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Introduction
The Trends in International Mathematics and Science Study (TIMSS), Progress in Inter-
national Reading Literacy Study (PIRLS) and the Programme for International Student 
Assessment (PISA) are among the most popular modern international large-scale assess-
ments and surveys (ILSAs). ILSAs provide increasingly more evidence for policy inter-
ventions, to initiate or continue reforms in education (Klemencic, 2010; Wagemaker, 
2014). ILSAs are conducted repeatedly, in cycles of 3 or more years to provide trends in 
education outcomes and, besides the data on achievement, collect information on many 
different variables associated with academic performance (Wagemaker, 2014).
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ILSAs’ data, however, do not comply with the basic statistical analyses routines 
researchers typically use because of the complex sampling and assessment designs that 
the studies employ, necessitating different analysis techniques. The objective of this arti-
cle is to present a newly developed R package—the R Analyzer for Large-Scale Assess-
ments (RALSA) for analyzing ILSAs’ data, such as TIMSS, PIRLS and PISA, amongst 
many others. The package can handle the complex sampling and assessment designs 
of the studies’ data automatically, without user intervention. Other software packages 
for analyzing ILSAs’ data exist. One of these is the IDB Analyzer (IEA, 2020) developed 
by the IEA, a Graphical User Interface (GUI) which produces custom syntax for SPSS 
(IBM, 2020) or SAS (SAS, 2020) which, in turn, carry out the computations, taking into 
account the sampling and assessment design issues. While the IDB Analyzer is free of 
charge, the costs associated with the licenses for SPSS and SAS can be prohibitive for 
the user. Another software package is Westat’s WesVar (Westat, 2008), a free of charge, 
standalone GUI application which computes statistics from data with complex sam-
pling designs. However, the last release of WesVar was in 2008 and no further updates 
followed since then. Moreover, the user has to first import the data into WesVar and 
provide detailed inputs around the sampling design and method of variance estimation 
(Westat, 2008). The software does not accommodate the complex assessment design of 
ILSAs and the workflow can be rather daunting for the user.

Different R packages for analyzing data from ILSAs exist, free of charge and open-
source, licensed under the General Public License (GPL). One of them is BIFIEsurvey 
(BIFIE et  al., 2019). Other options are intsvy (Caro and Biecek, 2019) and edSur-
vey (Bailey et  al., 2020). All of these packages can handle the complex sampling and 
assessment design issues. However, each one of these packages handles a different set 
of ILSAs, but not all. A common feature of BIFIEsurvey and EdSurvey is that they 
create their own specific objects when data sets are read (Bailey et al., 2020; BIFIE et al., 
2019). This may sometimes create difficulties for the analyst, for example, when fur-
ther data manipulation of variables is needed. EdSurvey has its own recoding func-
tion (recode.sdf) and both BIFIEsurvey’s and intsvy’s manuals (BIFIE et  al., 
2019; Caro and Biecek, 2019) provide examples of recoding variables using functions in 
the base R or other packages, but these can at times be overly complicated for the aver-
age R user. These three packages also read SPSS data files directly. EdSurvey also has 
the readPISA function to connect to PISA text files from cycles prior to 2015 while 
BIFIEsurvey and intsvy do not have this functionality. The file types R works best 
with are its native .RData and .RDS files. However, none of the aforementioned pack-
ages has the functionality to convert the original data sets into these formats. The exist-
ing packages print results directly to the console. intsvy is also able to write its outputs 
in rather basic comma-separated values (.CSV) files. None of these packages, however, 
come with a user interface for convenience of use, especially for users who lack technical 
skills and experience with R.
RALSA was designed and developed with the user experience in mind, acknowledg-

ing that not every researcher is a programmer. RALSA has easy to understand and use 
syntax. Even for linear and binary logistic regression analyses, the user does not need 
to specify the model using the traditional R formula syntax. RALSA also introduces a 
GUI written directly in R without relying on any external platform. The package can 
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convert original SPSS data sets (or text files in the case of PISA 2012 and earlier cycles) 
into native .RData files. While doing this, it also adds some additional attributes to the 
objects stored in these files and their variables for further use in data preparation and 
analysis. This simplifies the entire workflow and eases usage, providing a better expe-
rience. R supports only one type of missing value natively, NA, which is equivalent to 
system missing values in SPSS. The data conversion function adds the user-defined miss-
ing values as an attribute to each variable as found in the original data files. All analysis 
functions use the additional attributes attached to the data sets and variables, and apply 
certain routines automatically without any need for additional specification by the user. 
The comprehensive output system writes the analysis results into MS Excel workbooks 
with multiple sheets, applying cell formatting depending on the content. In addition, 
RALSA comes with informative log messages and exception handling with human-read-
able error messages and warnings, which are helpful for the analyst. These are among the 
advantages RALSA has over other software products. While it is not possible to cover all 
details of RALSA, this paper describes in sufficient detail all features, workflow and the 
architecture of the package.

Background
This section provides a rather brief and concise review to explain the technical and oper-
ational complexities and the related analysis issues in PIRLS and PISA (all other studies 
share more or less similar methodology). Readers interested in a more detailed and tech-
nical overview can refer to the technical documentation of the studies (see Martin et al., 
2017a; OECD, 2017a).

Due to limited resources, both students and test items are sampled in ILSAs. Although 
Simple Random Sampling (SRS) has its merits, it is neither practical nor cost effective 
(Rust, 2014) and it will not permit the efficient linking of students to their teachers and 
schools to associate student proficiency with classroom and school factors. To maximize 
precision, and depending on the study, ILSAs use complex sampling techniques includ-
ing multistage stratified sampling and multistage stratified cluster sampling. Stratifi-
cation consists of arranging primary sampling units (i.e. schools) in groups (strata) by 
common characteristics they share, like location in geographic regions or school types. 
The first stage samples schools within these strata. The probability of selection for each 
school is different, where larger schools have a greater probability of being selected 
(probability proportional to the size of the unit, or in short—PPS sampling). The sec-
ond stage in PIRLS and TIMSS involves sampling one or two intact classes (i.e. clusters) 
within the sampled schools (LaRoche et al., 2017). Just like in PIRLS and TIMSS, the first 
stage in PISA is a sample of schools, but in the second stage students within each school 
are sampled randomly regardless of which class they belong to (OECD, 2017b). As the 
goal is to provide estimates for the entire target population, these unequal probabilities 
are also reflected in the sampling weights.

Besides the complex sampling design, ILSAs also use a complex assessment design. 
This is necessary because a large number of test items is needed to assess student pro-
ficiency with a high reliability. In order to measure broad content domains, many items 
are necessary. To accommodate many items in a limited testing time, complex assess-
ment designs, including matrix sampling, are used. In practice, items are grouped in 
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blocks by the content and cognitive domains they measure. Then the blocks are distrib-
uted across a number of test forms, so that each form contains two or more blocks. The 
test design is such that forms are linked through common blocks. For more informa-
tion on the instrument structure, see Martin et. al. (2015) and OECD (2017e), as well as 
the technical documentation for studies other than PIRLS, TIMSS and PISA. This way 
no student takes all items. However, student achievement can still be estimated thanks 
to the complex scaling methodology. Specifically, ILSAs use item response theory (IRT) 
to estimate the item parameters which are then used with the information provided by 
the background and context variable in a “conditioning” process. A number of random 
draws (five in PIRLS and TIMSS, and 10 in later PISA cycles) are made. These are the 
so-called “plausible” values (PVs) which are the final scores for each tested student. See 
Foy and Yin (2017) and OECD (2017c), as well as the technical documentation for stud-
ies other than PIRLS and PISA. This approach, however, results in some uncertainty, or 
measurement error, as a result of the imputation process. This is why more than one 
score (PVs) is assigned to each student. For more information on the PVs and the meth-
odology behind, see von Davier et. al. (2009).

The estimates are produced using the full weight. If PVs are involved, the estimates are 
computed with each PV and then averaged. The standard errors are computed using the 
sampling weights and each one of their replicates for each PV, if used. Different studies 
use different methods for estimating the standard errors depending on their designs. For 
more information for the studies in scope of this paper see Foy and LaRoche (2017) and 
(OECD 2017c). For other studies, see their technical documentation.

On the other hand, PISA, as well as some other studies like the Teaching and Learning 
International Survey (TALIS), use the BRR method for estimating the sampling variance, 
with Fay’s modification (OECD, 2017d). The method uses balanced half-samples. The 
schools are paired, based on the explicit and implicit stratifications. A total of 80 repli-
cates of the full weight are produced where one of the schools in a zone has its weight 
multiplied by 1.5 and the other one by 0.5. The formulas for computing the sampling 
and imputation variance in PISA differ from those in PIRLS (see OECD, 2017c, 2017d) 
because of the partial inflation and deflation of the weights in a zone. The computa-
tional routines, however, are the same: compute with each replicate and each PV, then 
summarize.

For further details on sampling procedures in ILSAs and PIRLS and PISA in particu-
lar, see Rust (2014), LaRoche et. al. (2017), and OECD (2017b). For test design and test 
development in PIRLS and PISA see Mullis and Prendergast (2017), Martin et. al. (2015), 
and OECD (2017e). For a general overview and methodology of PVs see von Davier 
et. al. (2009), for the achievement scaling methodology in PIRLS and PISA see Foy and 
Yin (2017) and OECD (2017c). For estimation of the sampling and assessment variance 
in PIRLS and PISA, see Foy and LaRoche (2017) and OECD (2017c, 2017d). For details 
on other studies see the corresponding technical reports and user guides.

The rather brief description from above should have made clear by now that analyzing 
data from ILSAs does not comply with the basic statistical routines one may be used to. 
Using the built-in statistical routines in standard statistical software (SPSS, SAS, R, etc.) 
can lead to biased estimates. Rutkowski et. al. (2010) provide in-depth explanations on 
ILSAs’ methodological and technical complexities and the consequences of ignoring the 
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design when performing analysis, along with the most common mistakes and misuse (or 
even abuse) of ILSAs’ data.

The RALSA package
Presentation of the package

RALSA was first released in November 2020. As of its first release, RALSA can work with 
the data from all cycles of the following studies:

•	 Civic Education Study (CivED);
•	 International Civic and Citizenship Education Study (ICCS);
•	 International Computer and Information Literacy Study (ICILS);
•	 Reading Literacy Study (RLII);
•	 Progress in International Reading Literacy Study (PIRLS), including PIRLS Literacy 

and ePIRLS;
•	 Trends in International Mathematics and Science Study (TIMSS), including TIMSS 

Numeracy;
•	 TIMSS and PIRLS joint study (TiPi);
•	 TIMSS Advanced;
•	 Second Information Technology in Education Study (SITES);
•	 Teacher Education and Development Study in Mathematics (TEDS-M);
•	 Programme for International Student Assessment (PISA);
•	 Teaching and Learning International Survey (TALIS); and
•	 TALIS Starting Strong Survey (a.k.a. TALIS 3S).

Support for more studies will be added in the near future, also on demand. As of now, 
RALSA has the following functionality:

•	 Prepare data for analysis;

•	 Convert data (SPSS, or text in case of PISA prior to 2015);
•	 Merge study data files from different countries and/or respondents;
•	 View variable properties (name, class, variable label, response categories/unique 

values, user-defined missing values);
•	 Produce diagnostic tables to inspect the frequencies (categorical data) or descrip-

tives (numeric data) prior to analysis to elaborate the analysis plan or hypotheses; 
and

•	 Recode variables.

•	 Perform analyses

•	 Percentages of respondents in certain groups and averages on variables of interest, 
per group;

•	 Percentiles of variables within groups of respondents;
•	 Percentages of respondents reaching or surpassing benchmarks of achievement;
•	 Correlations (Pearson or Spearman);
•	 Linear regression; and
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•	 Binary logistic regression.

The future development of RALSA will add more data processing functionality and anal-
ysis types to the list from above. The flexible design and architecture of the package (see 
the next subsection) allow for rapid additions of both studies and functionality. In addi-
tion, further optimizations of the existing computational routines will take place (see 
“Further developments” section).

Architecture and workflow

The purpose of this section is to provide an overview of the architecture of the package 
and its internal workflow. The section also includes information on the interoperability 
between the data preparation and analysis functions with a set of background objects 
and functions used in common operations. A description of the steps the user needs to 
take and examples on how to use the package, along with description of specific func-
tion arguments, are provided in “Some examples of data preparation and analyses with 
RALSA” section. The architecture and the internal workflow of the RALSA package are 
presented in Fig. 1. The functionality in the package is divided into two major parts: (1) 
data preparation; and (2) analysis. The main functionality of the first part (data prepara-
tion) is the data conversion function (lsa.convert.data). The function converts the 
data files originally provided by the organizations conducting ILSAs into native .RData 
data files. The data files come organized in three different ways: 

1.	 SPSS and SAS data sets per respondent type and country. Such are the data files pro-
vided for CivED, ICCS, ICILS, RLII, PIRLS (including PIRLS Literacy and ePIRLS), 
TIMSS (including TIMSS Numeracy), TiPi (TIMSS and PIRLS joint study), TIMSS 
Advanced, SITES 2006, TEDS-M, TALIS, and TALIS Starting Strong Survey. Each 
country in PIRLS, for example, has separate files for the different types of respond-
ents—background files for students, their parents, teacher, and school principals. In 
addition to these, each country has a file with actual student answers on the achieve-
ment items, a scoring reliability file, and a student-teacher linkage file (more infor-
mation on the latter one will be provided further in the paper).

2.	 SPSS and SAS data sets with all countries in files per respondent type. Such are the 
files from PISA 2015 and its later cycles. There are several respondent file types, sim-
ilar to the ones from above, but the SPSS and SAS files per respondent type contain 
data merged from all countries together.

3.	 Tab-delimited ASCII text files (.txt) with SPSS and SAS import control syntax files 
(.sps and .sas). PISA 2012 and its earlier cycles’ data are provided in such a way. 
Each respondent type has one .txt data file and a corresponding SPSS and SAS 
control syntax files to import them in the corresponding software.

Regardless of how the original data are provided, behind the scenes the  
lsa.convert.data function applies appropriate routines automatically to con-
vert the data into native .RData files. In case of (3) from above, the function will 
import a text file, identify the corresponding .sps file, import it as well, extract the 
relevant SPSS command statements and use them to apply the properties (variable 
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labels, factor levels, and user-defined missing values) to the variables in the data set. 
Regardless of how the data files are provided, the function will export the .RData 
files with the same names as the original ones. The resulting .RData files contain an 
object with the same name as the file name. The object is of class data.table, an 
extension of data.frame, and now further extended to lsa.data class. That is, 
instead of creating a new object class, as other packages for analyzing ILSAs’ data do, 
the data.table class is only extended with additional attributes, making all com-
mands for working with data.table and data.frame still applicable. The lsa.
convert.data adds the following attributes to the object:

•	 study—the name of the study;
•	 cycle—the cycle of administration of the study;
•	 file.type—the respondent type (i.e. student, teacher, school, etc.);

Fig. 1  Architecture and workflow of the RALSA package
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In addition, the lsa.convert.data is keyed on the country ID (CNT in PISA and 
IDCNTRY​ in all other studies) variable which is further utilized in merging and all analy-
sis functions. R has just one missing value type (NA) while SPSS files have user-defined 
missing codes as well. The lsa.convert.data function can convert the data includ-
ing the user-defined missing values as the default behavior. The function will assign a 
missings attribute to each variable. If not interested in the user-defined missing val-
ues, the user may add missing.to.NA = TRUE to the function call to set all user-
defined missing values to NA, analogous to “system missing” in SPSS. Each variable will 
also have its variable label assigned to a variable.label attribute. This is different 
from the usual practice in R data.frames where the variable labels are assigned to 
the data sets and not to the individual columns. Assigning them directly to the variables 
makes it possible to view, maintain and use the variable properties in merging, recod-
ing and analyzing data without loss of information, or having redundant or irrelevant 
information in the data set. See “Some examples of data preparation and analyses with 
RALSA” section for examples on using the lsa.convert.data function.

Another core data preparation function is the lsa.merge.data, a function to 
merge data from different countries and different respondents within a cycle of a study. 
Note that this function can work with all studies, except PISA. The main reason, as 
noted earlier, is that all data sets in a PISA cycle are provided per respondent type, con-
taining the data for all countries in a file. In addition, some of the components in PISA 
(e.g. teacher questionnaire) are optional for the countries, so different respondent types 
would contain different sets of countries. Also, respondent types and data file naming 
conventions change from one cycle to the other. This makes is extremely hard, if even 
possible, to handle programmatically the merging of PISA data sets consistently with 
each subsequent release of the study. The advantages of the merging function and the 
reasons why it shall be used instead of making any merges of ILSA data by hand are 
briefly outlined here. When merging data from different respondents in different stud-
ies, the merged files need to keep the appropriate weight variables for the combination 
of respondents. For example, when merging student and school data, the weight to use 
in the analysis must be the student weight because the school and principal character-
istics become properties of the student. Merging data from different respondents will 
depend on the design of the study. Some merge combinations are possible in some stud-
ies and not in others because of the target populations and the content domain. For 
example, in PIRLS 2016 teachers do not constitute a representative sample of teachers 
in the population (see LaRoche et al., 2017). The sampled teachers are the ones teach-
ing the sampled students, which constitute a representative sample of the students in 
an education system. In this case, the appropriate weight is the teacher weight, which is 
derived from the student weight after applying some adjustments (LaRoche et al., 2017). 
The results must be interpreted on the level of students with teachers having particular 
attributes. Thus, the teacher data must always be merged with the student data before 
analysis (Foy, 2018). The databases provide student-teacher linkage files; the information 
in these files is used to ensure a proper linkage in the merge process, matching the stu-
dents to their teachers by IDs and linkage indicators. These student-teacher linkage files 
are added automatically during the merge process and the lsa.merge.data function 
takes care for the proper ID matching during the merge process. TIMSS grade 4 has the 
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same scenario as PIRLS. TIMSS grade 8, however, is more complicated because students 
have different teachers in mathematics and science and both cannot be merged at the 
same time. Additionally, in some countries more than one teacher teaches the students 
in any of the two given subjects. If the analyst tries to merge only teacher files in PIRLS 
or TIMSS, the merging function will stop with an error message. In ICCS and ICILS, 
on the other hand, teachers from the sampled schools are sampled separately from the 
students as a representative sample and are not necessarily teaching the students sam-
pled from their schools. Teacher data only from different countries can be merged, but 
merging student and teacher data should not be done because no link between them can 
be established (Brese, 2018; Mikheeva and Meyer, 2020). The lsa.merge.data func-
tion always checks the possible merge combinations for the study data and stops with 
an error if a requested merge combination is not applicable. The lsa.merge.data 
function takes care to properly merge the files through all the different scenarios the 
studies have. It also takes care of maintaining the user-defined missing values assigned 
to each variable in the different data sets. When any merge is done, the function will also 
update the file.type attribute in the new merged data set (i.e. which respondent types 
are merged). Later, the analysis functions use the file.type attribute, as well as the 
other attributes (study and cycle), to apply the appropriate computation methods. 
See “Some examples of data preparation and analyses with RALSA” section for examples 
on how to merge data from different file types from different countries.

There are three more helper functions in the data preparation part of RALSA. The 
first one is the variable recoding function (lsa.recode.vars). This function can 
recode variables in the converted and subsequently, merged data sets. In doing this, it 
also takes care of the user-defined missing values, if there are any. The second helper 
function, lsa.var.dict, prints variable dictionaries. This is similar to the DISPLAY 
DICTIONARY​ command in SPSS. This function is helpful for planning analyses or when 
information on variables is desired. The function can print the variable dictionaries 
in the console and save them in a text file for further reference. The third helper func-
tion, lsa.data.diag, can be used for initial exploration of the data prior to analysis, 
to inspect the actual distribution of values within variables and elaborate the analysis 
plans. It creates frequency tables for factor variables, and descriptive statistics tables for 
numeric variables. These tables are always split by country ID and more splitting vari-
ables can be added, if needed. The output is exported to a multi-sheet MS Excel work-
book with one sheet for each variable of interest.

The second set of functions in RALSA is the analysis functions (see “Presentation of 
the package” section for the full list, as of the time of writing, and “Some examples of 
data preparation and analyses with RALSA” section for examples of using the analysis 
functions). As Fig. 1 shows, all analysis functions use a set of common objects and func-
tions that they use in the background. These are available in a separate file (common.r) 
and are not to be used on their own, but called only from the analysis functions avail-
able in the RALSA package. This is why the workflow, designated by the curved arrow 
line in the middle, goes back and forth between the “Analysis functions” and the “Com-
mon functions and objects”. When a call to any analysis function is made, it initially 
refers to the “Process data” group of functions and objects in “Common functions and 
objects” in the common.r file. After all the data is processed (import data, split by 



Page 10 of 24Mirazchiyski ﻿Large-scale Assess Educ            (2021) 9:21 

country, etc.), the resulting data object is returned to the analysis function. The analysis 
function applies all arguments passed to it and proceeds with computing the statistics. 
Note that the “Compute statistics” box on Fig. 1 overlaps the “Analysis functions” and 
the “Common functions and objects” boxes. This is because the “common.r” file con-
tains functions and objects related to all statistics types and many of the analysis func-
tions also contain nested functions and objects pertinent to them only. After all statistics 
for an analysis are computed, the results are passed to functions in the “common.r” file 
from within the analysis function. These common functions further process the results 
including functions such as reshape, aggregate, compute additional statistics, assemble 
the model statistics, compute the sampling and imputation variance, and compute the 
final standard errors. Eventually, the analysis function makes a call to a common func-
tion to create an output object to be written to the disk as an MS Excel (2007 or later) 
workbook with multiple sheets.

This approach, having common functions and objects shared between the analysis 
functions, offers significant advantages:

•	 A function for a certain common operation (say produce.jk.reps.data which 
produces the JK2 replicate weights for studies like PIRLS and TIMSS) located in 
“common.r” is developed just once, but is called and used within any analysis func-
tion;

•	 If any computational routine, used by all analysis functions, needs to be updated, this 
is done just once, but benefits all analysis functions;

•	 Consistency of all computations that different functions have in common;
•	 Avoids code repetition and minimizes the risks of mistakes and inconsistencies; and
•	 Makes the time for new developments much shorter.

For example, all analysis functions compute the sampling and imputation variance 
and produce the final standard errors of the estimates. The functions for doing this are 
located in the “common.r” file, written once and used everywhere with no or minimal 
updates when necessary. The last item in the list above is especially important because 
the common functions and objects in the “common.r” file are used to perform routine 
operations, pertinent to all analysis functions. For example, the produce.jk.reps.
data function will produce JK2 replicate weights regardless of whether the analy-
sis function called is for computing means or logistic regression. This, and many other 
functions and objects in the “common.r” file facilitate then quick addition of new analy-
sis types in RALSA.

To keep the package’s syntax consistent, all of the analysis functions have a common 
set of arguments, applicable to all of them. The arguments data.file and data.
object (either one of them shall be used), split.vars, weight.var, include.
missing, shortcut, output.file, and open.output are common in all analysis 
functions. In addition, linear and binary logistic regression share the following argu-
ments: bckg.indep.cat.vars, bckg.cat.contrasts, bckg.ref.cats, and 
standardize. At the same time, each function has its own arguments that are perti-
nent to it. To see the full list of arguments for each function and their meaning, refer to 
the RALSA reference manual (Mirazchiyski and INERI, 2021). All of the examples below 
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are done under MS Windows 10. RALSA, however, can work under any operating system 
where full installation of R is possible.

As noted earlier, RALSA comes with a GUI, which adds to its usability. The GUI is 
written entirely in R, using the shiny package (Chang et  al., 2020) and its add-ons, 
i.e. without relying on any additional platform or programming language. shiny is an 
HTML wrapper with reactive bindings between inputs and outputs, which allows for the 
quick building of statistical web applications. The RALSA GUI is a web application that 
interacts with the data preparation and analysis functions. It runs locally, on the user’s 
computer, in a browser. All of the functions in the RALSA package can be accessed and 
used through the GUI.

Some examples of data preparation and analyses with RALSA

This section provides some examples of preparing and analyzing ILSAs data using the 
RALSA package. Due to page limitations, the examples are not exhaustive and will use 
the command-line option of RALSA. All of the package functionality, however, can be 
used through the GUI as well. The examples here demonstrate how to use the package 
from the first step (converting the data) to the last one (performing an analysis). Regard-
less of the analysis the analyst needs they follow the same steps. Examples for each spe-
cific functionality of the package can be found at the RALSA support website (INERI, 
2021). To use RALSA, an analyst needs to follow these steps: 

1.	 Convert data. The original data is provided in SPSS files or TXT files with control 
syntaxes. The user first needs to convert the data into R file format (see below). This 
needs to be done just once when a study’s data is used for the first time.

2.	 Merge data. ILSAs are large comparative studies collecting data from many educa-
tion systems and different kinds of respondents. Depending on the study, data from 
different kinds of respondents can be merged together in order to answer specific 
research questions for a specific group.

3.	 View variable properties (optional). Prior to analysis, an analyst may need to inspect 
the properties of the variables—class (factor or numeric), response options/unique 
values, etc.

4.	 Produce data diagnostic tables (optional). Sometimes the analyst may need to pro-
duce descriptive statistics and inspect the data prior to the actual analysis to elabo-
rate the analysis plan or hypotheses;

5.	 Recode variables (optional). In some cases, the analyst may need to modify the data 
prior to the analysis—collapse variables’ response categories or reverse-reverse code 
variables.

6.	 Perform the actual analysis. Multiple analysis options are provided by RALSA 
(see “Presentation of the package” section).

The examples that follow until the end of this section are basic and reflect the interests 
of a hypothetical researcher who wants to explore the differences in reading achieve-
ment between students based on their gender, using PIRLS 2016 data from Australia, 
Bulgaria and Slovenia. Let’s first load the package, assuming it is already installed (see 
the installation instructions at the RALSA support site (INERI, 2021):
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Upon loading, the package will show some welcome messages. As noted earlier, the 
first and foremost function in the package is the data conversion function. The first 
example converts PIRLS 2016 SPSS data files for Australia, Bulgaria and Slovenia which 
will be used in the further examples:

In the call to the lsa.convert.data from above we had to specify only the source 
folder (i.e. where the original SPSS files are located), the output folder (i.e. where the 
converted .RData files will be saved) and a vector of country abbreviations (fourth, fifth 
and sixth characters in the file names) passed to the ISO argument; omitting the ISO 
argument would instruct the function to convert the files for all countries in the folder. 
Note that the ISO argument is case insensitive, i.e. the country ISO codes can be either 
upper- or lower-case. The source files can also have their names and extensions in either 
upper- or lower-case. Executing the syntax from above will print the following log mes-
sages (presented here partially) to the console:

Each of the three countries has seven files for the different respondent types. All data 
sets were converted in about 36 s. Now that the files for the three countries in PIRLS 
2016 are converted, they can be used with all other functions in the package. The follow-
ing code merges the converted student data files together:



Page 13 of 24Mirazchiyski ﻿Large-scale Assess Educ            (2021) 9:21 	

The file.types argument takes a list of named vectors. The respondent type asg (case 
insensitive, can be upper- or lower-case) stands for student files. NULL as a value for each 
file type instructs the function to take all variables in these file types. Individual variables of 
interest can be specified as well, passing them as vectors to the file type names. Depending 
on the combination of respondents, the function will take only the proper design (ID, track-
ing, sampling and PV) variables from each of the respondents’ files. The syntax from above 
does not specify data from which countries should be merged using the ISO code, so the 
function will merge all converted student files in the folder (three countries in this case). 
Executing the code from above prints the following log in the console:

The total time for all merging operations (three countries, two respondent types) took 
less than 1.5 s. The examples that follow until the end of this subsection use data from this 
merged file, containing student data from Australia, Bulgaria and Slovenia.

Executing the syntax from below computes the average student overall reading achieve-
ment by student gender (sex) in each country, a classical example, in all three countries, 
using the merged file from above:

Note that the arguments in all analysis functions are case-sensitive to the variable 
names. The variable names are set to upper-case during the conversion process and 
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must be supplied as such. The call to the function prints log messages to the console 
every time data for a specific country has been processed and estimates are produced, 
as well as a message for adding the country achievement averages and the total time the 
analysis took:

A few things have to be noted here. First, the overall reading achievement has five 
PVs—ASRREA01, ASRREA02, ASRREA03, ASRREA04, and ASRREA05. Only the root 
(ASRREA) name without the numbers is supplied to the PV.root.avg argument.1 
Behind the scenes, the function identifies all PVs with the same root, computes the aver-
ages for each one of them with the full weight and each of its replicates, and aggregates 
the final results, computing the standard error. Second, a weight variable was not speci-
fied using the weight.var argument. In such cases all analysis functions identify the 
appropriate weight to apply, depending on which respondents’ data are in the file. The 
variable to weight by can be changed, of course, but an analysis function will check if the 
variable passed as a weight really belongs to the set of weighting variables for the study 
and cycle and, if not, will immediately exit with an error message as part of the excep-
tion handling mechanisms. Third, a full file path for saving the MS Excel output was not 
specified for the output.file argument, so any analysis function will save the output 
in the working directory (can be obtained by using the getwd() command or specified 
with the setwd() command). By default, all functions will open the MS Excel output 
once it is saved.

Figure 2 shows the partial output from this analysis. The MS Excel workbook has three 
sheets. The first sheet contains the estimates per country and the average estimates 
from all countries used in the analysis. The first two columns represent the variables we 
split the analysis by. Note that the calling syntax from above specified only student sex 
(ASBG01) as a splitting variable, but all analysis functions add the country ID as the first 
one automatically, so all analyses are performed by country. These two columns are fol-
lowed by the number of sampled cases with valid data and their population estimates, 

1  In studies like PISA, ICCS and ICILS the PVs have a different naming convention. For example, in PISA the names 
of the set of 10 PVs are PV1MATH, PV2MATH, PV3MATH,...and PV10MATH. The root PV name has to be specified in 
PV.root.avg as “PV#MATH”. For more details, see RALSA’s reference manual.
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and their standard errors. The last two columns in Fig. 2 represent the average overall 
achievement scores estimated using the PVs for female and male students per country 
and the standard errors of the estimates. The rest of the columns (not displayed in the 
figure) contain the variance (sampling and measurement) terms, dispersion and percent-
age of missing values by groups specified by the splitting variables. The second sheet 
contains some information about the analysis: which data file was used, which coun-
tries it contains, which study and cycle, which weight variable and replication method, 
how many replicates, start, end time and duration per country. The last sheet contains 
the calling syntax which was executed to perform the analysis. This is useful if later the 
analysis needs to be repeated, for example, when the data was updated or some recoding 
was made.

The next analysis computes the percentage of students reaching all different perfor-
mance levels (benchmarks) by student sex for the overall reading achievement. This is 
the calling syntax:

Note that the benchmark levels were not specified in the syntax above using the 
bench.vals argument, so defaults (400, 475, 550 and 625) are used automatically. 
Different benchmark values are applied as default, depending on the study. In the case 
of PISA and ICCS the defaults will also depend on the specific cycle, because different 
cycles have different definitions of proficiency levels. In addition, in PISA the differ-
ent achievement scales also have different proficiency levels and the default values will 
depend on the set of PVs used in the analysis. The benchmark values can, of course, be 
changed by adding, for example, bench.vals = c(475, 550) to the syntax from 
above. Other functions also have default values for different arguments, and any of the 
defaults for any of the functions can be changed.

Fig. 2  Partial output from the lsa.pcts.means function
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The partial output from executing the code from above is shown on Fig. 3. Just as with 
the previous analysis, the first two columns contain the groups defined by the splitting 
variables—country ID (added automatically) and student sex. The next column con-
tains the benchmark levels for each group. These are followed by the number of sam-
pled cases with valid data and the population estimates for the number of students with 
their standard errors. The next column presents the percentages of female and male stu-
dents performing within the ranges of score points defined by the benchmark values and 
their standard errors. The other two sheets contain the same information as the ones in 
the output from the previous analysis—information about the analysis and the calling 
syntax.
RALSA can perform not just univariate statistical analyses with ILSA data. As of the time 

of writing, correlation, linear regression and binary logistic regression are available as well. 
The code below computes linear regression coefficients for a model where the student overall 
reading achievement ASRREA is a function of the student sex (ASBG01), how much Students 
Like Reading scale (ASBGSLR) and Students Confident in Reading scale (ASBGSCR). That is, 
the analyst will test if the differences between male and female students are statistically signifi-
cant when controlling for these scales. The student sex is a dichotomous factor (i.e. categori-
cal) variable. The two other variables are complex scales constructed using multiple student 
background variables (for more details see Martin et al., 2017b). The syntax for this analysis 
looks like this:

Fig. 3  Partial output from the lsa.bench function
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Fig. 4  Partial output from the lsa.lin.reg function

Note how the independent variables are specified. The student sex is a categorical 
variable and is passed to bckg.indep.cat.vars. For variables passed as categori-
cal, the function uses contrast coding. For now, RALSA supports dummy, deviation 
and simple contrast coding schemes. When dummy is used, the intercept is the aver-
age on the dependent variable for the respondents choosing the reference category 
and the slopes are the differences between intercept and the average of respondents 
on the dependent variable choosing every other category.2 The syntax from above does 
not specify any value for the bckg.cat.contrasts argument (dummy, devia-
tion, or simple). Thus, dummy is used by default. The syntax also does not use the 
bckg.ref.cats to specify which category in bckg.ref.cats shall be used as a 
reference one. Thus, the first category in ASBG01 [“Girl”] is used by default. The func-
tion automatically identifies the number of distinct levels in the variables passed to 

2  See the RALSA reference manual for description of the other contrast coding schemes.
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bckg.indep.cat.vars, and creates the contrasts internally. The output from this 
analysis is presented partially in Fig.  4. The first few columns are the same as with 
the previous analyses. These are followed by the columns for the coefficients and their 
standard errors. The other two columns present the sampling and imputation variance 
terms. The last two columns (not visible in Fig. 4) contain the t-values and p-values. 
The sheets containing the analysis information and the calling syntax are also present 
in this output. However, the linear (as well as the binary logistic) regression function 
also adds one more sheet with the model statistic (see Fig. 5): R2 , adjusted R2 , F-statis-
tic, and degrees of freedom. The coefficients in the output are unstandardized, this is 
the default behavior. Standardized coefficients are included adding standardize = 
TRUE to the arguments.

As with the previous analyses, executing the syntax from above prints log messages to 
the console:

Fig. 5  Model statistic output sheet from the lsa.lin.reg function
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Note the warning messages at the end of the log. These notify that the default 
contrast coding scheme (dummy) and default reference category (1) were applied 
automatically because they were not specified by the user. This is an example of 
the custom warning messages RALSA introduces to notify the analyst about default 
operations taking place. Other warning and error messages are printed to the con-
sole as part of the exception handling routines of RALSA, but their description goes 
beyond the scope of this paper.

All of the features (data preparation and analysis) RALSA has are fully accessible 
through the GUI. To start the GUI, execute the following command in the console:

The graphical user interface will start in the default web browser installed in the 
operating system. Follow the instructions to prepare data and perform analyses.
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Further developments

RALSA is a new R package for analyzing ILSAs’ data released for the first time in 
November 2020. The current version of the package contains a set of functions 
(see “Presentation of the package” section) to prepare data and perform analyses. The 
development of the package, however, will continue in the future. Firstly, it will bring 
more features to the existing analysis types: 

1.	 Add median and mode as measures of central tendency to the lsa.pcts.means 
function (it currently supports only arithmetic average);

2.	 Interaction terms to the linear regression analysis type; and
3.	 Interaction terms to the binary logistic regression analysis type.

These additional features will extend the existing analysis functions and provide the ana-
lysts more options, allowing them to explore relationships (as in the linear and logistic 
regression analysis types) in more depth. Secondly, it will add new analysis types: 

1.	 Cross-tabulations with chi-square test for independence;
2.	 ANOVA;
3.	 Quantile regression;
4.	 Nominal logistic regression;
5.	 Ordinal logistic regression;
6.	 Multilevel modeling; and
7.	 Analysis of process data (also known as log data analysis).

The necessity for these analysis types stems from the nature of ILSAs’ data. Most of 
the variables in ILSAs’ data are categorical. So far all packages (including RALSA) 
have only binary logistic regression where the dependent variable is categorical. How-
ever, the dependent variable in this kind of analysis can be only dichotomous. ILSAs’ 
data, on the other hand, have many variables with more than two categories. This is 
why nominal logistic regression (using nominal dependent variable), ordinal logistic 
regression (ordinal outcome variable) and ANOVA can be very useful. Also, quantile 
regression can be the solution when the assumptions of the linear regression models 
(i.e., linearity, homoscedasticity, independence, or normality) are not met. Similarly, 
cross-tabulation can be used to test the relationship between categorical variables. 
In addition, ILSAs’ data are nested—students are nested in classes, classes are nested 
in schools; this presents a good opportunity for applying multilevel models, which 
have much more power than single-level regression models. Lastly, most of the stud-
ies change the test and questionnaire delivery mode from paper and pencil to com-
puter-based assessment (CBA). Along with the data they collect through the tests and 
questionnaires, the studies also collect process data which can provide insights into 
cognitive and non-cognitive processes and constructs (Provasnik, 2021). The analy-
sis of these data, however, is not a straightforward task. The current state of affairs, 
along with the challenges are described in a recent paper from Provasnik (2021) who 
also raised the concern that even the concepts and terminology are not defined yet to 
allow us to move forward with strategies and approaches.
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Thirdly, future versions of RALSA will bring some improvements on the programming 
level to improve the performance: 

1.	 Add parallel processing to make all computations faster;
2.	 Optimize the data conversion function for faster conversion of SPSS (or TXT in case 

of PISA pre-2015 cycles) data files; and
3.	 Make the GUI run as a background job in RStudio, i.e. without blocking the R/RStu-

dio console.

The lists above reflect the main plans for the near future. Even more functionality will be 
added in the long term. Suggestions and requests from RALSA users are also welcome. 
Such requests can be submitted using the contact form at the RALSA dedicated website 
(INERI, 2021). The flexible and open architecture of the package will allow these fur-
ther developments to come to life faster. RALSA receives regular updates. Since its first 
appearance in November 2020, it has received four updates which not only came with 
bug fixes, but also with many improvements and additions of new functionality.

Summary and discussion
ILSAs provide valuable information to researchers and policy makers worldwide. Secondary 
analyses of the data can reveal how different aspects of the curricula, organization of instruc-
tion, background characteristics, and the general context of education can impact the educa-
tional outcomes. Analysis of these data serves as a tool for making new or changing existing 
policies, starting and/or supporting ongoing reforms (Klemenčič and Mirazchiyski, 2018; 
Wiseman, 2010). Given the importance of the decisions based on the results, ILSAs require 
special tools for analyzing their data due to the methodological and statistical complexities 
accompanying them. Different software solutions accommodating these complexities exist, 
although they have many limitations:

•	 One of them uses expensive software products to perform the computations;
•	 Some of them can work with data from limited number of studies;
•	 Most of them create their own object types and in general are very difficult to work with;
•	 None of the R packages can convert the provided data into native .RData sets;
•	 Just one of them can read the text files from PISA prior to 2015 cycle;
•	 None of the R packages have a comprehensive output system to export the results; and
•	 None of the R packages has a graphical user interface which makes them very difficult to 

work with for the non-technical users.

The overall aim of RALSA is to bring functionality to analyze data with complex sampling 
and assessment design, adding more studies and analysis types, providing a user-friendly 
experience for analysts having minimal knowledge and/or skills in using R and analyzing 
ILSAs’ data. This is facilitated by the easy-to-comprehend structure and functions’ argu-
ments, as well as the automatic recognition of the study, cycle and respondent types in the 
used data to apply the appropriate computation routines. In addition, the GUI helps the less 
experienced R user to use all the functionality. RALSA has flexible architecture which allows 
it to easily add new studies and functions to analyze ILSAs’ data. These are amongst the main 
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advantages of the package compared with other tools for analyzing ILSAs’ data. The future 
developments of RALSA, will include more analysis types, addition of more features to the 
existing ones, as well as optimizations and improvements on the software level like the speed 
of the computations and convenience. RALSA was first released in November 2020 and since 
then, it has received multiple updates, bringing many improvements and new features every 
time.

Besides RALSA and the software tools for analyzing ILSAs’ data discussed in this paper, 
it is worth mentioning the R package lsasim (Matta et al., 2018). lsasim was not dis-
cussed in this paper because it does not represent software for analyzing ILSAs’ data. 
However, it is still an R package which relates to large-scale assessments and deserves 
attention because it provides an entire framework for simulating ILSAs’ data. These simu-
lations can aid setting the methodology of new ILSAs’ (or new ILSA cycles) themselves, 
by providing the possibility to plan and test their design in advance (for more details see 
Matta et al., 2018) and, thus, improve the implementation of ILSAs in future.
RALSA is a free and open-source package. Just as with any other open-source projects, 

users are invited to suggest improvements, functionality and studies to be supported. R was 
chosen to build RALSA as it is free and open-source itself. Other free and open-source plat-
forms exist as well. Python (Python Software Foundation, 2021), for example, is a program-
ming language which is quite mature and has many packages built for data science with a 
large user base. Despite its merits, in its essence Python is a general-purpose program-
ming language. Many other programming languages with statistical extension libraries can 
be given as examples here. R, on the other hand, is a programming language for statistical 
computing and statistical software at the same time. R is an object-oriented functional pro-
gramming language, where classes and methods can be extended through inheritance mech-
anisms (Matloff, 2011), lingua franca of statistical computing because of its power and lack 
of restrictions (Everitt and Hothorn, 2010). That is, different from other general-purpose 
programming languages, R is specialized in statistics with more built-in statistical proce-
dures than any other programming language. In addition, users can submit and share their 
own packages (just as with RALSA) adding more functionality to R. All this made R the plat-
form of choice to build RALSA and guarantee its further growth in the future.

For more information on RALSA, detailed step-by-step tutorials, and other information, 
please visit the package’s support website (INERI, 2021). The website provides easy-to-
follow guides from the package installation to performing analyses even for analysts who 
have never used R so far. The tutorials cover both the command-line and GUI use.
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