown in 
Fig. 1, the proportion of DIF items was mainly higher for high- or low-level performance 
countries. In addition, the Reading domain has the highest proportion of DIF items fol-
lowed by Science and Mathematics. For the Reading domain, the proportion of DIF 
items ranged from 7 to 33% with a mean of 14% for CBA countries. The corresponding 
values ranged from 7 to 39% with a mean of 23% for PBA countries. For Mathematics, 
the proportion of DIF items ranged from 1 to 36% with a mean of 8% for CBA countries 
and from 1 to 42% with a mean of 14% for PBA countries. For Science, the proportion of 
DIF items ranged from 4 to 26% with a mean of 13% for CBA countries, and from 9 to 
39% with a mean of 20% for PBA countries. Note that the proportions of DIF items are 
similar to the PISA 2018 scaling results provided in the technical report (OECD, 2019).

Country score difference

Figure  2 shows the country score difference from IRT scaling with and without DIF 
adjustment. The country score difference and their standard error estimates were 
obtained from the Jackknife sampling method. The left column of Fig. 2 shows the coun-
try score differences across the proportions of DIF items and the right column shows the 
standard error of the country score estimates.

As shown in Fig. 2 panels a, c, and e, the country score differences tend to increase 
as the proportion of DIF items increased. As expected, the country score differences 
were substantial for the Reading domain, given that the proportion of DIF items was 
relatively high. For Reading, the minimum and maximum differences were − 10.88 points 
and 12.89 points, respectively, and the average difference was 1.36 points for CBA coun-
tries. For PBA countries, the minimum and maximum differences were − 3.43 points and 
3.90 points, and the average difference was 1.52 points. Similarly, for Mathematics, the 
minimum and maximum differences were − 16.85 points and 5.48 points, and the aver-
age difference was − 0.11 points for CBA countries. For PBA countries, the minimum 
and maximum differences were − 16.25 points and 1.92 points, and the average differ-
ence was − 3.20 points. Lastly, for Science, the minimum and maximum differences were 
− 10.13 points and 5.33 points, and the average difference was 0.46 points for CBA coun-
tries. For PBA countries, the minimum and maximum differences were − 7.67 points and 
4.86 points, and the average difference was − 0.41 points.

Because the positive and negative group score differences can cancel each other, we 
additionally explored the descriptive statistics for the absolute score differences. For 
CBA countries, the absolute score differences ranged from 0.01 to 12.89 with the average 
of 2.50 points for Reading, 0.04 to 16.85 with the average of 1.93 points for Mathematics, 
and 0.02 to 10.13 with the average of 1.84 points for Science. Similarly, for PBA coun-
tries, the absolute score differences ranged from 1.51 to 3.90 with the average of 2.62 
points for Reading, 0.00 to 16.25 with the average of 4.13 points for Mathematics, and 
0.67 to 7.67 with the average of 2.81 points for Science.

Finally, it was clearly shown that standard error estimates increased substantially as 
the proportion of DIF items increased. As shown in Fig. 2 (panels b, d, and f ), the stan-
dard error estimates for all cognitive domains consistently increased. For CBA countries, 
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Fig. 1  The proportion of DIF items for CBA and PBA countries across PISA scores
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the standard errors ranged from 0.44 to 4.47 with the average of 1.83 for Reading, 0.01 to 
11.57 with the average of 1.91 for Mathematics, and 0.71 to 5.49 with the average of 1.79 
for Science. Similarly, for PBA countries, the standard errors ranged from 0.69 to 8.35 
with the average of 2.71 for Reading, 0.00 to 6.88 with the average of 2.51 for Mathemat-
ics, and 0.89 to 7.84 with the average of 3.58 for Science.

Study 2
Although we showed the impact of DIF items on group score estimates and their stan-
dard errors from the empirical PISA data, the extent to which DIF items cause the bias 
in the group score estimates and how the DIF adjustment addresses this bias is still 
unknown. Therefore, we conducted a simulation study in which data were generated 
with various levels of DIF in the context of LSAs.

Simulation design

For the simulation study design, we set the total number of items administered to each 
student to 40 and the number of item responses from each item to 500; we fixed the total 
number of groups to 10. In addition, we considered dichotomous response data only, 

Fig. 2  PISA 2018 cognitive domain country score differences with and without DIF adjustment and their standard 
error estimates across the proportion of DIF items
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given that the majority of items in PISA consist of dichotomous response items. We var-
ied four simulation conditions associated with how DIF items were generated:

1.	 Proportion of DIF items: 10%, 20%, and 40% of total items.
2.	 Type of DIF items: a parameter shift (nonuniform DIF) and b parameter shift (uniform 

DIF).
3.	 Size of DIF items: 0.3 (small) or 0.6 (large) for a parameter shift, and 0.5 (small) or 1.00 

(large) for b parameter shift.
4.	 Direction of DIF items: positive and negative item parameter shift.

The proportions of DIF items we considered in the simulation conditions were consis-
tent with the PISA 2018 cognitive domain data. As shown in Figs. 1 and 2, the propor-
tion of DIF items ranged from approximately 5–40% across countries. In addition, we 
considered two types of DIF items in the study: uniform and nonuniform DIF. Previous 
studies have shown that different types of DIF items affect Type I error and DIF detec-
tion rates (e.g., Buchholz & Hartig 2019; Stark et al., 2006), and we expect that uniform 
DIF would have a larger impact on group score estimates than nonuniform DIF in the 
multigroup IRT model. We also considered an a parameter shift of 0.3 and a b param-
eter shift of 0.5 as small DIF size and an a parameter shift of 0.5 and a b parameter shift 
of 1.0 as large. To understand the range of DIF size more explicitly, we investigated the 
distribution of item parameter differences using the PISA 2018 data. Figure 3 shows the 
distributions of discrimination (a) and difficulty (b) parameter differences for DIF and 
nonDIF items across countries. As expected, the Reading domain has the highest dif-
ference in item parameters, followed by Science and Mathematics. The discrimination 
parameter difference ranged approximately from − 1 to 1 and the difficulty parameter 
difference ranged from − 2 to 2. The distribution for the discrimination parameter dif-
ference also showed a unimodal shape, whereas the corresponding distribution for the 

Fig. 3  The distribution of the PISA item parameter differences for DIF items
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difficulty parameter showed a bimodal distribution. Based on the item parameter differ-
ence distribution, we chose the DIF size values for the simulation study.

Data generation

The true item parameters were randomly drawn from uniform distributions with the 
ranges commonly observed in general LSAs. For discrimination parameters, the item 
parameters were randomly drawn from U(0.75, 2.25), and for difficulty parameters, the 
item parameters were randomly drawn from U(–2.00, 2.00). Note that the item param-
eters were randomly drawn for each replication to reduce the impact of item parameters 
on DIF items. To generate simulees for each group, we randomly generated latent trait 
parameters from the N(µg , 1), where µg  is the true group mean parameter for group g. 
The true group mean parameters µg  were also randomly generated from U(–2, 2), which 
are in the range of commonly observed group scores in LSAs.

To generate DIF, we chose two groups (Group 2 and Group 3) as DIF groups. For the 
DIF groups, depending on the simulation conditions (e.g., proportions of DIF items, type 
of DIF items, size of DIF items, and direction of DIF items), we created item parameters 
that are different than the true item parameters (i.e., DIF item parameters). For example, 
for the condition where 40% of total items, uniform, large, and positive direction DIF 
were considered, we randomly selected 16 items of out 40 items and added the value of 
1 to the true b parameters. Similarly, for the condition where 20% of total items, nonuni-
form, small, and negative direction DIF were considered, we randomly selected 8 items 
of out 40 items and subtracted the value of 0.3 from the true a parameters. We then gen-
erated the item response data using the DIF item parameters along with the DIF group 
simulees. For the DIF-free (nonDIF) groups, we used the nonDIF group-specific item 
parameters along with the group simulees to generate the item response data. Finally, 
the item response data for both DIF and nonDIF groups were combined to create the 
total dataset.

Analysis

The generated item responses were analyzed with two multigroup IRT models. Specifi-
cally, we first fitted a multigroup model with item parameter equality constraints across 
groups (denoted as DIF unadjusted model). We then identified the DIF items using 
RMSD and re-estimated the multigroup model with unique item parameters (denoted 
as DIF adjusted model). The group mean and standard deviation estimates from both 
models (i.e., DIF unadjusted and adjusted models) were also separately estimated. The 
estimated group mean estimates were then rescaled by multiplying 100 and adding 500 
to be similar to the PISA scale scores. Similarly, the estimated group standard devia-
tion estimates were also rescaled by multiplying 100. To evaluate the accuracy of the 
mean and standard deviation estimates, we computed bias and root mean squared error 
(RMSE) as follows:

Biasg =

∑R
r=1 δ̂g(r) − δg(r)

R
� (13)

RMSEg =

√√√√
∑R

r=1

(
δ̂g(r) − δg(r)

)2

R
� (14)
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where δ̂g(r)  is the estimated group mean or group standard deviation of the gth group at 
the rth replication, δg(r)  is the true group mean or group standard deviation parameter 
for the gth group at the rth replication, and R is the total number of replications. For the 
current study, we set the total number of replications to 100. The bias and RMSE were 
computed for each group and separately averaged for the DIF groups and the nonDIF 
groups.

Study 2 Results
Table 1 shows bias and RMSE results for the group mean estimates from the DIF unad-
justed and adjusted models across simulation conditions. Overall, the group mean bias 
was more substantial for the DIF groups than the nonDIF groups. More importantly, 
the DIF adjustment considerably reduced the bias and RMSE for the DIF groups. For 
the nonDIF groups, the bias ranged from − 0.82 to 1.31 across the simulation conditions 
and the average bias from the DIF unadjusted and adjusted models were − 0.16 and 0.13, 
respectively, for positive DIF and 0.14 and 0.01 for negative DIF. The bias for the non-
DIF groups can be considered minimal based on the criteria provided by Hoogland & 
Boomsma (1998). For the DIF groups, the bias from the DIF unadjusted model ranged 
from − 38.13 to 39.34, and the average bias was − 8.35 for positive DIF and 8.43 for nega-
tive DIF. However, using the DIF adjusted model substantially reduced the bias by 50% 
on average. The bias from the DIF adjusted model ranged from − 17.64 to 17.40, and 
the average bias was − 3.61 for positive DIF and 3.52 for negative DIF. From the RMSE 
results, we found a similar pattern. RMSE of the nonDIF groups was consistent across 
the simulation conditions, whereas the corresponding value of the DIF groups ranged 
from 7.19 to 41.14 for the DIF unadjusted model. Similarly, using the DIF adjusted 
model substantially reduced the RMSE by 50%, ranging from 6.79 to 24.54 across the 
simulation conditions.

As the size and proportion of DIF increased, the bias and RMSE increased substan-
tially, as expected. It is worthwhile to note that bias of the group mean estimates were 
more evident when DIF was created by shifting the b parameter (uniform DIF) than the 
a parameter (nonuniform DIF). When nonuniform DIF was considered, the highest bias 
was 1.93 across simulation conditions and fitted models. The bias and RMSE from non-
uniform DIF were comparable to the results from the nonDIF groups. In addition, the 
direction of DIF also affected the direction of bias for the group mean estimates. For 
the positive DIF conditions, the direction of bias was negative, indicating that the group 
mean estimates were underestimated. For the negative DIF conditions, the direction of 
bias was positive indicating that the group mean estimates were overestimated.

Table 2 illustrates the bias and RMSE of the group standard deviation estimates for the 
nonDIF and DIF groups. The overall pattern of the results was similar to the group mean 
estimate results. For the nonDIF groups, the bias ranged from − 1.48 to 0.20 and the 
average bias was − 0.85 for positive DIF and − 0.43 for negative DIF. In contrast, for the 
DIF groups, the bias was nonignorable, ranging from − 10.68 to 2.20 using the DIF unad-
justed model and − 8.19 to 2.80 using the DIF adjusted model. The average bias of the 
DIF unadjusted and adjusted models were − 1.26 and − 0.94 for positive DIF and − 3.92 
and − 2.99 for negative DIF. Overall, the bias showed negative values across the simula-
tion conditions, indicating that the standard deviation estimates were underestimated 
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regardless of the direction of DIF items. In addition, the bias was more substantial for 
the negative DIF than the positive DIF.

Discussion and Conclusion
In this study, we examined the impact of DIF items on group scores in the context of 
LSAs. Although much literature has previously discussed the benefits of the IRT cal-
ibration method for addressing DIF items in the multigroup structure (e.g., Oliveri & 
von Davier 2011, 2014, Rutkowski & Svetina, 2014; Rutkowski et al., 2016; von Davier 
et al., 2019), the degree to which the DIF adjustment affects the accuracy and precision 
of group performance estimates had not yet been empirically shown. To fill this gap, we 
conducted two studies. In the first study, we empirically showed the impact of the DIF 
adjustment on country score estimates using PISA 2018 main survey data. To precisely 
examine the effects of DIF adjustment, we incorporated Jackknife sampling to estimate 
the country score difference estimates and their standard errors. In the Jackknife sam-
pling approach, we incorporated the DIF adjustment within the multigroup IRT scal-
ing process for group comparisons. The multigroup IRT model with the DIF adjustment 
takes the uncertainty of items across countries and assessment cycles into account by 
simultaneously estimating international item parameters and fixing trend item param-
eters from previous assessment cycles (OECD, 2016, 2019; von Davier et al., 2019). This 
approach is comparable to the linking method using trend items in the presence of DIF 
(Robitzsch, 2021; Robitzsch & Lüdtke, 2019). In the second study, we conducted a simu-
lation study to explore the consequence of DIF items and their adjustment on the group 
mean estimates directly obtained from the multigroup IRT models.

Based on the first study results, we found that the DIF items have a nonnegligible 
impact on the country scores and their standard error estimates for PISA 2018 cognitive 
domains. As the proportion of DIF items increased, the difference of the country score 
estimates obtained with and without the DIF adjustment considerably increased. The 
highest country score difference was − 16.85 points on the PISA scale, observed in the 
Mathematics domain when the proportion of DIF items for the country was nearly 40%. 
Across countries, the Reading domain showed the largest score differences followed by 
Science and Mathematics, given that the proportion of DIF items was largest for Read-
ing. In addition, we found that the standard error of country score differences increased 
as the proportion of DIF items increased, implying that the country score reliabilities 
can also be affected by DIF items. Consistent with the country score difference results, 
the standard error was highest for Reading followed by Mathematics and Science. Given 
that the proportion of DIF items per country in PISA 2018 data was as high as 40%, 
the results from the PISA data analysis provide the empirical evidence in which the DIF 
adjustment affects the country scores.

In the second study, we computed bias and RMSE of the group mean estimates from 
the two multigroup IRT models; the model with the constrained item parameters (DIF 
unadjusted model) and the model with the unique item parameters for the detected 
DIF items (DIF adjusted model). The data were generated by varying the propor-
tion, size, type, and direction of DIF items, and we obtained the group mean estimates 
directly from the DIF adjusted and unadjusted models. We first found that the group 
mean estimates were underestimated when uniform DIF items were generated with a 
positive direction and overestimated when uniform DIF items were generated with a 
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negative direction. The group mean bias increased as the proportion and size of DIF 
items increased, and the bias was as high as 39.34 points on the PISA scale when 40% 
of the items contained large DIF. More importantly, we also found that the DIF adjusted 
model reduced the bias of group mean estimates across the simulation condition and 
50% of the bias was reduced on average. However, the DIF adjusted model still produced 
bias; − 3.61 points on average for positive DIF and 3.52 points for negative DIF on the 
PISA scale. These results indicate that the DIF items could yield biased group mean esti-
mates, and the DIF adjustment can be implemented for the IRT scaling procedure to 
obtain the valid group mean estimates in the context of LSAs. In addition, the direction 
of DIF items should be carefully monitored to avoid the possible under or overestima-
tion of the group mean estimates from the multigroup IRT model.

Interestingly, we also found that the group mean bias was mainly evident with the uni-
form DIF items, and the nonuniform DIF items had a minimum impact. This finding was 
consistent across the simulation conditions. This result implies that the group mean esti-
mates are mainly affected by the uniform DIF items, and in operational settings, uniform 
DIF should be more explicitly investigated than nonuniform DIF. This result also high-
lights previous DIF studies in the context LSAs where uniform DIF is generally detected 
with high power than nonuniform DIF (e.g., Buchholz & Hartig 2019). Based on this 
finding, we recommend researchers and practitioners investigate DIF items more pre-
cisely by plotting ICCs, using common and group-specific item parameters.

In addition, we found that the group standard deviation estimates were also biased 
by the DIF items from the simulation study. Although the DIF adjustment somewhat 
addressed the bias, the group standard deviation estimates were underestimated overall, 
mainly with the negative direction DIF items, and the bias was as high as − 8.19 points on 
the PISA scale. The corresponding RMSE value was 4.73. This finding has an important 
implication in the context of educational research. For example, if educational research-
ers and practitioners are interested in meta-analyzing student performance, it is com-
mon to obtain standardized effect sizes by using standard deviation estimates to make 
a valid cross-country performance comparison. Moreover, statistical inferences, such as 
interval estimates and hypothesis testing for country scores, also heavily rely on the valid 
standard deviation estimates. To obtain accurate standardized effect sizes and make a 
valid statistical inference, DIF items should be properly revised.

However, it is worthwhile to note that the simulation study results should be inter-
preted with caution. In operational assessments such as LSAs, the group score compara-
bility is the main interest and estimating unique item parameters for DIF fundamentally 
decreases the comparability of the scale because the number of international item 
parameters reduces (Note that comparability is defined as the proportion of interna-
tional item parameters in this study). From the psychometric perspective, it is critical to 
maintain the high comparability of the scales across groups and obtain the comparable 
group scores. Although we showed that the DIF items can cause the nonignorable bias 
of the group mean and standard deviation estimates from the simulation study, increas-
ing the number of unique item parameters to address DIF items reduces the comparabil-
ity of the scales and increases the model complexity. To obtain the comparable group 
scores in LSAs, it is important to primarily consider the high level of scale compara-
bility and measurement invariance across groups (Rutkowski & Svetina, 2014). We also 
emphasize that the statistical decision on the DIF adjustment does not always relate to 
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construct-irrelevancy (Robitzsch & Lüdtke, 2020). As previous DIF studies discussed, 
DIF detection and adjustment should depend on statistical decisions and reviews from 
item experts and developers (Penfield & Camilli, 2007).

Finally, we acknowledged the limitations of the studies. Specifically, the simulation 
study we designed only investigated the limited data generation conditions. For example, 
the number of groups in the simulation was fixed at ten, and the number of items admin-
istered to students was fixed at 40. Although the numbers of fixed groups and items in 
this study are commonly observed in typical LSAs, to increase the generalizability of the 
results, more data generation conditions should be explored. Increasing the number of 
groups and items could affect the group mean and standard deviation estimates from the 
multigroup IRT model, and a future study is needed to examine the impact. In addition, 
in the simulation study, we only considered the dichotomous item response model (e.g., 
2PLM) to generate the data. Given that the LSAs in general often include mixed-format 
tests, it is important to consider both dichotomous and polytomous item response data 
and investigate the impact of the DIF items on the group score estimates. Furthermore, 
the DIF detection method using RMSD assumes that the functional form of the fitted 
model adequately describes the data. In our empirical investigation, we used 2PL and 
GPCM for the dichotomous and polytomous responses in accordance with the PISA and 
PIAAC operational procedures. The future research should investigate the impact of DIF 
in LSAs using nonparametric DIF detection methods such as logistic regression. Finally, 
we did not include BIB design in the data generation procedure. The BIB design is com-
monly used in LSAs to cover a wide range of content and obtain reliable group score 
estimates. A future study should include the BIB design in the data generation condi-
tions and investigate the impact of the BIB design along with the DIF items on group 
score estimates.

The results from the two studies provide important evidence that the DIF adjustment 
in IRT scaling is important and effective to address possible bias in group score report-
ing. We believe that the study contributes to the measurement literature in general and 
specifically to large-scale group-score assessments, providing information about DIF 
items and their consequences. Additionally, the study would provide guidelines for 
researchers and practitioners on how to properly address DIF item issues in the context 
of LSAs. The study results could also help lead to the development of new methods or 
modeling frameworks that consider the magnitude of misfit and consequently improves 
the current operational work in national and international LSAs.
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