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Background
The discourse on the nature of mathematics, or the question of what mathematics is, has 
been a central issue in the field of mathematics education for a long time (Ernest 1998; Hersh 
2006; Niss 1999). While many discussions concerning this have been fruitful and interesting, 
it is fair to say that some of the disagreements have merely reflected communication prob-
lems related to different interpretations of the actual question (Fried & Dreyfus 2014).

On one hand, one may consider mathematics as a body of knowledge, like geography. 
This body may be referred to as mathematical theory. On the other hand, one may say 
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that mathematics is a process, it is what students in school do when they solve problems 
which are “mathematical”, or when they discover “mathematical relationships”. Clearly, 
emphasizing one or the other of these two ways of ascribing meaning to the word “math-
ematics” may correspond to different views on mathematics teaching, and maybe this is 
the reason why some discussions have turned into rather meaningless battles on words 
(Schoenfeld 2004). In this paper, we take the position that it is important to view math-
ematics both as a body of knowledge and as a process.

For developing and describing mathematics tests, frameworks for describing mathemat-
ical competencies, or mathematical literacy, have played an important role in recent dec-
ades (Gardiner 2004). Such frameworks have, for instance, been used as a theoretical basis 
for international large-scale studies such as TIMSS and TIMSS Advanced (Mullis et  al. 
2016a, b) and the mathematics in PISA (OECD 2013). While frameworks for mathematical 
competencies are clearly important for describing learning goals and measuring learning 
in schools, a one-sided emphasis on such frameworks may, given their inherent process 
orientation, tend to lead attention away from the body of knowledge aspect of mathematics. 
This may have some unfortunate consequences. One possible such consequence formed 
one of the main motivations for developing the framework used in this paper, and we will 
describe this in the next section. However, it must be emphasized that despite their com-
petence based frameworks, certainly none of the large-scale studies mentioned above can 
be said to ignore the body of knowledge aspect, or anything close to that. The point is sim-
ply that their frameworks (partly) leave open the question of to what degree the surveys 
actually relate to mathematical theory. This is the question we investigate here.

Language and content in school mathematics
At all school levels, it is clearly important that students are able to distinguish elements of 
mathematical theory which are just results of decisions made by people, such as terminology, 
notation and so forth, from results which have been discovered. Technically, the first domain 
consists of mathematical definitions, while the second consists of mathematical theorems, or 
mathematical results. In the first domain, we find definitions of mathematical concepts such 
as rectangles, triangles, prime numbers, functions and so forth. We also find conventions 
regarding notation, terminology, rules for expressing things, and so on. In the second domain 
we find the Pythagorean theorem, algebraic laws such as the distributive and commutative 
laws, and other elements of mathematical theory which require an explanation for why they 
are true, or formally speaking a proof. For elements in the first domain, students must essen-
tially learn to accept decisions made by the community. If asked “why” it is true that

for all numbers a, the teacher can do little but   essentially respond that this is so because 
mathematicians have decided so: Mathematicians have agreed that the notation

is to be shorthand for a · a · a. Similarly, if asked why a full circle is 360°, again the teacher 
can do little but explain that this is something mathematicians have agreed about. One could 
motivate the choice by going into the details of why this choice was made historically, but 
students still must accept that this is just a choice.

a
3 = a · a · a

a
3
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However, students should learn to relate in a completely different manner to ele-
ments from the second domain, namely the “theorem” domain. For these, students may 
rightfully ask for a justification, or a proof, for why the result is true. Typically, the term 
“proof” must be interpreted in the school context, that is, we are referring to explana-
tions which can give students a meaningful understanding at the grade level in question. 
And even if understanding an (intuitive) proof of the result is beyond the reach of the 
student at the present time, it is clearly an advantage if the student understands that 
there is an explanation. Then the student understands the nature of the mathematical 
situation, and avoids feeling stupid for not understanding “why” the result is true. This is 
important at all school levels. In particular, it is crucial for the long-term building up of 
mathematical understanding.

The division of mathematical theory into “definitions” and “theorems” may be consid-
ered as a distinction between mathematical language and content, respectively. For this 
reason, we refer to it as the LC distinction. The language domain represents definitions, 
while the content domain represents theorems. The formal distinction itself is described 
in the field of mathematical logic. See e.g. (Shoenfield 1967). Note, however, that while 
in mathematical logic one would typically take the word ‘language’ to mean an underly-
ing (formal) language in which both theorems and definitions are expressed, we use the 
word language in a different sense. Here, we consider new definitions as extensions of the 
mathematical language, and thus as becoming a part of it. This mechanism corresponds 
to extensions by definitions in a first order logical language, see section 4.6 in (Shoenfield 
1967). In mathematics textbooks at the university level, the distinction between theo-
rems and definitions is usually very clear and explicit. This is often not the case in school 
mathematics books. There is a deep divide between textbook traditions at different levels 
here.

It should be emphasized that the term ‘language’ is used in many different ways across 
the field of mathematics education research. Our use of it here is mathematics theory 
oriented, as opposed to, for instance, a learning theory oriented use. Speaking in terms 
of mathematics teaching, it is clearly impossible to teach content (in our sense) with-
out also teaching language; the LC distinction is not related to mathematical teaching 
or learning as processes. The distinction concerns mathematical theory as a body of 
knowledge.

When starting in school, children will typically meet a lot of L mathematics in the 
beginning stages. They will learn that numbers are written using some particular (cho-
sen) symbols, that the symbol “+” is used for adding numbers, they will be informed 
about what the word ‘rectangle’ means, and so forth. However, the C category also 
quickly comes onto the scene. When children find that 2 + 3 = 5 by counting first 2 and 
then 3 objects, they are discovering the mathematical theorem “2 + 3 = 5”. This is a math-
ematical result, so formally it belongs in the C category. However, it is normally not used 
like this in school mathematics. For this reason, we did not count results of arithmetical 
calculations as theorems (C mathematics) in our framework for categorizing test items, 
see “Methods”.

In spite of its importance at all school levels, the distinction between L and C is rarely 
discussed in mathematics education literature. See e.g., (Clements et  al. 2013; English 
& Bussi 2008; Niss 2007). It does not fit into well-known frameworks for mathematical 
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competencies (see, for instance, Kilpatrick et al. 2001; Niss 2015; Niss & Jensen 2002), 
due to the fact that neither L nor C can naturally be described as corresponding to “com-
petencies’’ when taken separately. On the other hand, the LC distinction is closely related 
to research on the role of definitions in school mathematics, for instance research con-
cerning the difference between concept image and concept definition (Niss 1999). While 
research on the role of definitions in education is related to the L side, research on the 
role of proof in mathematics education (Hanna 2000; Pedemonte 2007; Tall 2014) is 
related to the C side. However, none of the two research traditions mentioned here put 
their emphasis on the distinction between the two sides. Further, the LC distinction is 
very different from the process/object duality described in (Sfard 1991) and subsequent 
developments. Also, most of the well-known theories of concept learning in mathematics 
can essentially be viewed as adaptations of general subject-independent learning theo-
ries. As such, they fail to pick up the LC distinction, which is more or less particular to 
mathematics.

It should be remarked that the LC distinction is meaningful to speak of only relative 
to a specific way of building up mathematical theory. While in many countries today it 
is customary to define 3 · 2 to be 2 + 2 + 2, it is certainly possible to define it as 3 + 3 as 
well, thus switching the role of the factors. With the latter choice of definition, the result 
3  · 2 = 2 + 2 + 2 is formally in the C category; it is a result which can be proved. Thus 
there is a certain aspect of subjectivity to the division of mathematical theory into L and 
C. However, this does not substantially affect the situation we are considering.

The LC framework for describing dependence on mathematical theory
For reasons outlined above, it is interesting to investigate the role played by the LC dis-
tinction in school mathematics. As a part of this, it is important to investigate to what 
extent mathematics assessments measure knowledge representing each of the domains 
L and C. Are test items constructed in such a way that knowledge of mathematical the-
ory actually helps the student finding the answer to the problem, or are items designed 
in such a way that students must essentially start from scratch on each of them, using 
(maybe) some mathematics language to decode the given problem and to express their 
answer correctly?

We will now describe a framework for investigating this which was outlined in (Hole 
et al. 2015, 2017). We refer to this as the LC framework. This framework may be applied 
to any test consisting of a set of test items, which in the following we will refer to sim-
ply as items. Items may be multiple choice or open response. In the open response 
case, we assume that there are precise rules defining criteria for a correct answer. In 
the assessment studies we will consider here, such criteria are given in precise scoring 
guides. The LC framework then classifies items according to two dichotomies:

1.	 For describing dependence on the L (language) domain, we use a dichotomy which 
we refer to as the formula/no formula dichotomy, or the F/NF dichotomy. Since the 
LC framework is aimed at measuring mathematical theory, the F/NF dichotomy 
is addressing “formal” parts of mathematical language. Typically, such formal lan-
guage will be represented by formulas at the school levels in question. The catego-
ries in the F/NF dichotomy are taken to be (i) the set of items where some formula 
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is involved either in the item text or in the expected student solution, and (ii) the 
set of items where it is not. We refer to (i) as the formula category, or the F cat-
egory. Category (ii) we refer to as the no formula category, or the NF category.

2.	 For describing dependence on the C (content) domain, we use a dichotomy which 
we refer to as the theorem/no theorem dichotomy, or the T/NT dichotomy for short. 
The two categories in this dichotomy are (i) the set of items for which knowledge of 
some mathematical theorem is helpful for solving the item, and (ii) the set of items 
where it is not. We refer to (i) as the theorem category, or the T category. Category 
(ii) we refer to as the no theorem category, or the NT category.

It must be emphasized that both of these dichotomies are simple measures which 
clearly do not represent all aspects of the general LC distinction. In particular, formu-
las clearly do not represent all parts of what could be reasonably labeled “formal math-
ematical language”. However, one can argue that the degree of dependence on formulas 
is typically symptomatic of the general dependence on “formal” mathematical language 
in a mathematics test.

Concerning the F/NF dichotomy, we take a formula to mean a mathematical expres-
sion involving variables. For an item to fall into the F category, one of the following three 
criteria must be met:

• • The item contains a formula which the student must use, or
• • The item asks the student to construct a formula, or
• • There is a formula which a typical student would use in solving the item.

As a “formula” we accept both algebraic/symbolic expressions and equations including 
such expressions. We also accept formulas in which variable names are complete words, 
as in

However, we require that the formulas include variables of some sort. For example, 
pure arithmetic statements such as 6 + 7 = 13 are not counted as formulas.

Note that the F/NF dichotomy does not measure involvement of “informal” math-
ematical language, including terminology of various kinds. Examples of this include 
“math words” like rectangle, triangle, circle, angle, symmetry, fraction, decimals and so 
on. Many of these words are also widely used outside of mathematics, so they are part 
of the general language. However, they have become “math words” because there are 
interesting mathematical theorems tied to them. The word ‘circle’ has both an everyday, 
intuitive meaning and a precise mathematical definition. While dependence on knowl-
edge of such forms of mathematical language is also important, it is not picked up by our 
F/NF dichotomy.

For an item to fall into the T category, one of the following two criteria must be met: 
Either the item is designed in such a way that some theorem presumably known to the 
student significantly simplifies the task of solving the item, or the item is such that one 
would expect use of some theorem from the student. If the student is expected to reason 

distance = speed · time
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from scratch, without using any (possibly relevant) theorems, then the item falls in the 
NT category.

Examples of theorems relevant in a school mathematical context include algebraic 
laws such as

Further, we have theorems expressing rules for solving equations and inequalities alge-
braically, such as the possibility of adding, subtracting, dividing or multiplying with the 
same positive number on both sides. In school geometry, we have for instance

• • Formulas for area and circumference of various geometric figures such as rectangles, 
triangles, circles and so forth.

• • Formulas for volume and surface area of pyramids, cones, spheres and prisms etc.
• • Geometric results like the Pythagorean theorem, sentences about the relations 

between sides in similar triangles, the rule that the shortest side in a 30/60/90 trian-
gle is half the hypotenuse, the fact that the angle sum in a triangle is 180°, the method 
for constructing 60° by compass and ruler.

In applying the LC framework to a test, each test item is given both a T/NT score and 
an F/NF score. The idea is that taken together, the T/NT and F/NF dichotomies can give 
an interesting measure of mathematical theory involvement, that is, the degree to which 
knowledge of such theory is helpful for the student attempting to solve the item. While 
the T/NT dichotomy in a way distinguishes between content and pure language, the F/
NF dichotomy measures to what extent the mathematical language involved is “formal”.

Research questions
Large-scale international comparative studies of student competence have had a big 
impact both on research in education and on educational policies in the recent decades. 
Therefore, these studies are interesting objects of study using our non-competence-
based LC framework. In this paper, we apply the LC framework to the following four 
international large-scale assessments:

a.	 IEA TIMSS 2011 Grade 8 Mathematics (Mullis et al. 2012)
b.	 OECD PISA 2012 Mathematics (OECD 2013)
c.	 IEA TIMSS Advanced 2015 Mathematics (Mullis et al. 2016b)

ab = ba

a(b+ c) = ab+ ac

a− (b+ c) = a− b− c

a

c
+

b

c
=

a+ b

c

a

b
=

ac

bc
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d.	 IEA TIMSS Advanced 2015 Physics (Mullis et al. 2016b).

Concerning (d), note that because of its context-independent nature, the LC frame-
work may be used also for measuring the dependence on mathematical theory in tests 
used in subjects outside of mathematics itself. In principle, the LC can be used to meas-
ure dependence on mathematical theory in any test in any subject, at any level. Concern-
ing the choice of assessment years for the four studies, note that the students tested in 
TIMSS Advanced 2015 (grade 13) will correspond roughly to the age cohorts measured 
by PISA in 2012 (approximately grade 10) and TIMSS grade 8 in 2011. This facilitates 
our possibilities of drawing conclusions across the different studies. See also (Grønmo & 
Onstad 2013). Our research questions concerning these four studies were:

i.	 What is the degree of mathematics theory involvement in each of the studies, as 
measured by the F/NF and T/NT dichotomies?

ii.	 How are the results of (i) related to student achievement in different countries and 
groups of countries?

Concerning (ii), previous research has shown quite robust achievement profiles for 
these studies with respect to regions such as Western countries, Eastern European coun-
tries and East Asia (Grønmo et  al. 2004; Olsen & Grønmo 2006). Therefore, we were 
interested in exploring these regions in relation to (ii).

It should be emphasized that the four studies we consider here differ in their aims. In 
particular, there is a clear difference between PISA and the IEA studies. The IEA stud-
ies are curriculum based in the sense that their test items, and in part also their frame-
works, are based directly on the curricul a  of participating countries (Mullis & Martin 
2014; Mullis et al. 2003). In contrast, PISA is based on a concrete theoretical framework 
modeling the concept of mathematical literacy (OECD 2003). As a result of the frame-
work used, PISA test items are generally more concerned with applications and every-
day mathematics than the IEA items. In particular, every PISA problem is required to 
have a context. While contexts and everyday mathematics problems can be found in the 
IEA studies as well, there are also pure mathematics problems in the IEA studies. This 
reflects, of course, that both problems with contexts and pure mathematics problems are 
covered in the curricula of the participating countries. As a result, the IEA studies can 
be perceived as by intention being more concerned with “pure mathematics” than PISA. 
This should be taken into account when interpreting the results of this paper.

Methods
Classifying test items with the F/NF and T/NT dichotomies has elements of subjectivity 
in it, and therefore we use a methodology with groups of scorers and inter-scorer reli-
ability. Prior to the actual classification of test items, we made some specifications con-
cerning F/NF and T/NT which may be considered (partly) dependent on the particular 
kind of assessments we were considering. Among other things, we made lists of theo-
rems which can typically be known to students at the ages in question. We also made a 
list of things which people may believe are theorems, but which actually represent defi-
nitions. This list included the fact that two negative numbers multiplied gives a positive 
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number, the fact that 1  km = 1000  m, the rules a0 = 1 and a−n = 1/an, and statements 
such as a3 = a · a · a and 3 · x = x + x + x.

We agreed that pure arithmetic results such as 1 + 3 = 4 were not to be considered as 
meeting the T criteria in our context. The reason was mentioned above: Despite these 
formally being things one discovers, so that formally they are theorems, they are not 
treated as such in the context we are considering, namely school mathematics.

Our categorization of PISA 2012 and TIMSS 2011 grade 8 mathematics test items was 
carried out with two groups of scorers (N1 = 4 and N2 = 2). The N1 group conducted two 
complete cycles of classifying all the PISA 2012 and TIMSS 2011 grade 8 mathematics 
items in both dichotomies, developing the guidelines described in “The LC framework 
for describing dependence on mathematical theory” and “Research questions” along the 
way. The numbers of TIMSS and PISA items classified were 217 and 85 respectively. The 
“Easy booklet” items from PISA (OECD 2013) were not included. Disagreements con-
cerning interpretations of the guidelines were discussed before the second cycle of cate-
gorization. The inter-rater reliability (IRR) was measured using Fleiss’ kappa. For details, 
see (Fleiss et al. 1969). As seen in “Classification results”, there was a significant increase 
in coherence among the scorers in the N1 group from the first cycle to the next.

To test the transferability of our framework, we used the N2 group. The N2 scorers 
were given a short, written account of the classification criteria discussed in “The LC 
framework for describing dependence on mathematical theory” and “Research ques-
tions”, and they briefly discussed the criteria with members of the N1 group. The N2 
group then conducted one complete cycle of categorization for both PISA and TIMSS. 
The inter-rater reliability in the second group was lower than in the first group, which 
conducted two full classification cycles. This illustrates that communicating our cat-
egorization framework in the short form we used, was problematic. However, as will 
be reported in “Classification results”, the IRR of the full group of six scorers remained 
acceptable.

For the classification of TIMSS Advanced items, we used a procedure slightly different 
from the one described above. The classification procedure was also slightly different in 
the two subjects we addressed, namely physics and mathematics. For both subjects, we 
did a first round of classifications in the Spring of 2015, using master students work-
ing as scorers for TIMSS Advanced 2015 in Norway. We used 4 scorers in each of the 
subjects. Prior to their classification, the students were given a 1 h briefing on the LC 
framework. In our discussion, we considered some examples from our previous classi-
fications of items from PISA and TIMSS grade 8 (Hole et al. 2015). After this session, 
the students performed one cycle of classification of the TIMSS Advanced 2015 items, 
with no possibility of discussing along the way. The inter-rater reliability (IRR) was again 
measured using Fleiss’ kappa. In physics, the kappas for this first round of classification 
were .70 and .67 for the F/NF and T/NT dichotomies, respectively. Given the partly sub-
jective nature of our dichotomy definitions, we considered these kappas satisfactory. In 
fact, given that the master students performed only one cycle of classification, with only 
a modest prior briefing, the kappas may be considered surprisingly high.

In mathematics, the kappas for the first round of TIMSS Advanced 2015 classification 
were .53 and .23 for the F/NF and T/NT dichotomies, respectively. While these values 
of kappa are interesting when it comes to discussing transferability of the framework, 
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we considered the kappa value .23 too low for giving a reliable picture for the TIMSS 
Advanced items. Therefore, we conducted a new classification of the TIMSS Advanced 
2015 mathematics items in the Spring of 2017, using a different group of 4 scorers. These 
scorers were researchers. They did a two-cycle classification, in which some results from 
the first round were discussed prior to a second round. The kappas for the final round 
of mathematics classifications were .72 and .68 for the T/NT and F/NF dichotomies, 
respectively.

In (Hole et al. 2015), an explanatory item response theory (IRT) approach was used for 
a preliminary investigation of to what extent dependence on mathematical theory might 
impact item difficulty. This analysis was done for Norwegian TIMSS grade 8 data only. A 
random item Rasch model was fitted to the Norwegian TIMSS 2011 data, with the two 
explanatory item predictors T (dependence on theorems) and F (dependence on formu-
las), taken from the T/NT and F/NF dichotomies. The analysis was based on a consensus 
categorization using the full group of six scorers: an item was scored 1 on a dichotomy if 
at least five out of six raters agreed on categorizing it as T or F respectively; if there was a 
4-2 or 3-3 disagreement, the item was scored .5, and 0 otherwise.

In the present paper, the IRT approach of the initial investigation is replaced by an 
analysis of mean p-values for items in the different categories. A reason for this change 
in approach is that we find differences in mean p-values a bit easier to interpret in com-
parisons between countries and groups of countries, which we focus on in the present 
paper. Among the things we investigate, are differences between countries and groups 
of countries in the differences in mean p-values for F and NF (resp. T and NT) within 
each country. For these analyses of differences in differences, it is convenient to have the 
results directly expressed as a difference in p-values, that is, in the percentages of tested 
students solving the item correctly.

Classification results
The results of the PISA and TIMSS grade 8 classifications are given in Tables 1 and 2. 

Table 1  Classification of PISA and TIMSS grade 8 items using the F/NF dichotomy, in per-
centages of items

PISA math 2012 (%) TIMSS grade 8 math 2011 (%)

Classified as F [using formula(s)] by at least 5 of 6 scorers 18.8 21.7

Opinions divided (4-2 or 3-3) 9.4 13.4

Classified as NF [not using formula(s)] by at least 5 of 6 
scorers

71.8 65.0

Table 2  Classification of PISA and TIMSS grade 8 items using the T/NT dichotomy, in per-
centages of items

PISA math 2012 (%) TIMSS grade 8 math 2011 (%)

Classified as T [using theorem(s)] by at least 5 of 6 
scorers

11.8 19.3

Opinions divided (4-2 or 3-3) 2.4 7.4

Classified as NT [not using theorem(s)] by at least 5 of 
6 scorers

85.9 73.3
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Table 3 describes the coherence between scorers in the full group of six scorers used 
for our PISA and TIMSS grade 8 classifications. Note that in particular, the percentages 
of items where there is a 6-0 or 5-1 agreement are high. This shows that the classifica-
tion data used for our investigations concerning the relation to student achievement (see 
below), are quite robust.

The results of our TIMSS Advanced 2015 mathematics and physics items F/NF clas-
sification are given in Table 4.

The results of our TIMSS Advanced 2015 mathematics and physics items T/NT clas-
sification are given in Table 5.

Based on these results, if we list the four studies according to increasing percentages of 
items for which knowledge of mathematical theorems is considered relevant for solving 
the item, that is, the percentages of items categorized as T, we obtain the following:

1.	 PISA 2012 Mathematics: 11.8% items T, and 18.8% items F
2.	 TIMSS Advanced 2015 Physics: 14.6% items T, and 31.1% items F
3.	 TIMSS 2011 grade 8 Mathematics: 19.3% items T, and 21.7% items F
4.	 TIMSS Advanced 2015 Mathematics: 78.6% items T, and 67.0% items F

Thus, when we measure things this way, TIMSS Advanced physics is found to involve 
more mathematical theory than PISA 2012 mathematics. The involvement of math-
ematical theory in TIMSS Advanced mathematics is, not surprisingly, found to be 

Table 3  Coherence in the full group of scorers on TIMSS grade 8 and PISA

The first number is the percentage of items where all six scorers agreed on the classification. The number in the straight 
brackets is the percentage of items for which at least 5 scorers agreed. The number in parentheses is inter-rater reliability as 
measured by Fleiss’ kappa

PISA math 2012 TIMSS grade 8 math 2011

T/NT classification 88.2% [97.6%] (.82) 78.8% [92.6%] (.76)

F/NF classification 77.6% [90.6%] (.74) 65.4% [86.6%] (.65)

Table 4  Classification of TIMSS Advanced items using the F/NF dichotomy, in percentages 
of items

TA 2015 mathematics (%) TA 2015 physics (%)

Classified as F [using formula(s)] by at least 3 of 4 scorers 67.0 31.1

Opinions divided (2-2) 8.7 7.8

Classified as NF [not using formula(s)] by at least 3 of 4 
scorers

24.3 61.1

Table 5  Classification of TIMSS Advanced items using the T/NT dichotomy, in percentages 
of items

TA 2015 mathematics (%) TA 2015 physics (%)

Classified as T [using theorem(s)] by at least 3 of 4 scorers 78.6 14.6

Opinions divided (2-2) 2.9 5.8

Classified as NT [not using theorem(s)] by at least 3 of 4 
scorers

18.4 79.6
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much larger than in all the other studies. Note that except for TIMSS Advanced Physics 
switching places with TIMSS grade 8, the list would be the same if we ordered the stud-
ies by increasing F percentages. This indicates the natural relationship between the two 
dichotomies used; they both measure mathematical theory involvement.

Results on the relation to student achievement in TIMSS 2011
The preliminary explanatory IRT analysis carried out in (Hole et al. 2015) showed that 
for the Norwegian TIMSS 2011 grade 8 mathematics data, the dependence on formulas 
(corresponding to the category F) led to a relatively large average increase in item dif-
ficulty. In other words, dependence on “formal” mathematical language, as measured by 
the LC framework, tended to make an item more difficult for the Norwegian grade 8 stu-
dents in TIMSS 2011. On the other hand, the need for theorems (corresponding to the 
category T) was found to lead only to a small increase in item difficulty. The latter result 
could be interpreted as indicating that the survey included also many items which are 
relatively difficult to solve, but which are constructed in such a way that knowledge of 
actual mathematical results (theorems) does not help you significantly in solving them.

Since the preliminary investigation in (Hole et al. 2015) was done for Norwegian data 
only, its results are of limited interest. However, the results indicate that extending the 
analysis to different countries and groups of countries, could be interesting. We will turn 
to these matters now.

Concerning differences between countries in TIMSS 2011, we define the following 
groups of countries selected from the TIMSS 2011 grade 8 mathematics participants:

• • East Asia group: Japan, Hong Kong, Singapore
• • Eastern Europe group: Hungary, Kazakhstan, Russia, Slovenia, Ukraine
• • Western group: England, Finland, Norway, Sweden, Italy, USA

For each group of countries, the students tested are pooled together directly, as if they 
were from one united country. The reason why the chosen Eastern Europe and Western 
groups include more countries than the East Asia group, is that we want to have some 
extra flexibility when it comes to comparing with subgroups of countries in these cases. 
Of course, this is a decision which is colored by our own Norwegian perspective. While 
the direct pooling approach does not produce a representative sample for the region 
itself, we find this a better solution than taking the averages for each country separately 
and then averaging the averages across each country group. In our simple approach, 
both the results themselves and their theoretical shortcomings are easy to describe and 
interpret.

In TIMSS and TIMSS Advanced, there are both 1 point items and 2-point items. For 
the 2-point items, 1 point can be interpreted as “half correct”. Students obtaining 1 
point therefore are counted as “half right” in the calculation of the item p-value. More 
precisely, the p-value is calculated by adding the number of students achieving 1 point 
divided by 2 to the number of students achieving 2 points, and then dividing this sum by 
the total number of students who were assigned the item (Martin et al. 2016).

For TIMSS 2011 grade 8 mathematics we obtained the results in Table 6.
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While our main motivation for this analysis was the third column of Table 6, namely 
the differences in average p-values for the country groups, at first glance maybe the most 
striking feature of Table 6 is simply the huge differences between country groups in the 
NF and F columns themselves. For the set of items classified as F, the average p-value 
in the East Asia group is 65%, while for the group of Western countries this p-value is 
only 30%. For Norway, it is only 22.5%. This simple result indicates huge differences in 
student achievement in “formal mathematics” between East Asia and Western countries. 
From the NF–F column, we see that in all country groups, the set of F items is found to 
be more difficult than the set of NF items. However, the differences NF–F vary strongly 
between the different regions. These variations in differences confirm and extend pre-
vious results concerning different country region achievement profiles in international 
mathematics assessment studies (Grønmo et al. 2004; Olsen & Grønmo 2006). Western 
countries put less emphasis on formal mathematics than the other regions. In particular, 
this is the case for the Nordic countries (Norway and Sweden). Norway taken alone is 
even more extreme.

Results on the relation to student achievement in TIMSS Advanced 2015
In this section, we investigate relations between our classification results for TIMSS 
Advanced 2015 and student achievement. Due to the relatively low number of par-
ticipating countries in TIMSS Advanced, in this case we consider individual countries 
rather than country groups. In our analysis, we use data from seven of the participating 
countries, along with international averages.

We consider physics first. For each given country, if we calculate the mean p-value 
for the set of physics items classified as NF and subtract the mean p-value for the set of 
items classified as F, we obtain the results in Table 7.

Similarly, if we calculate the mean p-value for the set of physics items classified as NT 
and subtract the mean p-value for the set of items classified as T, we obtain the results in 
Table 8.

For the physics classification, the four groups of items we consider here, namely F, NF, 
T and NT, all contain at least 15 items. Also, none of the individual p-values for any of 
the items in any of the countries we consider have a standard error of more than 3.9% 
(see the international data base at timssandpirls.bc.edu). Therefore, the standard errors 
for the average p-values of the four item groups all are less than 3.9/

√
15. The standard 

errors of the differences in Tables  7 and 8 are then found by multiplying by 
√
2, giv-

ing us approximately 1.42. Multiplying by 1.96, we see that the 95% significance level 

Table 6  Average p-values for  the NF and  F item categories in TIMSS 2011 grade 8 math-
ematics

NF average p-value (%) F average p-value (%) Difference NF–F (%)

East Asia group 71.0 65.0 6.0

Eastern Europe group 52.9 49.4 3.5

Western group 39.4 30.2 9.2

Norway and Sweden 39.1 24.7 14.5

Norway 39.1 22.5 16.6

https://timssandpirls.bc.edu
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corresponds to a deviation of a little less than 3%. In other words: The differences listed 
in Tables  7 and 8 are significant if they are at least 3%. Hence almost all of them are 
significant.

From Table 7, we see that all countries except for Russia and Slovenia have a signifi-
cant, positive difference between the mean p-values for NF and F, indicating that stu-
dents in these countries tend to find items involving formulas more difficult than items 
not involving formulas. Slovenia is listed with a significant, negative difference in Table 7, 
indicating that Slovenian students tend to find items involving formulas easier than 
other items. We see that all the countries in Table 8 have a significant, positive differ-
ence between the mean p-values for NT and T, indicating that students generally tend to 
find physics items for which knowledge of some mathematical theorem is relevant, more 
difficult than other physics items. The effect is most pronounced in France, followed 
by Norway. The effect is much smaller in Russia and Slovenia, paralleling the results in 
Table  7. Generally, the difference between the differences for two countries taken from 
Tables 7 and 8 will be significant if it exceeds 3% multiplied by 

√
2. Hence, if such dif-

ferences in differences are above 4.25%, they are significant. As an example, since the 
Norwegian value minus the Russian value in Table 8 is around 8%, we may conclude that 
Norwegian students are significantly more “negative” to relevance of mathematical the-
orems in physics items than Russian students. The relation between TIMSS Advanced 
physics achievement and other measures of mathematics competence in Norway and 
Sweden has previously been addressed in (Lie et al. 2012; Nilsen et al. 2013).

Table 7  Differences between  average p-values for  NF items and  F items in  TIMSS 
Advanced 2015 physics

Country Difference NF–F, physics (%)

Norway 7.67

Sweden 3.82

USA 5.86

Russia − .21

France 14.04

Slovenia − 4.70

Portugal 3.18

Table 8  Differences between  average p-values for  NT items and  T items in  TIMSS 
Advanced 2015 physics

Country Difference NT–T, physics (%)

Norway 13.76

Sweden 11.42

USA 10.63

Russia 5.40

France 19.88

Slovenia 5.50

Portugal 8.98
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Now, let us turn to TIMSS Advanced 2015 mathematics. As before, we calculate the 
mean p-value for the set of items classified as NF and subtract the mean p-value for the 
set of items classified as F. We then obtain the results in Table 9.

Similarly, if we calculate the mean p-value for the set of items classified as NT and 
subtract the mean p-value for the set of items classified as T, we obtain the results in 
Table 10.

For the mathematics classification, both the T and the NT group contain at least 15 
items. The F and NF groups both contain at least 25 items. None of the individual p-val-
ues for any of the items in any of the countries we consider have a standard error of 
more than 3.9% (see the international data base at timssandpirls.bc.edu). Calculating as 
above, we may conclude that the differences listed in Table 9 are significant if they are at 
least 2.2%, while the differences in Table 10 are significant if they are at least 3%. Hence 
almost all of the differences in Tables 9 and 10 are significant. Differences in differences 
will be significant if they are above 3.1% in Table 9 and 4.25% in Table 10. For instance, 
we can see from Table 9 that the difference NF–F is significantly larger in Norway than 
in Russia and Slovenia.

In Table 9, we see a pattern which is strikingly similar to the corresponding result for 
physics given in Table 7. The Eastern European countries, and Russia in particular, show 
a lower difference in average p-values between items depending on formulas and items 
which do not. The country with the biggest difference is Norway.

The results for the NT–T difference in mathematics (Table  10) are different. In this 
table, the Nordic countries show the smallest difference. This result is very interesting, 

Table 9  Differences between average p-values for NF items and F items in TIMSS Advanced 
2015 mathematics

Country Difference NF–F, mathematics (%)

Norway 12.54

Sweden 9.79

USA 10.53

Russia 4.46

France 12.13

Slovenia 8.98

Portugal 10.96

Table 10  Differences between  average p-values for  NT items and  T items in  TIMSS 
Advanced 2015 mathematics

Country Difference NT–T, mathematics (%)

Norway − 2.14

Sweden − 1.83

USA 5.82

Russia 3.46

France 9.74

Slovenia 8.57

Portugal 10.11

https://timssandpirls.bc.edu
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since it appears to go against the rule that Western countries, and in particular the Nor-
dic countries, do not perform well on “formal” mathematics. However, there are sev-
eral possible interpretations, and we cannot draw any conclusions here. It could be the 
case that while students from Norway and Sweden do not perform particularly well 
on items requiring just “basic”, but yet formal mathematics, for instance basic algebra, 
their curricula do include a variety of theorems which help them in solving a number of 
more heavily “theorem-dependent” items. The combined results from Tables 9 and 10 
then could be interpreted as indicating that curricula in Norway and Sweden are quite 
advanced when judged by the topics covered, but that formal mathematical language 
is not emphasized very strongly when students are working with these topics. More 
research is needed on this, for example about the relation between the amount of topics 
covered and student learning of formal mathematical language such as algebraic sym-
bolic expressions in school mathematics.

Conclusions
The results of “Classification results” show that there are big differences between the 
studies considered when it comes to dependence on mathematical theory, as measured 
by the LC framework. In PISA 2012, only 11.8% of the mathematics items are found to 
be such that some mathematical theorem which the student can typically be assumed to 
know about, is helping the student in solving the item. Only 18.8% of the mathematics 
items in PISA involve mathematical formulas. More than two-thirds of the PISA math-
ematics items are independent of both mathematical results (theorems) and formulas. 
In solving these items students must essentially reason from scratch, possibly using 
knowledge of math words like “rectangle” and other informal parts of mathematical lan-
guage. Also in TIMSS grade 8, more than half of the items are in both categories NT and 
NF. However, the relevance of mathematical theory is found to be much bigger here. It 
should also be taken into account that on average, the students tested in TIMSS grade 8 
are 1–2 years younger than those tested in PISA. This shows that PISA and TIMSS grade 
8 measure mathematical competencies in quite different ways. Naturally, this reflects the 
fact that while the curriculum based nature of the TIMSS framework gives it a stronger 
emphasis on formal mathematics, PISA is more concerned with the use and application 
of mathematics outside the formal curriculum.

Our analysis in “Results on the relation to student achievement in TIMSS 2011” on 
the relation between item difficulty and dependence on formal mathematical language 
as measured by the LC framework in TIMSS grade 8 indicates that there are clear dif-
ferences between school mathematics cultures in different regions of the world. East-
ern European countries put more emphasis on formal mathematics than is the case in 
Western countries, and in particular Nordic countries. These results confirm earlier 
findings on achievement profiles in different regions of the world (Grønmo et al. 2004; 
Olsen & Grønmo 2006). Note however that our results are not tied to different subject 
areas of mathematics. Instead, they express differences in a more general characteristic 
of a mathematics education system: the emphasis on formal mathematics. At the school 
levels in question, of course much work with formulas is done within the subject area 
of algebra. However, there are F items in geometry and statistics (“data and chance”) as 
well.
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In East Asia, students perform well both on formal (F) items and informal (NF) items.
Turning to TIMSS Advanced, the results on the relation between LC classification 

and student achievement in “Results on the relation to student achievement in TIMSS 
Advanced 2015” show that physics students from Western countries, and in particu-
lar from the Nordic countries, clearly have a lower average p-value on items for which 
knowledge of mathematical theory is relevant, compared to their average p-value on 
other items. For physics students from Eastern Europe, this effect is much smaller, and 
in some cases even reversed. In the case of mathematics, we see a similar picture in the 
case of item dependence on mathematical formulas. The pattern is also similar to the 
corresponding results from TIMSS grade 8, underlining the robustness of the cultural 
differences. In TIMSS Advanced, it is also striking that the cultural pattern among coun-
tries is so similar across the two subjects tested, namely mathematics and physics. The 
subject is changed, the students are changed, the age group is changed, but the differ-
ences remain largely the same. This signals that we are dealing with deep differences in 
school traditions between countries.

For TIMSS Advanced mathematics item dependence on mathematical theorems, 
we obtain a result which seems to form an interesting exception to the general pattern 
described above. Here, we find that the Nordic countries are the only ones with a higher 
average p-value on items depending on theorems than the average p-value on items 
which do not. This interesting result may, for instance, be due to differences between 
countries regarding the aspects of mathematical theory emphasized in the curriculum, 
such as the amount of advanced topics covered versus the use of formalized mathemati-
cal language. More research is needed here. A possible interpretation is that while in 
Sweden and Norway the curricula of the populations tested in TIMSS Advanced are 
quite advanced when judged by the topics covered, formal mathematical language such 
as algebraic expressions is not emphasized very strongly when students are working with 
these topics.
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