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Abstract

Background: Standard methods for analysing data from large-scale assessments (LSA)
cannot merely be adopted if hierarchical (or multilevel) regression modelling should
be applied. Currently various approaches exist; they all follow generally a design-based
model of estimation using the pseudo maximum likelihood method and adjusted
weights for the corresponding hierarchies. Specifically, several different approaches

is available at the end of the to using and scaling sampling weights in hierarchical models are promoted, yet no
article study has compared them to provide evidence of which method performs best and
therefore should be preferred. Furthermore, different software programs implement
different estimation algorithms, leading to different results.

Objective and method: In this study, we determine based on a simulation, the esti-
mation procedure showing the smallest distortion to the actual population features.
We consider different estimation, optimization and acceleration methods, and different
approaches on using sampling weights. Three scenarios have been simulated using the
statistical program R. The analyses have been performed with two software packages
for hierarchical modelling of LSA data, namely Mplus and SAS.

Results and conclusions: The simulation results revealed three weighting
approaches performing best in retrieving the true population parameters. One of them
implies using only level two weights (here: final school weights) and is because of its
simple implementation the most favourable one. This finding should provide a clear
recommendation to researchers for using weights in multilevel modelling (MLM) when
analysing LSA data, or data with a similar structure. Further, we found only little differ-
ences in the performance and default settings of the software programs used, with the
software package Mplus providing slightly more precise estimates. Different algorithm
starting settings or different accelerating methods for optimization could cause these
distinctions. However, it should be emphasized that with the recommended weighting
approach, both software packages perform equally well. Finally, two scaling techniques
for student weights have been investigated. They provide both nearly identical results.
We use data from the Programme for International Student Assessment (PISA) 2015 to
illustrate the practical importance and relevance of weighting in analysing large-scale
assessment data with hierarchical models.

Keywords: Sampling weights, Hierarchical models (HLM), Multilevel models (MLM),
Programme for International Student Assessment (PISA), Large-scale assessment (LSA),
Scaling of sampling weights
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Introduction and theoretical framework

As is widely known in the field of large-scale assessments (LSAs), conducting a census
survey is not productive from an organisational, time and most of all financial perspec-
tive (Rutkowski et al., 2010). Therefore, for many LSAs a two-stage stratified cluster sam-
pling procedure is applied. More specifically, schools are sampled in a first step, in most
cases using probability proportional to size (PPS) mechanism with stratification, i.e.,
larger schools are sampled with higher probability (Brewer & Hanif, 1983). In a second
step, students are selected randomly within these sampled schools (OECD, 2017).

The aim of LSAs is to draw conclusions for a whole population by means of the chosen
sample. For analysing those student samples, special weights for all sampling units (e.g.,
schools, classes, and students) are provided in order to avoid bias due to these sampling
techniques (Meinck, 2020; OECD, 2017). Those weights reflect the selection probabil-
ities of the schools and students, adjusted for non-response, and thereby the propor-
tion of the population represented by each sampled school and student. The “Methods”
section of this paper elaborates exemplarily the sampling procedure of the Programme
for International Student Assessment (PISA), illustrated by an exemplary country
(Germany).

As students within one school often are more similar to each other than students
attending different schools, considering a hierarchical (or “multilevel”) model in analys-
ing students is advisable. This is because such models better reflect the true multilevel
structure of the education system with pupils nested within classes, schools and school
systems. Furthermore, the cluster effects on sampling errors are taken into account in
such models, which otherwise have to be reflected by using special complex estimation
procedures [e.g., balanced repeated replication in PISA; OECD (2017)].

Even though the typical hierarchical structure in education includes three or even
more levels (e.g., students within classes within schools within countries etc.), this arti-
cle focuses on two levels, with students at level one and schools at level two. This is for
several reasons. First, the general sampling scheme of several LSA such as PISA or the
International Computer and Information Literacy Study (ICILS; Gebhardt et al., 2014)
do not include class sampling at all. Second, if class sampling is incorporated, the actual
(true) or sampled number of classes within schools is always small: often just one or two
classes are sampled, especially in small schools. Therefore, it is impossible to disentangle
class and school effects. Finally, research applying three-level models is sparse, probably
because (i) not many datasets fulfil the necessary preconditions, (ii) models often do not
converge, and (iii) because interpretation becomes more complex when adding levels
and can be very challenging. Instead, most cross-national research with multilevel mod-
els uses also two-level models: identical models are run separately for each educational
system participating in a specific assessment and are then compared. Hence, this contri-
bution is fully valid for cross-country analysis.

Although there is sufficient evidence that sampling weights must be used in multilevel
modelling (MLM) to obtain unbiased estimates (e.g. Cai, 2013), and also on how these
weights should be used in single-level analyses, there is little discussion in the literature
about which and how to use sampling weights in MLM. Asparouhov (2006) claims that
data sets from studies with complex sampling designs are made available with weights
prepared for, e.g., computing means, but that these weights are not appropriate for
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multilevel models and can produce erroneous results if used in hierarchical analyses.
Stapleton (2002) addresses the use of different weighting techniques. Rutkowski et al.
(2010) argue that issues of weight scaling and parameter estimation are important con-
siderations. They suggest a procedure for manually calculating appropriate weights at
the levels of interest for analysis, using the design weights and nonresponse adjustments
at each sampling stage for composing these level-specific weights. Carle (2009) recom-
mends to rely on scaled weighted estimates rather than unscaled weighted ones.

Currently, four different approaches on how to use sampling weights in hierarchical
models are recommended by different authors. Partly, different approaches are even
recommended and used for the same type of data, leaving scholars in dubiety, which
approach to use. They mainly relate to specific LSA, namely PISA, the Trends in Inter-
national Mathematics and Science Study (TIMSS) and the Progress in International
Reading Literacy Study (PIRLS; Martin & Mullis, 2013), the International Civic and Citi-
zenship Education Study (ICCS) (Schulz et al., 2018) and ICILS (Gebhardt et al., 2014).
The simulation study scenarios are based on these approaches, hence, a detailed descrip-
tion can be found in section “Analysis procedures”. In the following, we explain the tech-
nical background on how these weights can be scaled and incorporated for parameter
estimation.

Pfeffermann et al. (1998) and Asparouhov (2006) advise to use a pseudo maximum
likelihood approach for calculating estimates within and between the different levels
using probability weighted generalized least squares (PWGLS) maximisation technique
in order to obtain unbiased estimates. Alternatively, Rabe-Hesketh and Skrondal (2006)
provide the expectation—maximisation techniques for maximizing the pseudo likeli-
hood. No previous research includes a straightforward suggestion on how to scale level
one weights in order to account for hierarchical structures. Three different approaches
have been discussed in the literature (Graubard & Korn, 1996; Pfeffermann et al., 1998;
Rabe-Hesketh & Skrondal, 2006) whereas only two approaches are applicable for survey
data.

Several simulation studies (Asparouhov, 2004; Bertolet, 2008; Korn & Graubard, 2003;
Rabe-Hesketh & Skrondal, 2006) conclude that there is no estimation procedure or
adjustment of the weighting to be clearly preferred. Rather, the sampling design itself
is decisive for the choice of the estimation procedure. Furthermore, different software
programs implement different inference estimation methods, leading to different results
(Chantala & Suchidnran, 2006; Chantala et al., 2011; West & Galecki, 2012).

Nevertheless, none of the papers so far has provided a comprehensive overview of all
possible and previously used weighting approaches, a research gap that will be filled with
this study. The main goal of this paper is to paint a comprehensive picture of different
weighting approaches. It will reveal which weighting approach leads to the best estima-
tion, i.e., retrieving the true population parameters with least bias and highest precision.
Furthermore, we will address the question as to which extent and, why different software
packages deliver different results. The aim of the study is to provide a clear recommen-
dation for using weights and estimation procedures for multilevel analyses in LSAs.

This paper is organized as follows. First, we will describe the properties of our exam-
ple LSA study (PISA) with a focus on its sampling design and weights. Then, different
hierarchical models will be introduced in order to obtain a variation of models for the
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simulation study. Contextualising the estimation process, the pseudo maximum likeli-
hood estimation method is explained and specifics are discussed. Linking now back to
LSAs, different methods for scaling the weights in the hierarchical context are described.
Next, the simulation study will be introduced. We explain features of the simulated PISA
population, detail sampling-related features, weights and non-response adjustment as
well as the analysis procedures. We then present and discuss the results of the simulation
study and determine the preferred weighting scheme. This scheme is thereafter applied
to the PISA 2015 data (Reiss et al., 2018) with selected hierarchical models. Finally, the
results are summarized and possibilities for future research will be discussed.

Methods

PISA sampling design and weights

In all countries participating in PISA, 15-year-old students constitute the target popula-
tion. In order to collect representative data from this target population in an efficient
way, a two-stage sampling design is applied; selecting schools first and students within
those schools in a second stage. In preparation of the school sampling, all schools pro-
viding education to 15-year-old students are listed using national registers. To make
sampling more efficient [i.e., obtain small standard errors (SE)], the whole list of schools
is divided into sub-groups, a process called stratification. PISA uses implicit and explicit
stratification. Implicit stratification refers to sorting sampling units before sample selec-
tion, which is an efficient method to achieve an approximately proportional sample
allocation to all strata. Explicit stratification refers to dividing the sampling frame into
different groups (in this case, of schools); from each explicit stratum, an independent
sample is selected. This stratification method allows disproportional sample allocation
(OECD, 2017). For example in Germany, the 16 federal states (explicit stratification) and
the different school types (implicit stratification) were used as stratification variables.
Within each explicit stratum, schools are now selected using the PPS mechanism, mean-
ing larger schools have a greater probability to be sampled. This selection method leads
to significantly varying weights at this first sampling stage. Within every sampled school,
15-year-old students are now randomly sampled as a second selection stage. The within-
school sample size, i.e., the number of students to be selected, is settled when defining
the target population. In Germany, this target cluster size is, on average over all PISA
cycles, approximately 25 students. Mostly, selection probabilities within schools are very
similar for all students. To avoid the expected bias due to varying selection probabilities,
sampling weights are provided. Those weights are computed as the inverse of the selec-
tion probabilities of each selection stage, adjusted for non-response:

’
Wij = Wi * f1i % Wy * foij

with w;; as the final student weight for student j in school i, w; as the base school weight
for school i, fi; as the school non-response adjustment, w;-j as the base student weight
for student j in school i, f5;; as the student non-response adjustment.

As the school participation is mandatory and therefore the participation rate was over
95% in all previous PISA cycles, adjusting of school non-response has always been mini-
mal in Germany and will be neglected in this paper and the following simulation study.
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In PISA, there are three more adjustment factors. Two further correction factors com-
pensate for changes in school size between sampling and data collection. Another cor-
rection factor is applied in countries where only 15-year-old students in the class with
the highest expected number of 15-year-olds are assessed (OECD, 2017). In the event of
non-response at student level, other students who are as similar as possible to the ones
who do not participate are given a higher weighting. This avoids under-representation of
those students. In detail, non-response adjustment cells are built within each stratum,
school, grade and gender (OECD, 2017). This non-response structure is also used in the
simulation.

Hierarchical models
In order to be able to represent the variety of hierarchical models, three standard hier-
archical models are presented here. Demonstrative and use-oriented examples of all
models can be found in Meinck and Vandenplas (2012). For all models, the following
notation applies as presented in Table 1.

Model 1—Null model (random intercept)

yij =Po+Tit+eg
Model 2—One explanatory variable at level one with fixed slope (random intercept)
¥ij = Bo + B1xxij + T + &

Model 3—One explanatory variable at level one and level two with fixed slopes (ran-
dom intercept)

¥ij = Po+ P1xxij + Poxxi + T, + &

with 7; ~ N(0,02) and &;; ~ N(0,02).

Model 1 is technically defined having a school random effect and a residual but no
explanatory variable at either level. By is declared as the mean of the achievement. t;
and & specifies the variance ratio between and within the different levels. Having, for
example, an intraclass correlation (ICC) of 0.1 and the students’ achievement is given
by ~ N (500, 100) the variance is distributed by being 1,000 within the levels and 9,000
between the levels, or in other words only 10% of the variance in achievement is due to
school effects. Therefore, this model should be preferred if a researcher is interested in

Table 1 Variable definitions for hierarchical models used in this paper

Vi Student achievement, i.e, PISA competence (Math, Reading or Science)

Xjj Student socio-economic status, i.e., the PISA Economic, Social and
Cultural Index (ESCS)

Xi The school’s socio-economic Index

Bo Grand (i.e, overall) mean, intercept of the model

B Fixed effect on student level

B Fixed effect on school level

&j Residual

T School random effect
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how much of the variance of the dependent variable is determined within and between
the levels. As in Model 1, the intercept t; in Model 2 is random. The explanatory variable
demonstrates a fixed effect to the dependent variable. Researchers should focus on this
model if the relation from the independent to the dependent variable at level one after
accounting for variation from level two is of interest. Model 3 extends Model 2 by the
term By * x; stating the fixed effect of the explanatory variable also at level two.

Pseudo maximum likelihood estimation

In order to enable statistical inference using hierarchical models (i.e., inferring from
a sample on an infinite population), two different approaches have been developed,
namely design-based and model-based techniques. Design-based methods have their
focus on the sample design model with known parameters, assuming, that this model
is a true reflection of its population. On the other hand, model-based methods are
defining a superpopulation model with unknown parameters having variability from
the model error term including that the sample design model is not the superpopula-
tion model (Binder & Roberts, 2010; Snijders & Bosker, 2012).

Asparouhov (2006) and Pfeffermann et al. (1998) defined a hybrid approach com-
bining design-based and model-based inference estimation techniques. The basis
is the model-based approach with unknown parameters from the superpopulation
model. The focus in this model is not on true parameter estimates, but on estima-
tors, which are design consistent for the infinite population. In conclusion, even if
the model assumptions might be wrong, the design consistent estimators are robust.
Relating to this hybrid model, the authors note that it is important to include complex
sampling designs, like those applied in PISA, in the model. This is done by introduc-
ing sampling weights in hierarchical models (Asparouhov, 2006; Graubard & Korn,
1996; Pfeffermann, 1993, 1996). This so called pseudo maximum likelihood (PML)
estimation technique was developed by Skinner (1989), following the idea of Binder
(1983). Starting with the idea of a model-based approach for reaching statistical infer-
ence the census likelihood is defined as

N
Loy =[[fl0),

j=1

with f(Y}|0) as the density of ¥} in the population, 6 as the unknown population param-
eter and N the number of students in the population.

To achieve a sum instead of the product for easier mathematical handling, the cen-
sus log-likelihood follows with

N
1(Y|0) =) logf(¥j|0).
j=1
The maximum likelihood (ML) estimate is then obtained by

AY0)
90

0.
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Following the hybrid approach stating that the design consistent estimator of the
model-based technique is a robust estimator for the infinite population parameters,
the principle of the Horvitz—Thompson (HT) estimator is applied (Horvitz & Thomp-
son, 1952; Petkova, 2016). The HT estimator uses the inverse of the selection prob-
abilities as weights

1< 1 <1
Yur = N j_ZIW/J’j = N;”iyj’

with 7; as the selection probability, w; = ni as the inverse of the selection probability, y;
]

as the single characteristics in the sample, N as the population size and # as the sample
size.

Transferring this principle to a hierarchical (two level) structure follows the selec-
tion probabilities for the schools and students within schools as 7; and 7;;, respec-
tively. The weights for the m schools are w; = ni/ and for the # students w;; = 7%”

Pfeffermann et al. (1998) argued that because of the clustered data structure, obser-
vations are not assumed to be independent anymore and the log-likelihood will
become a sum across level one and level two elements instead of a simple sum of the
element’s contributions (Grilli & Pratesi, 2005; Petkova, 2016). Using the idea of the
HT estimator with introducing weights into the log-likelihood replaces each sum over
the level two population units i by a sample sum weighted by w; = ﬂ% and each sum

over the level one units j by a sample sum weighted by w;; = L (Grilli & Pratesi,

Tij
2005).

The pseudo maximum likelihood estimator é\pML is therefore design consistent for
the finite population maximum likelihood estimator 6, which, in turn, is model-con-
sistent for the superpopulation estimator of 8. Therefore 6py is a consistent estima-
tor of 0 with respect to the mixed design-model (hybrid) distribution (Pfeffermann
et al., 1998).

As no straightforward method of maximising this weighted likelihood function
is possible due to the existence of several integrals, numerical approximation tech-
niques can be applied. These optimization techniques will be described in the follow-
ing passages.

Optimization methods

Historically, the origins of estimating parameters from the weighted likelihood function
were located at the so called iterative generalized least squares (IGLS; Goldstein, 1986).
This method is based on the normal distribution assumption, implemented and used by
Pfeffermann et al. (Pfeffermann & Sverchkov, 2010).

Rabe-Hesketh and Skrondal (2006) choose to solve the weighted likelihood function
in the PML equation by using an expectation—maximisation (EM) algorithm (Demp-
ster et al., 1977). The basic idea behind the algorithm is divided into two steps. First,
an approximation to the function of interest, i.e., the ML function, with initial, logical
parameter values is constructed. This step is called expectation. Second, the parameter
value, which maximizes this approximation function, is adjusted. This step is named
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maximisation. This value is then inserted in the expectation step. The whole procedure
is iterated until the parameter values stabilize with a given threshold. Unfortunately, this
method suffers from slow convergence rates.

Acceleration methods

Alternative methods to accelerate the EM algorithm are Fisher-Scoring or Quasi-New-
ton acceleration method. The idea of these methods is not to actually calculate the maxi-
mization step of the EM algorithm, but to approximate this calculation. To do that, it
takes the so-called score functions, i.e., first and second order derivates of the approxi-
mated ML function, into account (Jamshidian & Jennrich, 1997; Lange, 1995; Longford,
1987). Jamshidian and Jennrich (1997) stated, that these methods accelerated the EM
algorithm in some cases by factor 50 and above.

Integration method

In all EM techniques the expectation step is approximated by adaptive quadrature (Bock
& Aitkin, 1981). It is a numerical integration method for approximating formulas with
integrals. The key is approximating the whole integral by small areas defined by so-called
nodes. The principle can be written as

b n
/ f@®) =Y hif (x),
a i=1

with quadrature nodes x; € [4,b], f(x) as any function of interest and quadrature
weights /; which should not be confounded with any weights mentioned in this arti-
cle. Having a large number of nodes follows a good approximation. Adaptive quadrature
places the locations where the integrand is concentrated assuming that the “posteriori”
density of a Bayesian perspective is approximately normal distributed (Rabe-Hesketh
et al,, 2002, 2005).

The SAS® software program with its procedure PROC GLIMMIX and its setting
adaptive quadrature (SAS Institute Inc., 2018) is based on the EM algorithm estima-
tion Quasi-Newton in its default setting, while the Mplus software program (Muthén
& Muthén, 2017) declares to use Fisher-Scoring in its default setting as accelerated EM
method, or also Quasi-Newton. The default settings were specified that way to provide
also less technical users with a wide range of sophisticated methods.

Sandwich type variance estimation

Besides the estimate itself, its variance (i.e., the squared standard error), is of further
interest. The covariance matrix of an estimator is obtained after the model has been
estimated. Again, the sampling design needs to be taken into account. If the covariance
structure is assumed to be too simple, which is the case for independent random sam-
ples, then the model based estimated standard errors for the fixed effects are invalid
(usually too small). One way to deal with this is to use sandwich standard errors, which
are a function of the modelled standard errors and observed residuals. If the sandwich
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standard errors are close to the model-based ones, then one can be confident that the
model is well specified. If the model is not correctly specified, then the two types of
standard errors will differ, and the sandwich standard errors are preferred. From a tech-
nically point of view this variance has been developed by Binder (1983), which is further
discussed by Skinner (1989) and is based on Taylor expansion. A general variance esti-

mator is determined by
cov(8) = KUK,

Here, K is the negative second derivative of the logarithmic pseudo likelihood eval-
uated at 8. In other words, K can be estimated by its empirical mean. The term J
designates the estimated variance—covariance matrix of the weighted score functions.
It allows taking the sampling weights as well as particular characteristics of the sam-
pling design into account. The crucial point here is the assumption that the residuals
of the model are having mean zero (see also “Hierarchical models” section). Further-
more, the variance is declared as the average squared deviation around the mean.
Thus, the estimated residual variance can be written as a sum over schools over stu-
dents of those squared errors.

This sandwich estimator is implemented by default in most software programs for
MLV, including Mplus with its default setting (Muthén & Muthén, 2017) and SAS with
its procedure PROC GLIMMIX and its setting for adaptive quadrature (SAS Institute
Inc., 2018). Furthermore, there are approaches that specialize in bootstrapping methods.
Those methods are used by default in single level LSA analyses (Rust & Rao, 1996).

Scaling methods for level one weights

For most publicly available LSA data sets like PISA, weights for the school level w; and
weights for the student level w;; (“final student weights” combining school and student
weights) are provided in order to correctly use weights at each population of inter-
est. Those weights should only be used when analysing data of one population, i.e.,
either students or schools. Considering more than one level at a time, these weights
have to be used or adapted differently in order to account for the hierarchical struc-
ture. In other words, including the final student weight w;; would be inappropriate for
conducting multilevel analysis (Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal,
2006). Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal (2006) argued fur-
ther that including unscaled weights in the analysis might lead to bias in the variance
estimates. Scaling of level two weights is not considered since it has no effect on the
estimates (Bertolet, 2008; Grilli & Pratesi, 2005).

The scaling of level one weights is another approach to take into account the inclu-
sion of weights in hierarchical analyses. Four widely addressed scaling methods are
used in the research community, but there is still no clear recommendation which
method should be preferred. Furthermore, only the following two methods are (Pfef-
fermann et al., 1998; Rabe-Hesketh & Skrondal, 2006) cited in the literature.

The conditional student weight w;; can be written as
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Wij = Wi/,

where A is a synonym for the scaling factor and w;; defines the weight of student j
and school i.

In scaling method 1 the scaled weights add up to the cluster size, i.e., the number of
sampled students in a school with Z 21 W*ij = m;, so the scale factor can be written as

n:
S wh
j=1""ij

The conditional student weight is then given by

where 7; equals the number of sample units in cluster i. In the simulation study, this
method is declared as Scaled Weights: Cluster.

In scaling method 2 the sum of the conditional student weights add up to the effec-
tive sample size within the cluster, i.e., the number of assessed students in a school
with 27;1 w*ij = n, so this scale factor can be written as

= Z}m 1 Wij
— = 9
DT

and its corresponding conditional student weight as

*

Z} 1 Wl/

*
Wl] = Wl/

nj is thereby defined as

_(smm)
(Z, 1 le;)

In the simulation study, this method is declared as Scaled Weights: ECluster.

Two further approaches in scaling level one weights are only mentioned in the
technical appendixes, but are as often used in analyses as the other approaches. One
approach scales the final student weight in order to sum up to the full sample size,
given by n. The scale factor can be written as

n

n 27
j=1""ij

/1:

and the final scaled student weight as

* P— .
Wi = W;j

n
2?21 Wij.

This approach is declared as House Weights in the simulation study.

Page 10 of 39
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The last scaling technique of level one weights described here adds another com-
ponent to the school weights within the approach Scaled Weights: Cluster. Here, the
within-school weights add up to the school sample size. Additionally, the school
weights are transformed as to reflect the sum of the final student weight within
one school given #; as the number of students within one school. This technique is
declared as Clustersum in the following simulation study. The transformed school
weight can therefore be written as

ni
* P— ..
w; = E Wij.
j=1

The most prominent sources presenting this approach are discussed in the below
section, “Analysis procedures’, under Simulation Study. This section also describes
the analysis plan.

Research questions
The following research questions will be examined:

1) Which weighting scheme performs best in providing population estimates in selected
hierarchical models, i.e., with least bias?

2) Does scaling of level one weights enhance preciseness and unbiasedness of estima-
tion, and if so, which cited technique should be preferred?

3) Which estimation procedure serves for the least biased estimates in selected hierar-
chical models?

All three research questions are discussed in an independent way, but also con-
sidered in combination, because all considered methods are simultaneously at work
when conducting analysis with real sample data. The aim of the study is to make a
firm proposal for the common estimation of hierarchical models using provided sam-
pling weights.

Simulation study

With the help of a simulation study, the performance of different weighting scenarios
within hierarchical models can be investigated by comparing estimated parameters
with the true values of a population (Metropolis & Ulam, 1949).

The simulated population mimics the German PISA population. From this “popu-
lation”, 1000 sample replications are selected according to the population character-
istics defined in the next section, using the approach of a Monte Carlo simulation.
One thousand replications were considered to be sufficient for achieving stable point
estimators (Meinck & Vandenplas, 2012). For each dataset, simulated weights are cal-
culated when drawing the sample.

The software program R Studio Version 1.1.456 (RStudio Team, 2018) and its cor-
responding program R 3.5.1 (R Core Team, 2018) was used for simulating the sample
replicates. The analyses was performed with two software programs for hierarchi-
cal modelling of large-scale assessment data Mplus (Muthén & Muthén, 2017) and
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SAS with its procedure PROC GLIMMIX (SAS Institute Inc., 2018). Both software
packages are widely used in the researcher community, especially among educational
researchers, and of special interest for the authors. Three representative hierarchical
models were analysed.

Simulation PISA population

The simulation of the population of 15-year-old students is based on two data sources.
The first source was the sampling frame for PISA 2015 in Germany. In this frame, all
schools accommodating 15-year-old students in the school year 2012/2013 are listed,
together with their allocation to federal state and school type, and the expected num-
ber of 15-year-old students. Information originates from federal and governmental
offices. Further, relevant population features were estimated based on the German
PISA 2015 sample and added to each school on the above-mentioned sampling frame.

In order to investigate the differential effects of varying parameters, three differ-
ent simulation scenarios for generating the student achievement data (i.e., the PISA
competence for a given domain) and socio-economic background were implemented.

For the first scenario, the population parameters are chosen in a way to correspond to
the true German PISA target population in 2015. To achieve this, real outcomes of the
PISA 2015 cycle were used. That is, the performance in science (first PV) and the PISA
Economic, Social and Cultural Index (ESCS) for the socio-economic index split for each
different school type served as scenario templates (Simulation Scenario 1).

Secondly, a scenario with nearly no variance between the schools of a given school
type is simulated (Simulation Scenario 2). The ICC of 0.05 is very small in this scenario,
and MLM may not be that advantageous to single-level analysis under such circum-
stances. We still decided to implement such scenario for two reasons. One was to get
a good contrast for the scenarios with higher ICC. Second, some authors (e.g. Snijders
& Bosker, 2012) recommend MLM whenever there is a hierarchical structure in the
underlying population. Also Lai and Kwok (2015) recommend hierarchical modelling in
such scenarios because there is in fact still a design effect (Kish, 1965) to account for.

The third scenario is based on a high variance between the schools of a given school
type (Simulation Scenario 3). All simulation scenarios comprise a two-level structure
with schools at level one and students at level two.

For each of the three scenarios, the different compositions of the performance of the
schools (i.e., the school achievement) and their socio-economic index were simulated.
Following this, the performance and socio-economic status of each student was simu-
lated around those school values, with a given variance and covariance according to the
appropriate simulation scenario. Overall, 16,330 schools and 841,095 students are simu-
lated for each single simulation scenario.

Table 2 shows the different simulation scenarios and their corresponding character-
istics. As population parameters for one scenario can vary between the three chosen
hierarchical models, those values are indicated with “/” for each model within the appro-

priate scenario. For variable definitions please refer to Tables 1.
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Table 2 Population specifications

Population Parameters

Scenario T—PISA

Scenario 2—Ilow

Scenario 3—high

7 ~ N(505,101) ~ N(500,97) ~ N(468,148)

X ~ N(0,1) ~ N(0,0.89) ~ N(0.16,1.20)

X; ~ N(0,0.59) ~ N(0,0.36) ~ N(=0.10,0.89)
Bo 476/ 479/ 494 500/500/500 421/429/449

B -/29/28 -/27/26 -/35/35

B> ~/-/40 —/-/7 ~/-/65

& 5005/4022/4027 8994/8421/8419 5012/4420/4420

T 5053/4240/ 2417 530/299/266 16,100/12,541/8191
IcC 052 005 0.79

Samples, weights and non-response
The federal states and the school types served as explicit and implicit stratification
variables in Germany (OECD, 2017). There are 16 federal states. The different school
types comprise lower secondary, upper secondary and vocational schools with basic
or advanced general educational tracks. Explicit stratification implies that schools
are sampled independently for each stratum. Mirroring the sampling procedure from
2015, we divided the sampling frame by federal states, and then sorted schools within
states by type and their expected numbers of 15-year-old students. In the next step,
1000 samples of 234 schools with a maximum of 25 students per school were drawn
by PPS sampling for each simulation scenario. Two hundred and thirty-four schools
are chosen to satisfy minimum sample size requirements for explicit strata in PISA
2015. In schools with less than 25 eligible students, all of them were selected.
Sampling weights applied in PISA reflect the PPS sampling technique that leads
to approximately self-weighted samples (Sérndal et al., 2003). Larger schools have a
higher probability to be selected whereas students in these schools have smaller prob-
abilities to be part of the sample. PPS sampling applied in PISA leads to similar final
student weights, but to school base weights that follow a Poisson distribution (Sdrn-
dal et al., 2003). The school base weights as well as the student base weights can be
generated directly when drawing the school and the student sample. The full student
base weight as a product over the school and the student base weight is then given by

o 1
Wy = -
with 7;; is the selection propability for student j in school i.

In order to achieve the final school and student weights, non-response for both lev-
els must be considered. As the assessment is mandatory in Germany, non-response
for schools was very low over most cycles, hence we assumed 100% participation at
school level for the simulation. The three further adjustment factors mentioned ear-
lier are equal to one in the vast majority of cases over all cycles, therefore they are
neglected as well in the simulation study. At the student level, non-response is simu-
lated similar to PISA procedures. Combined non-response is adjusted by grade and
gender characteristics (OECD, 2017). A logistic regression model generates student

Page 13 of 39
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participating probability weights, which are dependent on the student’s gender and
grade. As the distribution of girls and boys participating in PISA is nearly 50/50, this
proportion is kept for the simulation study. The modal grade in PISA 2015 and there-
fore used for this simulation was given by nearly 50% in grade 9 and 50% in grade 10.
Only a very limited number of PISA students attend grades 7, 8 or 11, so this portion
is neglected. The regression model for simulating student non-response is thus given
by

log (P(Y,j = 1)) = Po + B1 * gender;; + B2 * gradej,

with B = 0.1, B1 = B2 = 0.05,Y}; € [0, 1],genderi,» € [0,1] andgmdeij € [0,1].

A uniform random sample determines if a student is set to participating or non-
responding. This participating probability is then distributed across participating
students.

Analysis procedures

Table 3 shows the different weighting scenarios combined with different software pro-
grams and estimation methods applied in the simulation study. All simulation scenarios
and weighting approaches are applied to each hierarchical model explained in “Meth-
ods” section (Table 3).

Overall, 126 different scenarios have been analysed, each with 1000 replications
using the Monte Carlo approach. It was deemed that 1000 repetitions were sufficient to
achieve stable and highly precise estimates of model parameters and their SEs (Meinck
& Vandenplas, 2012). A nearly exact representation of the target population becomes
possible, so that estimates can be reliably compared with the true population values.

Nine different weighting approaches were selected to provide a comprehensive and
nearly complete picture of all possible variants. The following table shows all approaches
and their application to the different levels of the hierarchies (Table 4).

The weighting scenario No Weights at both levels stands for no weighting at either
school or student level. The approach Unscaled Weights at both levels uses both
weights, i.e., the school weight and the final student weight at each level. The scenario
Only Student Weights and Only School Weights each weight at the respective level only.
The school weight represents the inverse of the school selection probability, adjusted
for school nonresponse. The student weight equals to the final student weight in this
scenario.

Scenario House Weights reflects the approach of scaling the final student weights to
sum up to the sample size. Former PISA analyses and recommendations (OECD, 2009)
as well as former MLM analysis based on TIMSS and PIRLS refer to this procedure
(Martin & Mullis, 2013).

Using school weights at level two and scaled student weights at level one with different
scaling techniques is implemented in the approaches Cluster and Ecluster, each based on
the appropriate scaling explained in the section Scaling Methods for Level One Weights.
Multilevel analyses in the PISA 2009 report volume VI (OECD, 2011) use this approach.
Since the PISA 2012 cycle, the OECD is following another approach, here named Clus-
tersum. In this approach, the within-school weights are also scaled to sum up to the clus-
ter sample size (as in the approach Cluster), but school weights are handled to reflect the
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Table 3 Simulation scenarios including varying ICCs, three investigated hierarchical models and
different weighting approaches combined with different estimation algorithms implemented in the
two examined software packages

ICC Model Software package Weighting scenario

0.52/0.05/0.79 Model 1 MPLUS No weights

Unscaled weights
Only student weights
Only school weights
Scaled weights: cluster
Scaled weights: ECluster
Withincluster weights
House weights
Clustersum
SAS No weights

Unscaled weights
Only student weights
Only school weights
Scaled weights: cluster
Scaled weights: ECluster
Withincluster weights
House weights
Clustersum

Model 2 MPLUS No weights
Unscaled weights
Only student weights
Only school weights
Scaled weights: cluster
Scaled weights: ECluster

Withincluster We
ights

House weights
Clustersum

SAS No weights
Unscaled weights
Only student weights
Only school weights
Scaled weights: cluster
Scaled weights: ECluster

Withincluster weights
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Table 3 (continued)

ICC Model Software package Weighting scenario

House weights

Clustersum

Model 3 MPLUS No weights
Unscaled Weights
Only student weights
Only school weights
Scaled weights: cluster
Scaled weights: ECluster
Withincluster weights
House weights
Clustersum

SAS No weights

Unscaled weights
Only student weights
Only school weights
Scaled weights: cluster
Scaled weights: ECluster
Withincluster weights
House weights

Clustersum

Model 1 is declared as yj; = Bo + 7; + €j Model 2 as y;; = Bo + B1 * X + 7; + &jand Model 3 as
Yii = Bo + b1 *Xjj + B2 ¥ Xi + T +&j

sum of the final student weights within one school. The authors claim this approach is
more student-centred (OECD, 2014, 2016, 2019).

The approach Withincluster Weights applies school weights at level two, and at level
one the inverse of the selection probability of a student within a school, adjusted for
non-response. The school weights are only included at school level and not as an addi-
tional factor in the full student weights. This scenario focuses on the respective adjust-
ments that are assigned to the hierarchical levels and refers to Rutkowski et al. (2010).
The International Civic and Citizenship Education Study (ICCS) (Schulz et al., 2018) and
the International Computer and Information Literacy Study (ICILS) (Gebhardt et al.,
2014) implemented this approach.

All analyses were performed using Mplus Version 8.1 (Muthén & Muthén, 2017) and
SAS Version 9.4 (SAS Institute Inc., 2018) with its procedure PROC GLIMMIX.
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Table 4 Weighting approaches for the simulation study and their application and formulas for the
different levels of the hierarchies

Weighting approaches School level Student level
No weights - -
Unscaled weights W wj
Only student weights wiji
Only school weights Wi
Scaled weights: Cluster W Wi =n—
2 Wi
Scaled weights: ECluster w; W{j#
2t Wi
Withincluster weights w;* w;*
House weights _n_
9 Wi S wy
Clustersum W Wij ——
Z/:W Y y le Wi

Weighting parameters are w; = final school weights, wj;= final student weights, n; = number of sampled studentsin a
school, n*; = number of assessed students in a school, n=number of assessed students from all schools and w;= final
within school weights

Results and discussion

In the following, figures of boxplots to the estimation parameters from the respective
chosen model are displayed. Boxplots describe the distribution of an estimated value
based on many repetitions (1000 in our study). The median, the 25% and 75% quartiles,
minimum and maximum are presented (Chambers, 1983). Differences between the box-
plots are interpreted based on several definitions (e.g. Williamson et al., 1989). Firstly,
the boxes representing the interquartile ranges are compared. If boxes do not overlap,
a difference can be stated. Secondly, medians are considered. If the median line of a box
lies outside of another box entirely, then a difference between the two groups is likely.
Thirdly, the whiskers must be considered. They mark the maximum and the minimum
values of each set. Their distance represents the range between those two extremes.
Larger ranges indicate wider distribution, that is, more scattered data. Since differences
in the boxplots between the various weighting approaches can usually already be deter-
mined based on the median deviations and the interquartile distances, the whiskers
are barely discussed below. In addition to the graphical results, empirical 95% coverage
rates (CR) for each parameter are given in Tables 5, 6 and 7 for each simulation scenario,
respectively. The empirical 95% coverage rate indicates how often the 95% confidence
interval of each estimated parameter covers the true population value. A good coverage
rate starts at 95%.

Figure 1 shows the three selected hierarchical models based on the simulation of the
PISA data (Simulation Scenario 1). Figure 2 refers to the Simulation Scenario 2 with low
variances between the schools and Fig. 3 refers to Simulation Scenario 3 with high vari-
ances between those schools. The figures present the estimated fixed parameters as well
as the estimated variances within and between the schools for each model in the appro-
priate simulation scenario. The true population values for each estimate are marked as
red line in each graph. The closer the boxplot median line to the red line, the better does
the respective estimation method retrieve the true population parameter. If the box does
not cover the true population value, the estimation is highly biased. The larger the box,
the less precise is the estimation method. When comparing results between the software
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Table 5 Coverage Rates of PISA simulated data

(2021) 9:6

Software

Weighting approach CR Ao CR B CRB> CR;Z CR;E
A: Coverage rates—PISA simulated data—Model 1
SAS No weights 0.00 0.94 0.98
Unscaled weights 1.00 0.51 0.99
Only school weights 1.00 0.94 0.95
Only student weights 0.00 032 0.96
Withincluster weights 1.00 0.62 1.00
Scaled weights: cluster 1.00 0.95 0.95
Scaled Weights: ECluster 1.00 0.95 0.95
Clustersum 0.00 0.95 0.99
House weights 0.00 0.94 0.99
Mplus No weights 0.00 0.92 1.00
Unscaled weights 1.00 0.97 097
Only school weights 1.00 097 097
Only student weights 0.00 0.92 1.00
Withincluster weights 1.00 0.97 097
Scaled weights: cluster 1.00 0.96 0.96
Scaled weights: ECluster 1.00 0.96 0.96
Clustersum 0.00 097 1.00
House weights 0.00 0.97 1.00
B: Coverage rates—PISA simulated data—Model 2
SAS No weights 0.00 0.83 0.94 0.00
Unscaled weights 0.99 0.90 0.53 0.00
Only school weights 098 0.91 0.95 0.84
Only student weights 0.00 0.85 037 0.00
Withincluster weights 0.98 0.94 0.68 0.59
Scaled weights: cluster 0.99 0.90 0.96 0.81
Scaled weights: ECluster 0.99 0.90 0.96 0.81
Clustersum 0.00 0.92 0.96 0.39
House weights 0.00 0.85 0.94 0.00
Mplus No weights 0.00 091 0.95 061
Unscaled weights 0.98 092 0.94 0.96
Only school weights 0.98 092 0.95 0.96
Only student weights 0.00 0.91 0.95 061
Withincluster weights 0.98 092 0.94 0.96
Scaled weights: cluster 0.99 091 0.95 0.97
Scaled weights: ECluster 0.99 091 0.95 0.97
Clustersum 0.00 092 0.96 0.39
House weights 0.00 0.92 0.95 0.65
C: Coverage rates—PISA simulated data—Model 3
SAS No weights 0.01 0.93 0.96 0.94 044
Unscaled weights 0.96 0.94 0.93 0.53 045
Only school weights 0.95 0.94 0.93 0.94 0.87
Only student weights 0.09 0.94 0.93 0.36 0.23
Withincluster weights 094 0.94 0.92 0.68 0.82
Scaled weights: Cluster 0.96 093 0.93 0.95 0.86
Scaled weights: ECluster 0.96 093 0.93 0.95 0.86
Clustersum 0.01 092 0.96 0.96 0.38
House weights 0.03 0.92 0.95 0.95 047
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Table 5 (continued)

Software Weighting approach CR Bo CR B CRB, CR ;63 CR ;?

Mplus No weights 0.01 0.93 0.96 0.94 0.52
Unscaled weights 0.95 0.94 093 0.95 0.91
Only school weights 0.95 0.94 0.92 0.95 0.91
Only student weights 0.01 093 0.96 0.94 0.51
Withincluster weights 0.95 0.94 0.93 0.95 0.91
Scaled weights: cluster 0.96 093 0.93 0.96 09
Scaled weights: ECluster 0.96 093 0.93 0.96 09
Clustersum 0.01 0.92 0.96 0.96 038
House Weights 0.03 092 0.95 0.95 0.51

The CR represents the compliance rate of the estimators within its 95% confidence interval of three hierarchical

models. Model 1is declared as yj;; = Bo + 7; + €j, Model 2 as y;; = Bo + B1 * Xjj + 7; + ¢jand Model 3 as

Yij = Bo + B1 *Xjj + B2 * X; + T; + &jj. PISA simulated data serves as scenario template. Simulation variation is displayed
with the different weighting approaches combined with different estimation algorithms implemented in the two examined
software packages

packages SAS and Mplus, we consistently refer to the software settings specified earlier
(SAS: procedure PROC GLIMMIX and its setting adaptive quadrature; Mplus: default
settings for two-level modelling).

Outcomes for simulation scenario 1 (data mirroring the German PISA population)
Model 1
It can be seen in Fig. 1, Graph A, Graph D and Graph H, that in all three models
the weighting approaches No Weights, Only Student Weights, Clustersum and House
Weights overestimate drastically the intercept Bo as the respective boxes do not cover
the true population value. Furthermore, medians do not even come close to the true
value. This can also be confirmed by looking at the coverage rates of 0% in Table 5
A ,f?o. This result reflects the German PISA sample structure, where small schools
have low selection probabilities and at the same time systematically lower average
achievement than large schools (with high selection probabilities), as many of them
accommodate students with special educational needs or vocational students. When
neglecting school weights, these parts of the target population are underrepresented,
which explains the overestimated average achievement. This result provides solid
evidence to generally recommend the use of school weights in hierarchical models.
Looking at the next model parameter, we can see that Fig. 1, Graph B, the weight-
ing approaches Unscaled Weights, Only Student Weights and Withincluster Weights
underestimate the Variance Within ;’E the schools, if using the software program
SAS for estimation. This occurs also with all three hierarchical models (Fig. 1,
Graph F and Graph K). The weighting approaches No Weights (for both software
programs), Only Student Weights (for both software programs), Unscaled Weights
(for the software program SAS), Clustersum (for both software programs) and House
Weights (for both software programs) underestimate the Variance Between ;? of the
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Table 6 Coverage rates of low variances simulated data

Software Weighting approach CR Bo CR B CRB> CR ;E CR ;?

A: Coverage rates—low variances simulated data—Model 1

SAS No weights 0.94 0.94 0.87
Unscaled weights 0.93 0.62 0.74
Only school weights 0.94 0.94 0.87
Only student weights 0.91 043 0.70
Withincluster weights 0.94 0.77 0.94
Scaled weights: cluster 0.94 0.94 0.87
Scaled weights: ECluster 0.94 0.94 0.87
Clustersum 0.94 0.95 0.87
House weights 0.94 0.95 0.90
Mplus No weights 0.94 0.94 0.92
Unscaled weights 0.95 0.94 0.90
Only school weights 0.94 0.94 0.90
Only student weights 0.94 0.94 0.91
Withincluster weights 0.94 0.94 0.91
Scaled weights: cluster 0.95 0.94 0.90
Scaled weights: ECluster 0.95 0.94 0.90
Clustersum 0.94 0.94 092
House weights 0.94 0.94 0.91
B: Coverage rates—Ilow variances simulated data—Model 2
SAS No weights 0.89 0.90 0.94 091
Unscaled weights 0.91 0.92 0.62 0.06
Only school weights 0.91 0.91 0.96 0.91
Only student weights 0.87 0.91 041 0.72
Withincluster weights 0.91 0.93 0.78 0.52
Scaled weights: cluster 0.91 0.92 0.96 0.91
Scaled weights: ECluster 0.91 0.92 0.96 0.91
Clustersum 0.89 091 0.95 092
House weights 0.90 091 0.95 0.93
Mplus No weights 0.89 0.90 0.95 0.92
Unscaled weights 0.91 092 0.95 092
Only school weights 0.91 092 0.95 092
Only student weights 0.89 0.90 0.95 093
Withincluster weights 091 092 0.95 092
Scaled weights: cluster 091 092 0.95 092
Scaled weights: ECluster 091 092 0.95 092
Clustersum 0.89 091 0.95 092
House weights 0.89 0.90 0.95 0.93
C: Coverage rates—Ilow variances simulated data—Model 3
SAS No weights 0.87 0.93 0.95 0.95 091
Unscaled weights 091 093 0.93 0.62 0.03
Only school weights 0.90 0.94 0.95 0.96 0.90
Only student weights 0.86 093 0.94 040 0.52
Withincluster weights 0.90 093 0.95 0.74 043
Scaled weights: cluster 0.90 094 0.95 0.96 091
Scaled weights: ECluster 0.90 0.94 0.95 0.96 0.90
Clustersum 0.87 0.93 0.94 0.95 0.91

House weights 0.88 0.93 0.95 0.95 0.92
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Table 6 (continued)

Software Weighting approach CR Bo CR B CRB, CR ;2 CR ;?
Mplus No weights 0.87 0.93 0.95 0.95 0.93
Unscaled weights 0.90 0.94 0.95 0.95 0.92
Only school weights 0.90 094 095 0.95 0.91
Only student weights 0.87 0.93 0.95 0.95 0.93
Withincluster weights 0.90 0.94 0.95 0.95 0.92
Scaled weights: Cluster 0.90 0.94 0.95 0.95 0.92
Scaled weights: ECluster 0.90 0.94 0.95 0.95 0.92
Clustersum 0.87 0.93 0.94 0.95 0.93
House weights 0.87 093 0.95 0.95 093

The CR represents the compliance rate of the estimators within its 95% confidence interval of three hierarchical

models. Model 1is declared as yj;; = Bo + 7; + €j, Model 2 as y;; = Bo + B1 * Xx; + 7; + &jand Model 3 as

¥ii = Bo + B1 = X;j + B2 * X; + T; + &j. Low variances between schools simulated data serves as scenario template.
Simulation variation is displayed with the different weighting approaches combined with different estimation algorithms
implemented in the two examined software packages

schools (Fig. 1, Graph G and Graph L). Interestingly, for Model 1 (Fig. 1, Graph C),
the Variance Between ;? seems to be overestimated throughout nearly all weighting
scenarios when using the software package Mplus as none of the boxplots cover the
true value. These facts are also reflected in the coverage rates in Table 5 A ;?. Both
software programs use the sandwich type estimator for calculating standard errors
in the hierarchical models, which is based on the sampling weights, particular char-
acteristics of the sampling design as well as the maximum likelihood function of the
appropriate model. As both software packages SAS and Mplus are not as transparent
as freely available software packages like R (R Core Team, 2018), we can only guess
what distinguishes the two software programs. For example, different accelerating
methods for optimization could cause the differences.

Models 2 and 3
By adding the socio-economic background regressor at the student level in Model 2
(Fig. 1, Graph E), it becomes evident that the weighting approaches Unscaled Weights,
Only Student Weights and Withincluster Weights also slightly underestimate this esti-
mator by the SAS software program with its procedure GLIMMIX although inter-
quartile spaces include the true value and overlap with one another. However, this
effect is offset by the addition of the average SES B at school level in Model 3 (Fig. 1,
Graph I and Graph J). From Model 1 to Model 2 (Fig. 1, Graph B and Graph F), the
Variance Within the schools ;2 decreases. This is caused by the increase in explained
variance by adding the SES indicator. The same applies for the Variance Between the
schools :y? as it decreases from Model 2 to Model 3 (Fig. 1, Graph G and Graph L).
Since proposals for weighting approaches working independently of the selected
software programs would be desirable, only three weighting approaches provide suf-
ficiently unbiased estimates in this simulation scenario: Only School Weights, Scaled
Weights: Cluster and Scaled Weights: Ecluster. All three of these approaches per-
form nearly the same, as can be seen by having a closer look at their coverage rates



Mang et al. Large-scale Assess Educ (2021) 9:6 Page 22 of 39

Table 7 Coverage rates of high variances simulated data

Software Weighting approach CRBo CR B CRB> CR ;EE CR ;?
A: Coverage rates—high variances simulated data—Model 1
SAS No weights 0.00 0.93 0.97
Unscaled weights 0.98 0.52 0.99
Only school weights 0.99 0.94 0.99
Only student weights 0.00 0.32 0.97
Withincluster weights 0.99 0.66 0.99
Scaled weights: cluster 0.99 0.94 0.99
Scaled weights: ECluster 0.99 0.94 0.99
Clustersum 0.00 094 0.96
House weights 0.00 0.93 0.96
Mplus No weights 0.00 0.94 0.90
Unscaled weights 0.99 0.94 0.97
Only school weights 0.99 094 097
Only student weights 0.00 0.94 0.90
Withincluster weights 0.99 0.94 0.97
Scaled weights: cluster 0.99 0.95 0.98
Scaled Weights: ECluster 0.99 0.95 0.98
Clustersum 0.00 0.95 0.78
House weights 0.00 0.94 0.82
B: Coverage rates—high variances simulated data—Model 2
SAS No weights 0.00 0.84 0.94 0.02
Unscaled weights 0.99 0.89 0.54 0.06
Only school weights 0.99 0.86 0.94 0.07
Only student weights 0.00 0.82 0.35 0.02
Withincluster weights 0.99 0.88 0.71 0.06
Scaled weights: cluster 0.99 0.86 0.95 0.07
Scaled weights: ECluster 0.99 0.86 0.95 0.07
Clustersum 0.00 0.89 094 0.96
House weights 0.00 0.84 0.95 0.02
Mplus No weights 0.00 0.88 094 097
Unscaled weights 0.98 0.89 0.93 0.94
Only school weights 0.98 0.90 0.94 0.94
Only student weights 0.00 0.88 0.94 0.97
Withincluster weights 0.98 0.89 0.93 0.94
Scaled weights: cluster 0.99 0.88 0.94 0.95
Scaled weights: ECluster 0.99 0.89 0.94 0.94
Clustersum 0.00 0.89 0.94 0.96
House weights 0.00 0.87 0.95 0.96
C: Coverage rates—high variances simulated data—Model 3
SAS No weights 0.12 0.90 0.96 0.94 0.96
Unscaled weights 0.96 0.89 093 0.56 0.99
Only school weights 0.96 091 0.94 093 0.99
Only student weights 0.13 0.90 0.96 037 0.95
Withincluster weights 0.96 0.90 094 0.71 0.99
Scaled weights: cluster 0.98 092 094 0.94 0.98
Scaled weights: ECluster 097 092 094 0.94 0.98
Clustersum 0.10 0.89 0.95 0.94 0.94

House weights 0.13 0.88 0.95 0.94 093
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Table 7 (continued)

Software Weighting approach CR Bo CR B CRB, CR ;E CR ;?
Mplus No weights 0.11 0.90 0.96 0.94 0.96
Unscaled weights 0.96 0.91 094 0.93 0.92
Only school weights 0.96 0.90 0.94 0.93 0.92
Only student weights 0.1 0.91 0.96 0.94 0.96
Withincluster weights 0.96 0.91 0.94 0.93 0.92
Scaled weights: cluster 0.97 0.91 0.94 0.94 0.92
Scaled Weights: ECluster 0.97 0.91 0.94 0.94 0.92
Clustersum 0.10 0.89 094 0.94 0.94
House weights 0.14 0.89 0.95 0.94 0.94

The CR represents the compliance rate of the estimators within its 95% confidence interval of three hierarchical

models. Model 1is declared as yj;; = Bo + 7; + €j, Model 2 as y;; = Bo + B1 * Xjj + 7; + ¢jand Model 3 as

¥ii = Bo + B1 =X + B2 * X; + T; + &j. High variances between schools simulated data serves as scenario template.
Simulation variation is displayed with the different weighting approaches combined with different estimation algorithms
implemented in the two examined software packages

in Table 5 A, B and C. As the use of Only School Weights is more practical than using
them plus scaling of the student weights (approaches Cluster and Ecluster), this
approach would be the preferred one for both software programs SAS and Mplus,

considering Simulation Scenario 1.

Outcomes for simulation scenario 2 (data reflecting low variances between schools)

Model 1

Having low variances between schools as simulated in Scenario 2, the estimated
intercept distribution for Bo displayed in Fig. 2, Graph A, Graph D and Graph H,
provides for all weighting approaches and both software program packages adequate
estimators. Even the median seems to mask the true value, and interquartile spacing
boxes do all overlap. As can also be seen in Table 6 A, B and C (Bo) the coverage rates
for all approaches are about or above 90%, which should preferably be higher, but are
deemed acceptable in this study.

As in Simulation Scenario 1, the software program SAS again underestimates
the Variance Within 3} applying the approaches Unscaled Weights, Only Student
Weights and Withincluster Weights (Fig. 2, Graph B, Graph F and Graph K). This is
verified in the low coverage rates between 0.3 and 0.8 from Table 6 A, B and C (3}).
A different picture as in Simulation Scenario 1 can be seen for the estimation of the
Variance Between ;TE in Simulation Scenario 2 (Fig. 2, Graph C, Graph G and Graph
L). The Variance Between ;TE is incorrectly estimated by the approaches Unscaled
Weights, Only Student Weights (only in Model 3, see Fig. 2, Graph L) and Within-
cluster Weights, in this case overestimated. It should be noted, however, that the
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Fig. 1 Simulation outcomes for data mirroring the German PISA population. Model 1 is declared as
Yii = Bo+ T +s,;,ModeI2asy,7 = Bo+ B *Xj+ T +s,-/-andl\/lodel3asy,-/- = Bo+ B * Xjj +Bokx + 1T + ¢&jj
. The median, the 25% and 75% quartiles, minimum and maximum for each model estimator are presented in
boxplots. No outliers are displayed. The true population values for each estimate are marked as red line. Simulation
variation is displayed with the different weighting approaches combined with different estimation algorithms
implemented in the two examined software packages

boxplots and whiskers do slightly overlap, which makes the statement to be inter-

preted with caution.

Models 2 and 3
Similar to Scenario 1, the estimation of the regressor B1 becomes more stable once
this effect is added also at the school level; a finding confirmed by good coverage
rates for both the regressor at student ﬁAl and school level ,BAg in Table 6 C.

In Scenario 2, we also find that no distinctive difference between the two scaling
techniques (Cluster and Ecluster) can be obtained, but the approach Only School
Weights performs again equally well. Hence, as in Simulation Scenario 1, we would
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e~

ence disappears and estimators of the Variance Between o? and the socio-economic

in Table 7 B. By adding the SES regressor at school level 8, into the model, this differ-

—

-~

Variance Between schools o2. For Model 1 (Fig. 3, Graph C) and Model 3 (Fig. 3,

~

~

Fig. 1 continued

recommend the weighting approach Only School Weights for both software program
Model 2 (Fig. 2, Graph G) the Variance Between o2 is underestimated by the software
program SAS for all approaches, a finding being confirmed in very low coverage rates
background f; and B3 become stable and unbiased. Also for Simulation Scenario 3 the
weighting approach Only School Weights can be given as a clear recommendation for

nominal deviations from the two above described scenarios in the estimation of the
Graph L) all weighting approaches provide correct estimates of this variance. Only in

Outcomes for simulation scenario 3 (data reflecting high variances between schools)
In the third considered scenario reflected in Fig. 3 (Simulation Scenario 3), we find

packages Mplus and SAS, respecting the specifications of Simulation Scenario 2.
Models 1,2 and 3

the use weighting in hierarchical models.
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Fig. 1 continued

Software differences

~

Regarding the estimation accuracy of the software programs used, it can be said that
Mplus provides slightly more precise estimates (e.g., Fig. 1, Graph I, or Table 5 B f;).

Although the confidence intervals are sometimes quite small, they are partly more
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Fig. 2 Simulation outcomes for data reflecting low variances between schools. Model 1
is declared as yjj = Bo + 7 + ¢ Model 2 as y; = Bo + B1 * xj + T; + &jand Model 3 as
yij = Bo + B1 *Xj + B2 * X; + 1 + ;. The median, the 25% and 75% quartiles, minimum and maximum
for each model estimator are presented in boxplots. No outliers are displayed. The true population values
for each estimate are marked as red line. Simulation variation is displayed with the different weighting
approaches combined with different estimation algorithms implemented in the two examined software
packages

biased (refer e.g., to Fig. 1, Graph L, or Table 5 B c;?). Like previously explained, this
might be due to the different default settings like optimization algorithms in acceler-
ating the EM algorithm. According to the SAS documentation and the analysis out-
put, Quasi-Newton acceleration methods for optimization are used, whereas Mplus
stated in their documentation to mainly use Quasi-Newton, but sometimes also other
acceleration algorithms like Fisher-Scoring. The conditions under which to use one
or the other method are not detailed. Instead, in the Mplus output, it is only declared
that accelerating methods have been applied. Further, some algorithm starting default
setting could also cause these differences. Beyond that, both software package declare
to use pseudo ML estimation with the integration methods of adaptive quadrature.
However, it must be clearly emphasized that with the recommended weighting
approach using only schools weights, both software packages work equally well. If all
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Germany is among the countries in the world where there remains a close relation-

Fig. 2 continued
considerations for this and earlier scenarios are summarized, the authors recommend

would like to demonstrate the practical value of our study. We will first briefly look at
previous publications in the field of multilevel analysis in connection with the PISA
study, scientific literacy, and socio-economic background to show the significance of
the topic. In a next step, we will apply multilevel regression models to the data from
ship between socio-economic background and the performance of students, a fact
which has been the cause of heavy public debate within the country. Using data from
the PISA 2006 assessment, the OECD presented a hierarchical regression analysis

high on the research agenda in Germany and many other countries. With this, we
the PISA 2015 assessment (Reiss et al., 2018).

the weighting approach Only School Weights for all considered hierarchical models
In this section, we will apply our simulation results onto real data, covering a topic

and scenarios for both software programs.

Application
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Fig. 2 continued

’

tencies and the students

science compe

’

regarding the relationship between students

grade, the students’ socio-economic background, the schools’ socio-economic back-

tion background and the students’ gender (OECD, 2007). For

Germany, a higher science competence can be assumed for a higher grade and a higher

migra

ground, the students’
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Fig. 3 Simulation outcomes for data reflecting high variances between schools. Model 1
is declared as yjj = Bo + 7 + ¢ Model 2 as y; = Bo + B1 * Xj + T + &jand Model 3 as
yi = Bo + B1 *Xj + B2 * X; + 1; + &j. The median, the 25% and 75% quartiles, minimum and maximum
for each model estimator are presented in boxplots. No outliers are displayed. The true population values
for each estimate are marked as red line. Simulation variation is displayed with the different weighting
approaches combined with different estimation algorithms implemented in the two examined software
packages

socio-economic background, for both the student and school level, whereas the school
level (i.e., the average socio-economic background of students) has a higher impact on
the results than students’ personal socio-economic background. However, considering
the findings presented earlier in this paper, we believe that the results must be inter-
preted with caution, as the weighting approach used for multilevel models in PISA 2006
(House Weights) did not show the best results in our simulation study. For the PISA 2015
cycle, the OECD (2016) reports a multilevel regression model with many factors related
to the education systems, schools and students, again in connection to science liter-
acy. They point out the positive (while negatively connoted) associations with science
scores for both the OECD and all participating countries and economies. The OECD
has changed its approach to weighting in multilevel models for this cycle, coinciding
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Fig. 3 continued

with the Scaled Weights: Cluster approach presented in this paper. Since this approach

showed reliable results in our study, we believe these results can be trusted.

Apart from OECD publications, numerous papers have been published on the rela-

tionship of scientific literacy and socio-economic background. Papers relating to

Asian countries stand out in particular. For example, Lam and Lau (2014) investigate

how to improve science education in Hong Kong. Similarly, Sun et al. (2012) explore

factors that affect students’ science achievement in Hong Kong. Other publications

are based on correlations between parents’ attitudes towards science and the scien-

tific competence of their children (Perera, 2014). Since the articles do not provide

precise information on the exact use of the weights, these results should also be inter-

preted with caution.

Multilevel models uncovering factors at school and student level that determine

students’ performance, can offer significant and important evidence for policy mak-

ers. Obviously, they should be implemented in methodologically sound ways, which is

why we present a practical application of the different weighting approaches studied

in what follows.
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Fig. 3 continued
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Table 8 Application PISA 2015 Data—Model 1 y; = o + 7i + &

Bo SE o o? SE o2 o? SEa2
SAS
No weights 508.28 4.49 5426.01 118.52 4013.66 27293
Unscaled weights 481.80 541 5079.08 132.86 3940.63 284.36
Only school weights 483.83 537 5323.60 129.28 4042.81 331.98
Only student weights 506.42 4.54 5174.72 11551 3936.82 236.50
Withincluster weights 48443 534 5294.40 117.54 3987.60 307.94
Scaled weights: cluster 483.83 537 5323.60 129.28 4042.81 331.98
Scaled weights: ECluster 483.83 537 5323.60 129.28 4042.81 331.98
Clustersum 503.40 4.68 5451.93 121.11 4027.00 282.90
House weights 507.86 4.50 542113 121.32 4017.66 27242
Mplus
No weights 507.92 4.50 5412.54 117.97 4811.59 372.69
Unscaled weights 483.67 534 529745 127.78 4865.75 45433
Only school weights 483.57 537 5294.79 127.64 4860.81 456.38
Only student weights 507.81 4.50 5410.61 11842 4818.42 373.28
Withincluster weights 483.57 537 5294.79 127.64 4860.81 456.38
Scaled weights: cluster 483.67 534 529745 127.78 4865.75 454.33
Scaled Weights: ECluster 483.69 534 5297.98 127.86 4863.82 454.18
Clustersum 504.26 4.61 5408.24 119.54 4760.76 373.38
House weights 507.92 4.50 5412.54 117.97 4811.59 372.69

Classifying the results of the simulation study to application data, the different weighting approaches combined with
different estimation algorithms implemented in the two examined software packages are displayed

Table 9 Application PISA 2015 Data - Model 2 y; = Bo + B1 * Xj + T + €

Bo SEBe B SEB o2 SEo2 o2 SEo2
SAS
No weights 509.57 4.06 15.87 1.21 5233.28 11271 267031 181.69
Unscaled weights 48476 514 11.31 1.54 4990.11 131.10  2239.82 143.37
Only school weights 487.12 5.02 13.62 137 5246.73 12543 4149.08 41442
Only student weights 507.36 420 13.12 1.20 5049.22 111.51 2229.14 125.10
Withincluster weights 487.64 4.96 13.96 1.19 5159.23 113.60 4219.66 404.56
Scaled weights: cluster 487.12 5.02 13.62 137 5246.73 12543 4149.08 41442
Scaled weights: ECluster ~ 487.12 502 13.62 137 5246.73 12543 414908 41442
Clustersum 505.08 4.26 15.28 1.25 5300.05 11611 3880.08 33345
House weights 508.83 4.10 15.26 1.24 5293.84 11733 3886.28 325.77
Mplus
No weights 509.19 4.10 15.10 1.20 5313.87 11612 3876.26 324.59
Unscaled weights 487.20 4.99 13.60 1.37 5247.64 12527 4141.49 411.45
Only school weights 487.11 5.01 1361 137 5246.64 12517 4151.67 414.03
Only student weights 509.15 4.10 15.12 1.21 5316.13 116.62 3877.56 325.67
Withincluster weights 487.11 5.01 13.61 1.37 5246.64 125.17 4151.67 414.03
Scaled weights: cluster 487.20 4.99 13.60 137 5247.64 125.27 414149 41145
Scaled weights: ECluster 487.22 4.99 13.61 1.37 5248.73 12538 4137.74 410.98
Clustersum 506.06 4.18 1541 1.24 5304.56 116.65 381642 323.59
House weights 509.19 4.10 15.10 1.20 531387 116.12 3876.26 324.59

Classifying the results of the simulation study to application data, the different weighting approaches combined with
different estimation algorithms implemented in the two examined software packages are displayed
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Table 10 Application PISA 2015 Data — Model 3 yj; = Bo + B1 % Xj + B2 % X; + T + €

B SEB B SEB B SEB o2 SEo2  o? SEo2
SAS
No weights 51604 240 1289 1.18 4950 232 531647 11613 117665 14361
Unscaled weights 50636 435 1133 154 4326 635 497229 13045 109340 13868

Only school weights 509.08 357 1134 130 4743 414 525611 12686 139936 262.86
Only student weights 51461 256 1306 120 4847 310 504966 11153 105145 9737
Withincluster weights 50943 350 1299 1.18 4662 412 517039 11415 149250 254.13

Scaled weights: cluster ~ 509.08 3.57 1134 130 4743 414 525611 12686 139936 262.86

Scaled weights: ECluster  509.08 357 1134 130 4743 414 525611 12686 139936 262.86

Clustersum 51511 252 1302 121 4804 278 530028 11620 121851 166.33

House weights 51581 242 1307 120 4879 253 528594 11688 122241 15636
Mplus

No weights 51596 240 1291 1.18 4948 232 532055 11631 120140 14893

Unscaled weights 509.17 350 1132 130 4748 413 527126 12735 140129 26130

Only school weights 509.06 357 1134 130 4739 415 527065 12731 141388 267.75
Only student weights 51591 239 1293 118 4955 233 532262 11678 119843 14823
Withincluster weights 50906 357 1134 130 4739 415 527065 12731 141388 267.75
Scaled weights: cluster ~ 509.17 350 1132 130 4748 413 527126 12735 140129 261.30
Scaled weights: ECluster  509.19 350 1132 130 4749 412 527264 12749 139679 259.89
Clustersum 51541 246 1313 120 4786 279 531553 11716 121036 160.83
House weights 51596 240 1291 1.18 4948 232 532055 11631 120140 148.93

Classifying the results of the simulation study to application data, the different weighting approaches combined with
different estimation algorithms implemented in the two examined software packages are displayed

For the analyses with PISA 2015 data, the same three hierarchical models as applied in
the simulation study were used. The first plausible value (PV) for the domain of Science
approximates the distribution of student achievement correctly (Davier et al., 2009).
The socio-economic background is represented by the z-standardized variable ESCS for
both the school and student level. As in the simulation study, the variance within and
between schools will be estimated. The same weighting approaches as in the simulation
study are also investigated here. The different results can be correctly classified using the
results of the simulation study. Therefore, the weighting approach Only School Weights
is assumed in the following as a reference point for the recommended implementation
of the weights and thus as the correct interpretation approach for the explanation of the
estimated parameters of the hierarchical models. Both estimation methods represented
in the different software packages are used to get a more comprehensive picture of the
application.

Tables 8, 9, 10 show the different results for Models 1, 2 and 3, each displayed for both
software packages, respectively.

The weighting scenarios No Weights, Only Student Weights, Clustersum and House
Weights achieve higher values for the intercept Bo than the approach Only School
Weights. This applies to both software packages used and all defined models. These val-
ues are estimated too highly and can lead to a misinterpretation of the intercept as a
value too high for the mean of the schools’ achievement. Concerning the link between
scientific achievement and socio-economic background, it can be stated that with regard
to the reference method Only School Weights, all weighting approaches and software
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packages estimated this context correctly for both the student and the school level. Hav-
ing a higher socio-economic background, a higher achievement for the students is esti-
mated. This correlation is even more pronounced for the socio-economic background at
school level.

Regarding the Variance Between the schools ;TE, it can be noted that compared to
the reference approach Only School Weights this variance is underestimated for Mod-
els 2 and 3 (Tables 9 and 10), for both software packages and for the weighting sce-
narios No Weights, Unscaled Weights (only SAS), Only Student Weights, Clustersum
and House Weights. This underestimation may result in less variability being assumed
between schools than is actually present in the population. Also, with regard to the Vari-
ance Within ;2, caution is advised in connection with the weighting variants Unscaled
Weights, Only Student Weights and Withincluster Weights. Compared to the approach
Only School Weights, these variances are also underestimated with the software SAS.

In summary, with the help of the simulation study, the application of PISA data dem-
onstrated that the influence of school-specific aspects on student performance is of great
importance and therefore a consideration of the hierarchies in PISA analyses, using the
best-performing estimation approach, is highly recommended.

Summary and conclusions

In order to determine the best weighting scheme in hierarchical models with LSA data,
a simulation study based on the PISA data structure was performed examining differ-
ent weighting approaches and scaling techniques frequently used in the research com-
munity. Further, two different software packages, Mplus (with default two-level analysis
settings) and SAS (with its procedure PROC GLIMMIX), were compared against each
other with a focus on deployed estimation procedures and algorithms. In summary, this
study provides a comprehensive picture of many possible and previously used weighting
approaches. This research program implies which weighting approach leads to the most
precise and least biased estimation of parameters in multilevel models with LSA data,
and thus gives clear guidance which approach should be used for such analysis.

We were able to show that the weighting scenarios Only School Weights, Scaled
Weights: Cluster and Scaled Weights: ECluster provide the least biased and sufficiently
precise parameter estimates throughout all three considered models, and in all three
simulation scenarios. As the use of Only School Weights is easier to implement than
the other well-performing methods, we recommend this approach, independently of
whether SAS or Mplus is being used.

It can be noted that the software program SAS with its used procedure PROC GLIM-
MIX, provides larger quartile spacing’s or more wrongly estimated variances than the
software package Mplus with its used default settings for two-level analysis. As both
software packages SAS and Mplus are not as transparent as freely available software
packages like R (R Core Team, 2018), we can only assume where the distinction between
the software programs are, although the authors have put a lot of time and effort into
finding internal settings of these programs. Although both software packages provide
quite good consulting services, they lack insight into the actual internal procedures of
the syntaxes used.
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Furthermore, no explicit difference was found comparing the considered scaling tech-
niques of level one weights. The scaling technique resulting in student weights summing
up to the cluster size as well as the technique where student weights sum up to the effec-
tive sample size within clusters, perform nearly the same for all simulation scenarios
and analysed models. Therefore, both methods seem to be legitimate. Nevertheless, the
authors would like to reiterate the importance of applying school weights at level two,
as they have significant effects on most parameter estimates, and seem to be needed
to sufficiently reflect the LSA sample design in multilevel models, as it is characterized
by significantly varying school selection probabilities. Level one weights may not be as
important, because the student weights have by design a low variety within schools.

Applying the investigated weighting scenarios to real PISA data, we could show the
potential threads on validity of results and interpretation when using different weighting
methods than the recommended ones.

Limiting the explanatory power of this study is the number of relatively simple mod-
els considered. Further research is needed to evaluate the findings for more advanced
hierarchical models; for example, with random slopes, or those including multiple
predictor variables, all introducing further error terms. In particular, immigration
background, student gender and the type of school attended, for example, are also
potential predictors of the relationship between competence and social background.
Finally, other frequently used software programs like HLM (Raudenbush, 2007) could
also be examined.

Implications for practice

This simulation study has shown that using only the school weights provide the most
unbiased estimates for hierarchical models. In this approach, the final school weights are
specified as level two weights, while no weight is used at level one. Final school weights
reflect the school selection probabilities, adjusted for school nonresponse, and are typi-
cally provided with the public datasets of LSA. For PISA data, the respective variable
is named nonresponse adjusted school base weight W_NRASCHBWT in former PISA
cycles, e.g. OECD (2017). Hence, the identified preferable HLM weighting method is at
the same time one that can be implemented in a straightforward manner. This weighting
approach may be useful as well for other LSA with a similar data structure, i.e., indi-
viduals nested within clusters. Such data are for example student and teacher data of
ICILS, and teacher data of ICCS. Within some limits the findings are even applicable
to data with slightly different structure, e.g., with class sampling such as TIMSS, PIRLS
and ICCS student data. For the latter datasets, the school weight variable is called “Final
school weight”—users are referred to the technical documentation of the studies for the
respective variable names. We are confident that the findings can even be generalized to
other data with similar hierarchical structure outside the education sector, that is, data
coming from two-stage samples with varying selection probabilities at stage one, but
uniform selection probabilities at stage two. Regarding the investigated software pack-
ages Mplus and SAS, no significant differences between the programs become visible
with the preferred weighting approach of using only final school weights.
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We are confident that the recommended weighting approach will help many
researchers in the application of MLM with weights, thus driving further insightful
research in the field of LSA.
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