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Abstract 

Background:  In testing contexts that are predominately concerned with power, rapid 
guessing (RG) has the potential to undermine the validity of inferences made from 
educational assessments, as such responses are unreflective of the knowledge, skills, 
and abilities assessed. Given this concern, practitioners/researchers have utilized a 
multitude of response time threshold procedures that classify RG responses in these 
contexts based on either the use of no empirical data (e.g., an arbitrary time limit), 
response time distributions, and the combination of response time and accuracy 
information. As there is little understanding of how these procedures compare to each 
other, this meta-analysis sought to investigate whether threshold typology is related to 
differences in descriptive, measurement property, and performance outcomes in these 
contexts.

Methods:  Studies were sampled that: (a) employed two or more response time (RT) 
threshold procedures to identify and exclude RG responses on the same computer-
administered low-stakes power test; and (b) evaluated differences between procedures 
on the proportion of RG responses and responders, measurement properties, and test 
performance.

Results:  Based on as many as 86 effect sizes, our findings indicated non-negligible 
differences between RT threshold procedures in the proportion of RG responses 
and responders. The largest differences for these outcomes were observed between 
procedures using no empirical data and those relying on response time and accuracy 
information. However, these differences were not related to variability in aggregate-
level measurement properties and test performance.

Conclusions:  When filtering RG responses to improve inferences concerning item 
properties and group score outcomes, the actual threshold procedure chosen may be 
of less importance than the act of identifying such deleterious responses. However, 
given the conservative nature of RT thresholds that use no empirical data, practitioners 
may look to avoid the use of these procedures when making inferences at the individ-
ual-level, given their potential for underclassifying RG.
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Background
An underlying assumption of all educational assessments is that examinee scores are 
reflective of the assessed knowledge, skills, and/or abilities  (KSAs). However, such 
an assumption is put into question when examinees’ fail to employ their full effort. 
Although there are multiple forms of noneffortful responding (e.g., see Meade & Craig, 
2012; Wise, 2017), in the context of assessments concerned predominately with power, 
increased attention has been placed on rapid guessing (RG). RG occurs when a response 
is provided in so little time that an examinee would not be able to fully read the item 
stem or response options, solve its challenge, and select an answer (Wise & Kuhfeld, 
2020a, 2020b).

Assuming that examinees have been administered items in which they are capable of 
effortfully engaging (i.e., they have had an opportunity to learn the content assessed, 
they are proficient in the test language), RG can occur due to two factors: (a) time limit 
constraints (i.e., test speededness); and (b) low test-taking effort (Wise, 2017). Concern-
ing the former, examinees may not have the time to fully engage in all test items, and 
may employ RG in an effort to increase their score (assuming no penalty for incorrect 
responses). This form of RG has been documented in high-stakes tests, in which the per-
sonal consequences for examinee performance is significant (see Schnipke & Scrams, 
1997). In contrast, examinees may disengage when they perceive the assessment results 
to have little value and/or personal consequences (Penk & Schipolowski, 2015). Thus, 
the cost of expending effort is seen to be too great when compared to the perceived ben-
efits. Disengaged RG has been documented across a number of low-stakes (i.e., exami-
nee performance his minimal to no personal consequences) assessments and a myriad of 
ages and cultures (see Rios, 2021a).

Regardless of the underlying reason for RG, such responses represent cases in which 
examinees are not effortfully engaging with items as expected (Wise, 2017). In testing 
contexts that are predominately concerned with power (i.e., the predominate goal is to 
assess examinee KSAs without considering processing time as an important factor and 
only include time limits due to practical constraints), RG violates the assumption that an 
item response is reflective of examinee KSAs.1 As a consequence, such behavior is gen-
erally associated with underestimation of examinee ability (e.g., Rios et al., 2017), leading 
to inaccurate inferences of measurement properties (e.g., DeMars & Wise, 2010; Mittel-
haëuser et al., 2015; van Barneveld, 2007; Wise & DeMars, 2009) and performance (e.g., 
Debeer et  al., 2014; Osborne & Blanchard, 2011; Rios, 2021a; Wise & DeMars, 2010; 
Wise et al., 2013).2

To address this concern, the Standards for Educational and Psychological Testing has 
noted that it is important to both clearly document examinee test-taking effort and the 
decision criteria for including individual examinee scores with questionable degrees of 
effort (Standard 13.9; American Educational Research Association et al., 2014; p. 213). 

1  In speeded tests, fast responding is a part of the construct assessed. This context is not the focus of the current study.
2  Although RG undermines valid interpretations of measurement properties and test performance, RG responses due to 
test speededness provide valuable information to test developers/users concerning the appropriateness of the employed 
time constraints. Similarly, examining item correlates of RG due to reasons unrelated to test speededness can provide 
test developers with useful guidance on how to modify item characteristics, layout, or administration procedures to mit-
igate RG (for an example, see Wise et al., 2009).
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Although a laudable recommendation, this first presumes that disengaged behavior, 
such as RG, can be accurately identified. To this end, practitioners have largely relied 
on utilizing response time (RT) information, which provides a gauge of how long each 
examinee spent on answering an item, as a proxy of RG behavior. However, to date, there 
is no generally agreed upon threshold that establishes when a response is provided too 
quickly as to be deemed a RG response.

To assist in addressing this limitation, we conduct a meta-analysis that investigates 
the variability in documenting RG across RT threshold procedures on computer-admin-
istered low-stakes power tests.3 Specifically, we include studies that: (a) employed two 
or more RT threshold procedures on the same empirical dataset; and (b) evaluated 
differences between procedures on descriptive (the proportions of RG responses and 
responders identified), measurement property (item properties), and test performance 
outcomes. In the sections that follow, we elaborate on why the use of RT has become 
the preferred proxy for measuring RG, describe the various RT threshold procedures 
that have been proposed in the literature, and discuss the rationale for the current 
meta-analysis.

Proxies of RG

Three proxies of RG behavior have been proposed in the literature: (a) self-reported 
effort; (b) aberrant response patterns; and (c) response times. Of these three, the latter 
has seen increased usage in the literature (e.g., Silm et al., 2020) and in large-scale form-
ative (e.g., the Measure of Academic Progress; see Wise & Kuhfeld, 2020a, 2020b) and 
international operational assessments (e.g., Programme for the International Assess-
ment of Adult Competencies; see Goldhammer et al., 2017). This approach classifies any 
response provided in less time than an established RT threshold as RG (more detail on 
these threshold procedures are discussed in the next section). Across threshold-setting 
procedures, the use of RT has numerous advantages.

First, due to the use of log file information, it is an unobtrusive approach, as exami-
nees are presumably unaware that their test-taking behavior is observed, which limits 
concerns about observer effects (e.g., subject behavior changing due to their knowledge 
that they are being observed). Second, contrary to the other procedures, this approach 
can evaluate RG on an item-by-item basis, which addresses the concern of shifting test-
taker behavior (e.g., Wise & Kingsbury, 2016). This capability allows for the investigation 
of item characteristic correlates associated with RG (e.g., Wise et al., 2009) and provides 
the scoring advantage of estimating ability for examinees that have engaged in limited 
RG.4 In contrast, procedures that identify global-levels of motivation or aberrant behav-
iors, may utilize listwise deletion to remove data from examinees deemed to be unmoti-
vated/aberrant. Such an approach has been found to lead to a loss of as much as 25% of 

3  We acknowledge that the distinction of power and speeded tests is predominately theoretical, as most tests in educa-
tion primarily intend to measure the construct of interest, but also employ a time limit to address practical constraints. 
However, we make this distinction given the difficulties in disentangling RG from disengagement and test-wiseness (i.e., 
fast responding) in speeded tests. Our focus is on RG that is unreflective of examinee KSAs in contexts in which pro-
cessing speed is not a primary component of the KSAs assessed.
4  Researchers have also proposed mixture model approaches, which utilize response patterns and/or times, to simulta-
neously assign class (rapid guessers and non-rapid guessers) probabilities and estimate ability (e.g., Wang & Xu, 2015). 
Given the computational demands of such models and their minimal adoption in operational settings, the focus of this 
paper is on studies that identify fixed RT thresholds for classifying RG responses.
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the sample and biased scores if RG is associated with examinees’ underlying ability (see 
Rios et al., 2014). However, one of the major limitations of RT is that it cannot be applied 
to data collected from paper-and-pencil test administrations, as it relies on the collec-
tion of log file information at the item by examinee level. Regardless of this limitation, 
the use of RT as a proxy of RG is the most researched and applied approach in opera-
tional settings, to date.

Response time threshold procedures

Given the popularity of using RT, researchers have proposed a number of procedures 
for establishing thresholds to classify RG behavior. These procedures can be categorized 
into three distinct typologies, corresponding to methods that utilize: (a) no empirical 
data (NED); (b) only response time information (RT); and (c) a combination of response 
time and accuracy information (RTRA). Below we provide a greater description of each 
typology.

Procedures utilizing no empirical data

Two distinctive procedures fall under this typology, which establish thresholds without 
utilizing either RT or response accuracy data from examinees: surface feature and com-
mon k second methods.

Surface feature thresholds  One of the first approaches proposed to establish RT thresh-
olds is to consider the impact of an item’s characteristics on responding time, with the 
rationale that items requiring more reading should on average take longer to solve. To 
this end, thresholds for RG could be established based on taking the number of charac-
ters contained within a given item, and coupling this information with estimated read-
ing speeds for a given test-taking population. This would provide estimates on how long 
an item may take at minimum to read, which could be used to set thresholds (see Wise 
& Kong, 2005). One limitation of this procedure is that it does not consider empirical 
response time distributions, and thus, estimates may be inaccurate. Furthermore, this 
procedure is limited in that surface feature information is required for each item, which 
may be a limiting factor for practitioners that do not have access to this material or those 
applying this procedure to a large number of items (e.g., items contained within  an item 
pool for a computer adaptive test [CAT]).

Common k second thresholds  This procedure sets the criterion for RG based on a com-
mon second threshold (e.g., 3 s) that is applied across all items (see Wise et al., 2004). 
Though a simple procedure, it has been utilized operationally by the PIAAC testing pro-
gram to identify RG (see Goldhammer et al., 2016). This procedure is advantageous in 
that it does not require item surface feature information nor response time and/or accu-
racy information. Thus, it can be applied to a large number of items in an item pool 
with limited demands on practitioners. A major disadvantage of this approach is that it 
ignores variability in items. For example, the same threshold is applied to items requir-
ing a heavy reading load (e.g., testlet-based items) and simple computation (e.g., math 
addition items). Although it has been argued that the response time distribution is nearly 
identical for all items under RG due to disengagement (Wang & Xu, 2015), it is possible 
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that variability in RG response times may be observed if examinees engage in an item, 
perceive a low probability of success, and then employ RG. If this were the case, this 
procedure may be too conservative and lead to increased false negatives, considering its 
inability to adjust to item and population characteristics (Wise, 2017).

Procedures utilizing only response time information

This typology relies on sample response time distributions to set thresholds, and is 
comprised of two distinctive procedures: percentile and bimodal distribution threshold 
methods.

Percentile thresholds  Wise and Ma (2012) proposed the Normative Threshold (NT) 
procedure to provide an approach that adapts to potential differences in items and testing 
populations, but can simultaneously be applied to a large number of items. This proce-
dure sets the threshold for RG as the percentile for a given item’s response time distribu-
tion. Considerable research has been conducted to establish the best percentile (see Wise 
& Kuhfeld, 2020a, 2020b; Wise & Ma, 2012); however, many applied studies have set the 
threshold at the 10th percentile (e.g., Wise & Ma, 2012). Although an easily applied pro-
cedure, one of its major disadvantages is that it is devoid of a strong theoretical rationale 
for its classification of RG, similar to the common k second procedure.

Bimodal distribution thresholds  Using mixture modeling, Schnipke (1995) was one of 
the first researchers to demonstrate that in the presence of RG, a RT distribution may be 
bimodal in which the lower and upper modes represent RG and solution behavior respec-
tively. Using this rationale, Schnipke proposed setting RT thresholds at the lowest point 
where the two distributions meet, which conceptually is the time at which examinees 
transition from RG to solution behavior. Setting this threshold in practice can be done 
by visually inspecting response time distributions; however, such a process is both time 
consuming and can lead to disagreements between observers. To remedy this issue, Rios 
and Guo (2020) proposed the mixed log-normal distribution (MLN) procedure, which 
essentially automates the process of finding the lowest point between the two thresholds.

Although this general approach to setting thresholds based on a RT distribution pro-
vides a strong theoretical rationale, in practice, an item’s RT distribution may not always 
be bimodal. This may occur when an item requires relatively a short amount of time to 
solve when utilizing solution behavior (Wise, 2017). As a consequence, it may be impos-
sible to set thresholds for some items, which is a drawback of this procedure. In addition, 
some researchers have questioned whether this procedure actually captures RG behav-
ior, as it has the tendency to set higher thresholds (e.g., above 30 s) than other proce-
dures (see Wise & Kuhfeld, 2020a, 2020b).

Procedures utilizing a combination of response time and accuracy information

A newer category of response time threshold procedures have been developed by incor-
porating response accuracy information with response times (e.g., Goldhammer et al., 
2016; Guo et al., 2016; Lee & Jia, 2014). The underlying assumption of these procedures 
is that RG responses possess accuracy rates that are approximately equal to chance 
(typically defined as the reciprocal of the number of response options), which has been 
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supported by prior research (e.g., Wise & Kong, 2005). Thus, for a procedure, such as 
the Cumulative Proportion Correct (CUMP) method proposed by Guo et al. (2016), a 
threshold is established at the time point in which the correct response rate begins to be 
consistently greater than chance.

The advantage of this approach is that it combines multiple sources of empirical infor-
mation and its rationale is supported by prior research. However, such an approach may 
require substantial item-level data to accurately detect an increase in accuracy rates 
by second (Wise, 2017). Further, setting thresholds using this approach may be impos-
sible for items that are either very difficult (i.e., the proportion correct never exceeds 
the chance rate across response times) or easy (i.e., the proportion correct consistently 
exceeds the chance rate across response times; Wise & Kuhfeld, 2020a, 2020b).

Study rationale

Given the variety of RT threshold procedures, practitioners are often confronted with 
selecting the best approach to adopt. However, to date, there has been limited guid-
ance provided to practitioners on how RT threshold typologies differ from each other 
across samples and assessment contexts in terms of descriptive, measurement property, 
and performance outcomes. Such an understanding would require a synthesis of pre-
vious research that has compared various RT threshold procedures on the same data-
sets, which at the time of this writing, has not been conducted. As a consequence, it is 
unknown how many studies have compared disparate RT threshold procedures, how the 
choice of threshold procedure is associated with differences in outcomes, and the role 
that contextual variables play in impacting the association between RT threshold proce-
dure and the outcomes under investigation.

Therefore, to fill the gap in the literature, the purpose of this paper is to conduct a 
meta-analysis of studies that compare two or more RT threshold procedures on the 
same empirical dataset obtained from computer-administration of a low-stakes power 
assessment (i.e., assessments that design time limits to ensure that examinees have suf-
ficient time to respond to all items). Such a project is vital as extensive research efforts 
have been placed on controlling for low test-taking effort via post-hoc analyses, such as 
filtering RG responses (e.g., Rios et al., 2014, 2017) or incorporating measures of RG into 
IRT ability estimation (e.g., Wise & Kingsbury, 2016). However, in doing so, it is assumed 
that RG can be accurately identified. Although accuracy can never be truly known, given 
that RT is used as a proxy of actual behavior, this meta-analysis seeks to compare dif-
ferences in descriptive, measurement property, and test performance outcomes (once 
filtering responses classified as RG) across RT threshold procedures that utilize NED, 
RT, or RTRA. In addressing these study objectives, the following research questions are 
evaluated:

1.	 When comparing RG threshold procedure pairings, what is the average difference in:

a.	 The number of RG responses and examinees engaging in RG identified?
b.	 Measures of item properties (i.e., item difficulty and discrimination), and perfor-

mance outcomes upon filtering RG responses?
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2.	 If non-negligible differences between RG threshold procedure pairings are observed:

a.	 What contextual variables (e.g., participant, assessment characteristics, and RG 
threshold attributes) are associated with such differences?

b.	 How do threshold types differ?

Findings from these analyses have the potential to inform practitioners about the RG 
threshold procedures that have been most extensively studied and how the choice of 
such procedures are associated with potentially differing outcomes.

Method
Search strategy

To conduct a thorough literature search, four strategies were employed: (a) academic 
database, (b) Internet browsing, (c) backward and forward citation; and (d) expert 
consultation searches. Data collection was conducted by the second author and com-
pleted on July 31, 2020. A full description of each search strategy is provided below, 
presented in the order conducted.

Academic database search

The first approach employed to locate relevant articles consisted of searching the fol-
lowing academic databases: PsycINFO (via Ovid); ERIC (via EBSCOhost); Education 
Source (via EBSCOhost); and Academic Search Premier (via EBSCOhost). These data-
bases covered journal articles across multiple fields, such as psychology (PsycINFO), 
education (ERIC and Education Source), and statistics (Academic Search Premier). 
The key terms employed across databases were “rapid guess” and “response time”. As 
there were multiple formats of the term “guess” (e.g., guess, guesses, guessing), the 
term “rapid guess” was entered with the Boolean modifier Asterisk (“*”) to be used as 
a root word. To narrow the search and improve accuracy, the key terms “rapid guess*” 
and “response time” were entered with the Boolean operator “AND”. Additionally, 
only studies published in the English language were included. No other initial restric-
tions were placed on the search.

Internet browsing

An Internet search was conducted via Google Scholar to strengthen the coverage of 
grey literature not included in the academic databases noted above. The key terms 
used in the Internet search were identical to those used in the academic database 
search. Results produced in Google Scholar were sorted by relevance (little informa-
tion is known on how Google sorts its hits; Haddaway et al., 2015). Although the first 
1000 results were accessible, the return rate of relevant articles continued to decrease 
as we progressed through the results. For example, only 12 items (approximately 
3.3%) were potentially relevant to the topic of current review from the 301st to the 
660th result. Due to this low hit rate, our search consisted of the first 660 results.
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Expert consultation

This search strategy was conducted by directly contacting the following researchers 
known to have conducted work and/or published extensively on the topic of RG: Steve 
Wise (Northwest Evaluation Association, USA), Megan Kuhfeld (Northwest Evalu-
ation Association, USA), Sara Finney (James Madison University, USA), Dena Pas-
tor (James Madison University, USA), Jim Soland (University of Virginia), and  Brandi 
Weiss (George Washington University, USA). Each individual was contacted via email 
to ascertain whether they had conducted unpublished research that met our inclusion 
criteria and/or knew of such research authored by others. All communication and article 
retrieval was completed by July 1, 2020.

Citation searching

Beyond the search strategies described above, backward citation searching was also 
included. This was done by searching the reference lists of two pertinent review articles 
(Silm et al., 2020; Wise, 2017) identified by the first author as well as all articles found 
to meet our eligibility criteria (described below) from the academic database, Internet, 
and expert consultation searches. This search was conducted using both Social Sciences 
Citation Index and Google Scholar. All studies found using backward citation searching 
were then evaluated based on the eligibility criteria, and if met, were included for addi-
tional referencing.

Upon completing the backward citation search, forward citation searching (i.e., 
searching for studies that cited the manuscript of interest) was employed to examine 
studies that met the eligibility criteria from the search strategies noted above. This was 
done by typing in the title for the study of interest into Google Scholar. Upon finding 
the article of interest, the cited by link was clicked on, which allowed for the ability to 
search studies that cited the article of interest. Any study included from this strategy also 
underwent backward and forward citation searching. This process was repeated until no 
new articles met the eligibility criteria. Both citation search strategies were completed by 
July 31, 2020.

Eligibility criteria

To be included in this meta-analysis, studies had to meet the eligibility criteria set 
forth along three dimensions: (a) data type; (b) RG identification methodology; and (c) 
outcomes.

Data type

Only studies that utilized empirical data to study RG threshold procedures were 
included. Empirical data could have been obtained from either primary or second-
ary data collections from an unspeeded, group-administered classroom, formative, or 
accountability test that was low-stakes and computer-administered. The choice of only 
including low-stakes power or unspeeded tests was to ensure that RG largely reflected 
test disengagement rather than test speededness.5 No further restrictions were placed 

5  As noted by Wise (2017), it is possible that examinees in low-stakes test contexts may engage in RG due to time con-
straints, however, this issue is likely to occur less frequently than RG due to disengagement.
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on examinee (e.g., age, country of origin, ethnicity, language) nor assessment (e.g., con-
tent area, length, item types) characteristics. However, data obtained from simulation 
studies were excluded.

RG identification methodology

Although there are multiple proxies for identifying RG (e.g., self-report measures, per-
son-fit statistics), this meta-analysis only included studies that utilized RT threshold pro-
cedures. To be included, studies had to investigate RG based on two or more threshold 
approaches. These thresholds could either be a variant (e.g., using different percentiles) 
of one or two of the following procedures: (a) surface feature; (b) common k-second; 
(c) percentile; (d) bimodal distribution; and (e) response time and accuracy information 
procedures.

Outcomes

The outcomes of interest were differences between RT thresholds on three categories 
of variables: (a) descriptives; (b) measurement properties; and (c) performance. For 
a study to be included, it must have presented quantitative results on one or more of 
these outcomes. A quantitative result was defined as any test statistic (e.g., χ2, Z, t, F, p̂ ) 
necessary for computing a Cohen’s d (standardized difference), Cohen’s h (difference in 
proportions), or a correlation effect size (more detail on these effect size calculations are 
included below).

Within the descriptive category of variables, we coded for differences in the propor-
tion/percentage of RG responses identified and proportion/percentage of examinees 
engaging in RG. Concerning the latter, if not explicitly classified in the original article, 
0.9 was set as the cut-score utilizing the response time effort index (RTE; i.e., the propor-
tion of responses not identified as RG) to classify motivated and unmotivated test tak-
ers. This cut-off (i.e., an unmotivated examinee employed RG on 10% or more of items 
administered) was first proposed by Wise and Kong (2005) and has since been used 
extensively in applied research (e.g., Rios et al., 2014). Consequently, the RG examinee 
proportion rate was calculated by subtracting the percentage of the participants with 
RTE equal to or greater than 0.9 from 1.

In regard to measurement properties, we were interested in how the choice of RT 
threshold procedure was associated with differences in: (a) average item difficulty 
(measured using proportion correct and/or IRT calibration estimates) after removing 
RG responses or examinees; and (b) average item discrimination (measured using an 
item-total correlation and/or IRT calibration estimates) after removing RG responses or 
examinees.

The last outcome variable of interest was the difference in the average sample perfor-
mance between RT thresholds. This variable could be reported as the mean raw, scale, 
or theta estimate score for the total sample, after removing RG responses or examinees. 
This level of aggregation was chosen given that most low-stakes educational tests report 
group-level performance for monitoring and accountability efforts.
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Variable coding

Five variables were identified as potential factors that could account for differences in 
the outcomes of interest: (a) examinee age; (b) test subject; (c) test length; (d) thresh-
old typology pairing; and (e) threshold pairing variability. The first three variables were 
included as they have been found to moderate the extent of RG observed in operational 
testing (meaning more potential variability in the number of RG responses), while the 
last two variables were the main independent variables of interest. A detailed descrip-
tion of each variable is presented below.

Age

RG has been shown to vary across age groups, with older examinees more likely to 
engage in unmotivated behaviors (Goldhammer et al., 2016). As a result, the average age 
of the sample was coded. Operationally, if a primary author did not provide the sample’s 
average age, examinee grade-level was used as a proxy. As an example, age 6 was used 
for 1st-year primary school students, 13 was coded for 8th-grade students, and 18 was 
utilized for college freshmen. Additionally, if examinees were reported to come from a 
range of grades, the midpoint was used for the group. For example, age 20 was imputed 
for a sample of undergraduate college students. If neither age nor grade were provided, 
this variable was coded as missing.

Test subject

Prior research has suggested that test subject can moderate participants’ test taking 
effort. As an example, Kiplinger and Linn (1994) found that more than half of students 
in both grade 8 and grade 12 reported significantly more effort in taking math tests than 
in other subjects. To account for this potential moderation, we dichotomously coded for 
a test’s subject as either a “STEM or mixed subject” or “non-STEM” subject. Mixed sub-
ject tests were defined as those that included both STEM and non-STEM content.

Test length

Test takers have been shown to exhibit more disengaged responses as a test grows in 
length, potentially due to issues of cognitive fatigue (e.g., Wise & Kingsbury, 2016). As a 
result, test length was considered as a moderator that might impact the identification of 
RG responses, given that longer tests may be associated with greater variability in RG.

Threshold typology pairing

As described earlier, there are three main typologies of RT thresholds, based on the uti-
lization of: (a) NED; (b) RT; and (c) RTRA. In the present study, this led to six different 
comparison pairings, three for variants of RT thresholds found within the same typology 
(e.g., comparison of variants within the NED typology) and the remaining three for RT 
thresholds that differed between typologies. Specifically, each RT threshold fell into one 
of the following pairings: (a) NED–NED; (b) RT–RT; (c) RTRA–RTRA; (d) NED–RT; (e) 
NED–RTRA; and (f ) RT–RTRA.
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Threshold pairing variability

To account for variance in RT threshold comparisons, a dummy-coded variable was 
created to signify whether a comparison was within or between threshold typology/
typologies (within served as the reference).

Interrater agreement

Interrater reliability was computed for three distinctive stages: title and abstract 
screening, full-text reviewing, and variable coding. Rayyan (https://​rayyan.​qcri.​org) 
was employed for interrater reliability coding of the title and abstract and full-text 
review phases, while Excel was used for variable coding. Prior to coding for each stage, 
the principal investigator provided training to the second author (a Ph.D. student in 
educational measurement) that was comprised of discussing the objectives and evalu-
ation criteria of the stage, reviewing each variable’s operational definition, and engag-
ing in joint coding of a small percentage of articles. Upon completion of training, the 
second author was responsible for all coding across stages, while the first author coded 
20% of articles at each stage to evaluate interrater reliability. An interrater agreement 
value of 0.80 was set as the criterion for establishing rater consistency. Any inconsist-
ent decisions across raters were resolved through discussion and consensus. For the 
first stage (i.e. title and abstract screening), the two authors were in high agreement on 
article inclusion with an interrater agreement of 0.91. For the other two review stages, 
no conflicts were presented, with the interrater agreement equal to 1.

Statistical methods

The sections that follow describe the procedures for: (a) calculating effect sizes; (b) 
evaluating publication bias; (c) identifying outliers; (d) estimating average effect sizes 
and effect size heterogeneity; and (e) performing moderator analyses.

Calculating effect sizes

Effect sizes were calculated separately for continuous, proportional, and correlational 
data. Concerning the former, continuous data were presented for the following out-
come variables: IRT item discrimination parameter estimates, IRT item difficulty 
parameter estimates, and group test performance. To calculate the effect sizes for 
these variables, Cohen’s d formula was used:

where M1 and M2 are sample means for threshold 1 and threshold 2 respectively, n1 and 
n2 are sample sizes for threshold 1 and threshold 2 respectively, S1 and S2 are the stand-
ard deviations of outcomes for threshold 1 and threshold 2 respectively. As the direction 
of outcome was not of interest, an absolute value of the effect size was computed. Fur-
thermore, the variance of Cohen’s d was calculated as:

(1)d =

∣∣∣∣∣∣∣∣

M2 −M1√
(n2−1)S2

2
+(n1−1)S2

1

n1+n2−2

∣∣∣∣∣∣∣∣
,

https://rayyan.qcri.org
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where d is the absolute value of Cohen’s d calculated from formula (1) above. The com-
putation of Cohen’s d was completed in the R package compute.es (Del Re, 2020).

Proportional data were reported for the following dependent variables: (a) propor-
tion of examinees engaging in RG; (b) proportion of responses identified as RG; and 
(c) CTT item difficulty values (i.e., proportion of correct responses) for effortful test 
takers. As the power to detect  differences in proportions is dissimilar across studies 
due to unequal sample sizes (Cohen, 1988), a nonlinear transformation, defined as ϕ , 
was applied to provide equal detectability of outcomes. Given the estimated propor-
tions ( ̂p ) of two thresholds on an outcome of interest, ϕ is computed via the formula:

This transformation was then used to calculate an effect size for differences between pro-
portions for a given threshold pairing using Cohen’s h formula:

Similar to Cohen’s d, the absolute value was computed for Cohen’s h as no directional 
assumptions were made. However, unlike Cohen’s d formula, a variance estimate is not 
readily available for Cohen’s h. Thus, to obtain some measure of variability, heterogeneity 
was demonstrated via the standard deviation of effect sizes. For interpretation purposes, 
Cohen’s (1988) guidelines were adopted in which an h value between 0.2 and 0.5 indicates 
a small effect size, an h value between 0.5 and 0.8 represents a medium effect size, and an 
h value greater than 0.8 reflects a large effect size. Across proportional outcome variables, 
Cohen’s h was calculated using the pwr package in R (Champely, 2020).

Finally, correlation coefficients were reported for the average CTT item discrimination 
(item-total correlations). Although the correlation coefficient can serve as an effect size on 
its own, Fisher’s z transformation was applied to every correlation to normalize the sam-
pling distribution using the metafor package in R (Viechtbauer, 2020). This transformation 
was applied as:

and the variance of the transformation was calculated as:

Then the effect size difference for each threshold pair was calculated using Cohen’s q 
index (Cohen, 1988):

while the variance for this index was calculated as:

(2)vd =
n1 + n2

n1n2
+

d2

2(n1 + n2)
,

(3)ϕ = 2arcsin
√
p̂.

(4)h = |ϕ1 − ϕ2|.

(5)z = 0.5 ∗ ln

(
1+ r

1− r

)
,

(6)vz =
1

n− 3
.

(7)q = |z1 − z2|,
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where N1 and N2 are the sample sizes based on the correlation for threshold 1 and 
threshold 2, respectively. For this effect size, Cohen (1988) proposed the following cate-
gories for interpreting q values: no effect: < 0.10; small effect: 0.10–0.29; moderate effect: 
0.30–0.50; and large effect > 0.50.

Estimating average effect sizes and evaluating effect size heterogeneity

Prior to estimating average effect sizes and effect size heterogeneity, the effect sizes of 
each outcome were diagnosed for potential outliers. Outliers were defined as any esti-
mated effect size greater than three standard deviations (based on the absolute value) 
from the mean effect size of the given outcome. To avoid the loss of data, any identified 
outlier was down-weighted to a value equal to three standard deviations from the mean. 
A sensitivity analysis was then conducted to evaluate the impact of the identified outliers 
on the estimation of the mean effect sizes for each dependent variable. If any inflation or 
deflation of the mean effect size under study was observed, the adjusted effect size esti-
mates were used for all subsequent analyses.

For continuous and correlational outcome variables, an intercept-only random-effects 
meta-regression model was run in the robumeta package in R (Fisher et al., 2017) to cal-
culate the average effect size and effect size heterogeneity. To avoid artificially reduc-
ing variance estimates and inflating Type I error due to effect size dependencies (i.e., 
multiple effect sizes are produced by comparing various response time thresholds from 
the same study; Borenstein et al., 2009), the robust variance estimation (RVE) procedure 
developed by Hedges et al. (2010) was employed. The heterogeneity of effect sizes was 
investigated using the I2 statistic:

where Q is a homogeneity statistic that represents the degree that random-effect vari-
ance is significantly different from 0, and k is the number of studies. Higgins and Thomp-
son (2002) proposed effect size guidelines for this statistic, with I2 values less than 50% 
indicating small heterogeneity, values between 50% and 75% representing medium het-
erogeneity, and values greater than 75% reflecting large heterogeneity.

As variance estimates for dependent variables that reported only proportional data 
were not available, classical approaches to calculating average effect sizes and hetero-
geneity were taken. These consisted of respectively computing the mean and standard 
deviation of the effect sizes for the outcome under investigation.

Moderator analyses

For continuous and correlational data, moderator analyses were conducted for any out-
come that was found to have a large degree of heterogeneity.6 This was done by estimat-
ing the following random-effects meta-regression model:

(8)var(q) =
1

N1 − 3
+

1

N2 − 3
,

(9)I2 =

(
Q − k

Q

)
× 100%,

6  A meta-regression model could not be calculated for proportional data, as a measure of variance for each effect size 
was not available.
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where ŷ was equal to one of the continuous or correlational outcome variables of inter-
est (test performance, IRT item discrimination parameter, IRT item difficulty parameter, 
item-total correlation), b0 was equal to the average effect size for the outcome variable 
holding all included variables constant, age and test length were continuous variables, 
test subject was coded dichotomously as “non-STEM subject” or “STEM or mixed 
subject” (reference group), b4 through b8 were dummy-coded variables for RT–RT, 
RTRA–RTRA, NED–RT, NED–RTRA and RT–RTRA (NED–NED served as the refer-
ence group), threshold pairing variability was coded as between threshold typologies or 
within a threshold typology (reference group), and e was the residual term. The modera-
tor analyses were conducted in the R package metafor (Viechtbauer, 2020).

Results
Overall, 958 studies were reviewed based on academic database, Internet browsing, 
expert consultation, and backward and forward citation searching. Out of these 958 
studies, 19 were found to meet the eligibility criteria (2% hit rate; see Fig. 1), which pro-
duced between 16 and 87 effect sizes across nearly every outcome of interest, except 
for differences in item discrimination (both CTT and IRT estimates) and item difficulty 
using IRT calibration. These latter outcomes were not found to be investigated in our 
sample, and thus were not included in the analyses noted below.

Regarding the characteristics of the studies included, 89% (17 out of 19) were pub-
lished on or after 2010, while only two (11%) were written before 2000. Nearly half 
(47%) of the included studies were grey literature, representing dissertations (2 stud-
ies), research reports (2 studies), conference papers (3 studies), and works in progress (2 
studies). In terms of sample characteristics, the mean sample size was 126,876 (ranging 
from 213 to 728,923) and 10 studies used participants in postsecondary education. For 
10 out of 19 (53%) studies, data were collected within the United States, while the rest 
were either comprised of non-US or mixed (i.e., U.S. and non-U.S.) populations.

This diversity in population nationality was most likely associated with more than 
half (63%) of studies sampling data from large-scale assessments (LSAs), with five uti-
lizing international data from either the Programme for International Student Assess-
ment (PISA; three studies) or the Programme for the International Assessment of Adult 
Competencies (PIAAC; two studies). Other LSAs examined were NWEA’s Measures 
of Academic Progress (MAP) Growth (16%), the ETS Proficiency Profile (EPP, 5%) and 
HEIghten® Critical Thinking Assessment (5%). The remaining seven studies (37%) uti-
lized data from locally developed performance tests. Across these assessments, test 
length ranged from 7 to 275 items, with an average of 57. Among all 19 studies, 14 (74%) 
used assessments consisting solely of selected-response items, 12 (63%) utilized tests 
only delivered in English, and 13 (68%) employed measures of STEM or a mixture of 
STEM and non-STEM subjects.

(10)

ŷ = b0 + b1
(
age

)
+ b2

(
test subject

)
+ b3

(
test length

)

+ b4(RT − RT )+ b5(RTRA− RTRA)

+ b6(NED − RT )+ b7(NED − RTRA)+ b8(RT − RTRA)

+ b9
(
threshold pairing variability

)
+ e,
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Average effect sizes and heterogeneity

Across outcomes, no effect sizes were found to lie outside three standard deviations 
of the mean. Figure 2 presents the average effect size and variability for each outcome. 
All subgroup comparisons made below are limited to RT threshold pairings with a 
minimum of 20 effect sizes. This is done to mitigate spurious inferences due to small 
sample sizes.

Descriptive outcomes

Results for each threshold type are included in Table 1 for the descriptive outcomes.7 
Furthermore, each effect size based on RT typology pairing for the proportion of RG 
responses (left plot) and responders (right plot) identified is shown in Fig. 3.

Fig. 1  Flow chart of literature search strategies and results. This figure demonstrated the process of searching 
and reviewing literature. Only the first 1000 of the 24,900 results found using Internet browsing (Google 
Scholar) were accessible. Only the first 660 of these 1000 articles were reviewed

7  Providing performance outcomes made little sense, given the different characteristics of the assessment examined for 
each threshold type across studies. Therefore, these variables were excluded from the table. For the variables presented, 
the reader should be cautioned from overgeneralizing the results due to small sample sizes for some cells.
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Proportion of RG responses identified  A total of 54 effect sizes examining the difference 
in the proportion of RG responses were obtained in our sample. Although a total of four 
threshold typology pairings were investigated in the literature (RT–RT, NED–RT, NED–
RTRA, RT–RTRA), the two most studied were the RT–RT and NED–RT procedures, 
each respectively contributing 24 and 22 effect sizes. Across all pairings, the average dif-
ference observed was a Cohen’s h of 0.26 (SD = 0.24), indicating a small-moderate effect 
of threshold type.

As is shown in Fig. 3, there was variability around the mean depending on RT thresh-
old pairing. Specifically, in comparing the mean Cohen’s h for the RT–RT (M = 0.17, 
SD = 0.14) and NED–RT (M = 0.26, SD = 0.29), the latter pairing was found to produce a 

Fig. 2  Average effect size and variability of each outcome variables. RG responses = proportion of RG 
responses identified, RG examinees = proportion of examinees engaging in RG

Table 1  Means and standard deviations for descriptive outcomes by threshold type

The descriptive values provided should not be directly compared across procedures because they are based on different 
samples of examinees and tests. Standard deviations are provided in parentheses. n is the number of unique effect sizes for 
the cell; k is the number of unique studies for the cell

Threshold typology Threshold procedure Proportion of RG 
responses identified

Proportion 
of examinees 
engaging in RG

No empirical data Surface feature thresholds 0.22
(–)
n = 1
k = 1

0.14
(0.10)
n = 5
k = 3

Common-k second thresholds 0.06
(0.05)
n = 7
k = 2

0.19
(0.21)
n = 16
k = 6

Response time Response time distribution thresh-
olds

0.11
(0.06)
n = 6
k = 3

0.13
(0.06)
n = 11
k = 5

Percentile thresholds 0.06
(0.07)
n = 17
k = 5

0.22
(0.21)
n = 14
k = 5

Response time and accuracy Response time and accuracy thresh-
olds

0.29
(0.18)
n = 4
k = 1

0.36
(0.30)
n = 5
k = 2
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larger difference by 0.38 SDs. A closer examination of studies examining this latter pair-
ing, suggests that the rate of RG responses were lower when employing a RT threshold 
without the use of empirical data when compared to utilizing response times for three 
of five studies (60%). Furthermore, across studies, within the RT threshold typology, 
response time distribution thresholds identified a larger proportion of RG responses 
(M = 0.11, SD = 0.06; n = 6; k = 3) compared to percentile thresholds (M = 0.06, 
SD = 0.07; n = 17; k = 5; Table 1). However, of all threshold types, RTRA thresholds iden-
tified the largest proportion of RG responses (M = 0.29, SD = 0.18; n = 4; k = 1).

Proportion of examinees engaging in RG  One of the most studied outcome variables 
in our meta-analysis was the comparison of proportion of examinees engaging in RG 
(defined as an examinee RG on 10% or more of the administered items), with a total 
of 85 effect sizes found based on a comparison of all six RT typology pairings. Across 
these effect sizes, the average Cohen’s h was 0.35 (SD = 0.31), suggesting a small-mod-
erate effect. A closer examination of each threshold typology pairing showed that three 
contributed a minimum of 21 effect sizes. Specifically, the most represented were the 
NED–RT pairing (n = 28), followed by the RT–RT (n = 22) and NED–NED (n = 21) 
pairings. The subgroup comparisons provided two interesting findings.

First, threshold pairings within the NED typology (M = 0.41, SD = 0.22) were found 
to produce larger differences on this outcome compared to those thresholds within 
the RT typology (M = 0.23, SD = 0.32) by an average of 0.66 SDs. This suggests that 
procedures utilizing RT, on average, produced more similar outcomes than those pro-
cedures not employing empirical data. Second, when comparing thresholds between 
the RT and NED typologies, a moderate difference in the proportion of RG exami-
nees identified was found (h = 0.42, SD = 0.34), with the former generally classifying 
a higher proportion in six out of seven studies (86%). Concerning RTRA procedures, 

Fig. 3  Effect size based on RT typology pairing for descriptive outcomes. RG responses = proportion of RG 
responses identified, RG examinees proportion of examinees engaging in RG
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minimal comparisons were made, given that only two studies examined this typol-
ogy and outcome. With that said, descriptive results indicate that this typology identi-
fied the largest proportion of examinees engaging in RG (M = 0.36, SD = 0.30; n = 5; 
k = 2), followed by percentile (M = 0.22, SD = 0.21; n = 14; k = 5) and common-k sec-
ond (M = 0.19, SD = 0.21; n = 16; k = 6) thresholds (Table 1).

Measurement property outcomes

As noted, none of the included studies investigated differences in average item dis-
crimination between thresholds. Therefore, we focus solely on differences in item dif-
ficulty (based only on CTT, as IRT difficult parameter estimates were not reported 
in our sample). The effect sizes for this outcome by RT threshold typology pairing is 
shown in the left-panel of Fig. 4.

Differences in item difficulty based on RT threshold was investigated across six unique 
studies, which led to a total sample size of 53 effect sizes. These 53 effect sizes were une-
qually distributed across all six typology pairings, with the NED-RT pairing the most 
studied (n = 21), while all other pairings possessed 10 or less effect sizes. Across this 
sample, the average Cohen’s h was equal to 0.02 (SD = 0.03), indicating that the choice 
of RT threshold was associated with practically no difference in item difficulty estimates. 
This is further supported in examining comparison differences between the NED-RT 
typology pairing, which produced an average Cohen’s h of 0.01 (SD = 0.02).

Performance outcomes

Test performance effect size differences for each RT threshold typology pairing are pro-
vided in the right-panel of Fig. 4. A total of two studies examined this outcome, produc-
ing 16 effect sizes. These effect sizes came primarily from NED–NED (n = 8) and RT–RT 

Fig. 4  Effect size based on RT typology pairing for measurement property and performance outcomes
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(n = 7) comparisons, with one based on a NED–RT comparison. Across effect sizes, no 
practical difference for the overall effect of threshold procedures on test performance 
was observed. Specifically, the average difference was equal to 0.05 SD (p = 0.16, 95% CI 
[− 0.12, 0.23]). Furthermore, the effect size estimates of test performance were found to 
be homogeneous across all studies ( I2 = 0), suggesting no need for a moderator analysis.

Discussion
Given the increased attention to identifying RG behavior in the literature, this study 
looked to investigate how the choice of RT threshold procedure influences descriptive, 
measurement property, and test performance outcome variables. To accomplish this, 
a meta-analysis was conducted in which studies comparing two or more RT threshold 
procedures on the same empirical dataset were sampled. A number of key takeaways can 
be summarized.

First, the choice of RT threshold procedure was found to be associated with non-neg-
ligible differences in the proportions of RG responses and responders identified. In par-
ticular, the largest differences were observed when comparing NED to RT and RTRA 
typologies, with NED thresholds generally producing smaller proportions (h was as large 
as 1.2). Considering that the NED typology was the most investigated in our sample, 
there is some evidence to indicate that researchers/practitioners may generally employ 
conservative thresholds to avoid false positive (type I error) RG classifications, support-
ing Wise’s (2017) hypothesis. Although minimizing type I errors is desirable, adopting 
conservative RT thresholds may lead to underclassifying RG (i.e., failing to identify all 
RG responses; Wise, 2017). When this is the case, recent simulation work shows that 
there is greater potential for increased bias on item and ability parameter estimates than 
overclassifying (i.e., identifying all true RG responses, but including type II errors) such 
responses (Rios, 2021b). Thus, conservative approaches, such as those observed within 
the NED typology, may be less effective in reducing bias.

Although non-negligible divergences were observed in RG responses and examinees, 
these differences were not found to be associated with statistically significant differences 
in average item difficulty and test performance once filtering RG responses. One likely 
reason for this finding is that simulation research has shown negligible effects of RG on 
both item difficulty estimates and aggregate-level performance, even when rates of RG 
exceed 10% of all item responses (see Rios & Soland, 2020a, 2020b). Thus, the differences 
in RG identification observed across RT threshold procedures would be expected to 
have minimal practical impact on the outcomes examined. Though no differences were 
found for aggregate-level inferences, the choice of RT threshold may still impact individ-
ual-level estimates of ability and classification decisions (see Rios & Soland, 2021). Fur-
thermore, it is possible that if differential RG is present between subgroups, variability 
in RG identification may be associated with incorrect inferences of measurement prop-
erties and subgroup test performance differences (see Rios, 2021a). Future research is 
needed in these areas.

Implications

The findings from this study have a number of implications for practice. To begin with, 
if examinee motivation is a potential concern, practitioners should document RG to 
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support the validity of score-based inferences. Regardless of the procedure chosen to 
identify RG responses, the very act of collecting validity evidence based on response 
processes can assist in improving the credibility of results. This holds particularly 
true for contexts in which the aim of a test is to make inferences about scores at the 
aggregate-level, as our results showed minimal differences across RT typologies for this 
outcome. Thus, if filtering RG responses to improve inferences concerning group test 
performance, the actual threshold procedure chosen may be of less importance than 
communicating to stakeholders that such deleterious responses have been identified and 
trimmed prior to score reporting.

Although differences in RT typologies were shown to be of little consequence when 
making inferences about total sample performance, such differences can impact individ-
ual examinee score inferences (Rios & Soland, 2021). Rios and Soland (2021) highlighted 
how some states in the U.S. utilize scores obtained from low-stakes end-of-year assess-
ments to make remediation decisions for individual students. When this is the case, 
they showed that inaccuracies in RG identification, particularly type II errors, can have 
deleterious effects on cut-score classifications. Thus, in such contexts (i.e., making indi-
vidual examinee inferences), it is recommended that practitioners avoid employing NED 
typologies, given their conservative nature and potential for false negative classifica-
tions. Instead, utilizing threshold procedures that leverage empirical information, such 
as those within the RT and RTRA typologies, may be preferable. However, the decision 
to employ either RT or RTRA approaches will be driven by a number of factors, such as 
sample size as well as RT distribution and test characteristics.

Concerning sample size, if the number of examinees for a given sample is small, the RT 
approach may be most preferable. Within this typology, the decision to employ percen-
tile versus bimodal distribution procedures will be determined based on item RT distri-
bution characteristics. In many cases, RT distributions will be unimodal, which makes 
the employment of percentile procedures most appropriate (Wise, 2017).

Assuming a large sample size and variability across a response time distribution, 
RTRA approaches may be employed for maximal RG response identification; however, 
this still requires that items are neither too difficult nor easy. If the latter is the case, 
one alternative is to employ a hybrid approach, such as that proposed by Rios and Guo 
(2020). These authors suggested that a RTRA procedure can be utilized for all possible 
items, and when ineffective (e.g., when an item is too easy or difficult), the RTRA proce-
dure can be replaced by a RT approach. Such a hybrid method allows for maximum RG 
response identification, while adhering to the basic assumptions underlying the RTRA 
procedures.

Further investigations on effective validation efforts are needed to provide more con-
crete recommendations on the best RT threshold approaches for practice. Where pos-
sible, practitioners are encouraged to not rely solely on RT procedures for identifying 
noneffortful responding. A number of alternative non-response time methods have been 
employed to gauge test-taking effort, such as item skipping (e.g., Liu & Hau, 2020), item 
multimedia interactions (e.g., Harmes & Wise, 2016), eye-tracking (e.g., Lindner et al., 
2014; Toth & Campbell, 2019), electroencephalography (EEG; e.g., Halderman et  al., 
2021), retroactive video evaluations of emotional ratings (e.g., Lehman & Zapata-Rivera, 
2018), and cognitive interviewing (e.g., Hopfenbeck & Kjærnsli, 2016). Although not all 
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of these procedures will be readily available, practitioners may benefit from utilizing 
multiple methods to strengthen claims concerning examining engagement.

Limitations

The findings from this study should be interpreted in light of a number of limitations. 
First, although a concerted effort was made to include a diverse set of search strategies, 
with particular focus on identifying grey literature, some pertinent papers may have 
been missed. This might have been due to only including English language papers and 
failing to consult professional research organization listservs. Second, although some of 
the dependent variables examined were based on 80 or more effect sizes, others pos-
sessed as few as 16. For the outcomes with small samples, this limited the: (a) evalua-
tion of publication bias, which require large sample sizes to evaluate the symmetry of 
an effect size distribution (Lau et al., 2006); (b) ability to conduct moderator analyses; 
and (c) generalizability of the findings. Given these limitations, it is recommended that 
readers consider our findings to be descriptive and preliminary in nature (as most meta-
analyses are).

Directions for future research

Given that true RG is unknowable in operational testing contexts, an important area 
of future research is to develop improved validation efforts of RG identification meth-
ods. To date, two popular indices for collecting validity evidence of RG classifications 
have been proposed by Wise and Kong (2005): the proportion correct rate for RG 
responses identified, and the correlation between RTE and test performance. The ration-
ale for these indices is that RG responses should on average have a proportion correct 
rate approximately equal to chance as they largely reflect random responding, while 
increased effort should be positively correlated with test performance (see Silm et  al., 
2020; Wise, 2017).

Although theoretically sound arguments, these criteria are inherently flawed in 
operational settings. Concerning the proportion correct rate, this form of evidence is 
of little utility for methods that set RT thresholds in part based on response accuracy 
metrics. In such cases, reporting the proportion correct rate does little to provide 
validity evidence, given that it is simply a descriptive by-product of the procedure, 
and thus, leads to circular reasoning concerning its validity.

Turning to the association between RTE and total score as a source of validity evi-
dence, the assumption is that a higher correlation is associated with improved valid-
ity. However, this approach is inherently limited in two ways. First, the size of the 
correlation is largely dependent on both the number of examinees engaging in RG 
and the number of RG responses. If these rates are low, the response time effort dis-
tribution will be negatively skewed, leading to artificial attenuation of the true corre-
lation coefficients (see Rios et al., 2017). Closely related, the second limitation is that 
RT thresholds that identify a high percentage of RG responses and responders, while 
maintaining low proportion correct rates for RG responses will generally have higher 
correlations. This naturally benefits RTRA thresholds, due largely in part to the utili-
zation of response accuracy metrics.
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Given these limitations, it is difficult to support the use of proportion correct rates 
and correlations between RTE and test performance as sources of validity evidence; 
and thus, this is the reason why these indices were excluded from the present study. 
With that said, future approaches should consider alternative criteria for validity evi-
dence that are external to the test. According to the argument-based approach to vali-
dation, the inference that response latencies are reflective of the claim that an item 
response is noneffortful requires both a warrant and backing. In this case, the war-
rant is the rule that assigns RG classifications to observed response latencies (i.e., RT 
thresholds), while the backing of this warrant is the appropriateness of the RT thresh-
old. The current empirical approaches adopted to evaluate the appropriateness of this 
claim have a number of limitations, as noted above; however, there is the potential 
for future researchers to consider additional sources not yet employed. As an exam-
ple, subject matter experts, examinees, and test users could evaluate the appropri-
ateness of established RT thresholds for a given testing program by providing their 
expectations on the minimum time needed for an average examinee to read the item 
stem and response options, solve its challenge, and select an answer. This qualitative 
approach would require a much more involved process than the current heuristic 
methods, but could provide judgmental evidence that may be sufficient to support 
claims around RG. Further research in identifying effective validation evidence for RT 
threshold procedures is needed. With that said, it is our hope that this study has aided 
practitioners in better understanding how RT threshold procedures differ to date and 
laid the foundation for future research.
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