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Background
Recent publications have re-ignited interest in the approach to modeling used to gen-
erate achievement measures for large scale assessments such as NAEP and PISA. Even 
though the foundations and statistical methodology behind these models have been 
extensively covered for over 3 decades (Mislevy 1984, 1985; Mislevy and Sheehan 1987), 
there continue to be concerns about their ability to provide appropriate estimates of 
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population statistics such as means and variances (e.g. Goldstein 2004; Cohen and Jiang 
1999). In addition, the latent regression methodology used to estimate population char-
acteristics which, in practice, is combined with the method of plausible values (a form of 
multiple imputation) to produce achievement measures for secondary analyses, contin-
ues to be scrutinized as to whether such measures are suitable inputs for econometric 
modeling (Jacob and Rothstein 2016). Although the latent regression modeling and the 
associated imputation methodology have been the focus of a large number of publica-
tions showing that these methods produce unbiased population estimates (e.g. Mislevy 
et al. 1992; von Davier 2007; von Davier and Mislevy 2009: Marsman et al. 2016), the 
recent article by Jacob and Rothstein (2016) [henceforth JR] questions the increasing use 
by economists of the test scores so generated as credible measures of human capital.

The goal of that article was to address important issues that arise when such meas-
ures of student ability are employed in statistical analyses. The article’s broad coverage is, 
in our view, both welcome and somewhat problematic: The issues arising with conven-
tionally designed standardized tests (e.g. end-of-course tests, college admissions tests) 
are different from those that arise in the analysis of data from large-scale assessment 
surveys (LSAS) such as the National Assessment of Educational Progress (NAEP), Pro-
gramme for International Student Assessment (PISA), Trends in International Math and 
Science Studies (TIMSS), Progress in International Reading Literacy Study (PIRLS), and 
Programme in the International Assessment of Adult Competencies (PIAAC). Conse-
quently, it is important to clearly distinguish between these two assessment categories.

In this article we address many of the questions and concerns related to the conduct of 
LSAS and the analysis of data that result from their administration. Although the origi-
nal impetus was to respond to the JR article, our present goal is broader: To provide 
a clear but comprehensive description and evaluation of the present state of the tech-
nology for LSAS. In particular, drawing on an extensive psychometric and statistical lit-
erature, we argue that secondary analysts, following generally accepted procedures, can 
indeed draw valid and useful results from LSAS databases. Our principal methodologi-
cal focus is on the use of so-called plausible values that are related to the estimation of 
an individual’s cognitive proficiency (described below).

LSAS draw probability samples from the target population and administer to the sam-
pled individuals one or more cognitive tests and an extensive background questionnaire 
(BQ). Crucially, LSAS are specifically designed—and only intended—to yield group-level 
statistics, and are not aimed at reporting results for individuals. However, LSAS do gen-
erate and employ individual level imputations that incorporate information from both 
test performance and the BQ. The imputations are random draws from a conditional dis-
tribution that represents an estimate of the individual’s proficiency, as well as the uncer-
tainty associated with that estimate. These imputations are called plausible values in 
the LSAS literature. Plausible values play a critical role in obtaining unbiased estimates 
of group-level descriptive statistics (averages, percentiles, etc.), as well as of regression 
coefficients in models of relationships between cognitive skills and background varia-
bles such as gender, educational attainment, and immigrant status (e.g. von Davier et al. 
2009).

LSAS produce publicly available databases that can be used to conduct a large vari-
ety of statistical analyses. There are a number of software tools available through the 
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organizations conducting LSAS that facilitate access to and analyses of these databases. 
For example, the National Center for Education Statistics (NCES) provides an online 
analysis tool called the International Data Explorer (available at https://nces.ed.gov/sur-
veys/international/ide/) which allows access to databases from the PISA, TIMSS, PIRLS, 
and PIAAC.

The focus of LSAS on facilitating the study of (only) group-level statistical associa-
tions between test performance and background variables, or between test performance 
and other outcomes, offers test developers greater flexibility than usual. This has led to 
test designs that differ from the ones used in more typical settings. The designs used 
in LSAS have many advantages, among them an ability to incorporate a much larger 
pool of tasks than would be possible when administering the same test to all test takers, 
However, they also require the application of more sophisticated measurement models 
in order to generate the cognitive data that are used in primary (descriptive) and second-
ary (model-based) analyses (Mislevy 1991; von Davier et al. 2007). Unfortunately, these 
measurement models and the properties of their output have sometimes caused confu-
sion resulting, on occasion, in inappropriate analyses and faulty interpretations.

JR set out to clear up this confusion and to offer cautions on the use of the cognitive 
data from LSAS in secondary analyses. As measurement scientists and test designers 
we applaud efforts to inform economists (and others) about the relevant issues and to 
encourage best practices. However, we feel that in this instance the effort falls somewhat 
short of the goal and, in some matters, obscures rather than clarifies the potential these 
databases offer for secondary analysis. Accordingly, we offer our perspective on these 
matters.

Theories and models of measurement
JR correctly emphasize the importance of understanding what it is that the test meas-
ures; that is, the underlying construct that delineates the cognitive skills that are the tar-
get of inference. To say that the test measures first year high school math is insufficient 
as there are many ways to conceptualize this construct, leading to very different tests. 
For example, both PISA and TIMSS assess topics appearing in early secondary mathe-
matics curricula. However, the assessment frameworks (OECD 2013; Mullis and Martin 
2009) they have developed are quite different, as are the assessment instruments that are 
aligned to those frameworks. Consequently, it is not surprising that the relative perfor-
mance of subpopulation groups and administrative jurisdictions can vary considerably 
across these two LSAS (e.g. Wu 2010). Related issues regarding careful definition of the 
underlying constructs and how they affect test development and test use are treated in 
Braun and Mislevy (2005) and Mislevy and Haertel (2006).

Traditionally, the statistical models employed in the analysis of test data are those 
associated with classical test theory (CTT) or item response theory (IRT) (Lord and 
Novick 1968). Briefly, CTT conceives of an observed test score as the sum of a “true 
score” and a random disturbance. Under reasonable assumptions, CTT leads to defini-
tions and calculation formulas for such familiar quantities as test reliability. It is still an 
important tool in day-to-day test analysis, especially if a single test form with a simple 
(linear) test design is used.

https://nces.ed.gov/surveys/international/ide/
https://nces.ed.gov/surveys/international/ide/
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By contrast, in its simplest incarnation, IRT begins with the notion of a latent trait that 
represents the construct and the assumption that each individual has some (unknown) 
value with respect to that trait. The goal of the test is to estimate as well as possible the 
unknown value for each individual. For each item in the test it is assumed that there is 
a “dose–response” curve that describes the probability of obtaining the correct answer 
(the response) as a function of the values of the latent trait (the dose).

JR describe different types of estimators of proficiency used in test analyses with IRT. 
However, their statements regarding these estimators are at odds with the literature. 
Specifically, JR state that “…the typical test has relatively few items…” and directly below 
that “…student ability [is] …estimated directly via maximum likelihood …[and] resulting 
estimate is (approximately) unbiased in most cases…” (p. 95) However, the maximum 
likelihood estimator (MLE) for the latent trait in IRT models is not unbiased (Kiefer 
and Wolfowitz 1956; Andersen 1972; Haberman 1977). The extent of the bias is directly 
related to the number of items, so that MLEs for tests with “relatively few items” will 
exhibit a more pronounced bias, as well as considerable noise. The bias of ML estimates 
can be examined formally, and even reduced, by the methods proposed by Warm (1989) 
for IRT and by Firth (1992, 1993) for a more general class of latent variable models. The 
weighted likelihood estimate (WLE), as the estimator proposed by Warm (1989) came 
to be known, eliminates the first order bias of the MLE (see also Firth 1993). It turns 
out that these bias corrections of the MLE are equivalent to Bayes modal estimators 
using the Jeffreys (1946) prior for a number of commonly used IRT models. This asser-
tion holds for the Rasch model and the 2PL model (Warm 1989), and estimators of this 
type are available for several polytomous IRT models, including some polytomous Rasch 
models (von Davier and Rost 1995, von Davier 1996). Recently Magis (2015) verified this 
equivalency for ‘divide by total’ and ‘difference’ type polytomous IRT models.

The use of IRT in the construction of score scales is now considered best practice in 
many areas of test analysis (van der Linden 2016; Carlson and von Davier 2013; Embret-
son and Reise 2000). It has gained further support from research that shows IRT to be 
a special case of a much larger class of latent variable models that is commonly used in 
applied statistics (Takane and de Leeuw 1987; Moustaki and Knott 2000; Skrondal and 
Rabe-Hesketh 2004).

In IRT, the dose–response curve is referred to as the item response function and is 
usually modeled as a logistic function with one, two, or three parameters. A test of K  
dichotomously scored items administered to N examinees yields a NxK  matrix of zeros 
and ones from which one can estimate the parameters of the K  items and the values of 
the latent trait for the N  examinees. The former is referred to as item calibration and 
the latter as ability estimation. Note that this estimation problem is an order of difficulty 
greater than that typically encountered in biostatistics where the doses are known.

Estimation can be done by some variant of maximum likelihood or by Bayesian tech-
niques. Maximum likelihood estimation, either in the form of marginal maximum likeli-
hood (MML) or conditional maximum likelihood (CML) estimation of item parameters 
in IRT, is the method of choice in LSAS (e.g. Adams et al. 2007; von Davier et al. 2007, 
2013). Ability estimation is often done either using (weighted or bias-corrected) maxi-
mum likelihood or Bayesian approaches.
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For use in LSAS and other more complex test designs, IRT models have been extended 
to allow for items that are not dichotomously scored and for multi-dimensional latent 
traits. In particular, LSAS test batteries represent the focal skill domains very compre-
hensively by employing a large number of test items. Consequently, inferences are based 
on an item pool that would typically require several hours of testing. Each respondent 
only takes a carefully selected, small subset of the item pool. However, through an appli-
cation of an appropriate experimental design (balanced incomplete block designs), over-
all each item in the pool is administered to a random sample of respondents. Although 
the formulas and estimation techniques are necessarily more complicated for this 
extended IRT approach, the basic ideas remain the same.

JR correctly point out that there is an essential indeterminacy in IRT estimation: The 
quality of the fit of the model to the data is the same under monotone transformations 
of the underlying scale. Secondary analysis results can differ with the choice of scale 
(Ballou 2009). Consequently, appropriate cautions in interpretation are in order. How-
ever, the reporting scales are typically set in the first round of assessment and establish 
a mean, standard deviation, and range that are based on the score distribution of a well-
defined initial set of populations.

For example, the PISA scale, with a mean of 500 and a standard deviation of 100, was 
set with respect to the group of OECD countries that participated in the first adminis-
tration. One can call this an arbitrary or a pragmatic approach, but it is certainly not an 
approach that is uncommon, or not used elsewhere. Temperature scales differ in how 
they set reference points, and even the metric versus imperial system of measures show 
by their mere existence and simple exchangeability that neither inches nor centimeters 
are more rational or more arbitrary than the other.

JR also correctly point out that there is no evidence that these psychometric profi-
ciency scales have the interval scale properties that are implicit in many secondary anal-
yses (e.g. regression modeling). This is indeed a point of concern, as the properties of 
the scale are an assumption, as is also the case with wages (log-wage is often used), time 
(and age) measures, as well as in medical measures. (Is a change in heart rate from 80 to 
140 of the same medical concern as a change from 140 to 200? Is the change in physi-
cal strength or vocabulary between ages 1 and 6 the same as between 24 and 29? Aging 
5 years may indeed mean very different things at different initial ages.) There are many 
measures in the physical as well as behavioral sciences that are represented as real val-
ues or integers, employed as such in models and that, at the same time, may not have 
the desired ‘interval’ properties (or, better, the same interpretation of scale score differ-
ences) on related scales of interest. On this point, a remark by Tukey (1969, p.87) seems 
apropos:

Measuring the right thing on a communicable scale lets us stockpile information 
about amounts. Such information can be useful, whether or not the chosen scale is 
an interval scale. Before the second law of thermodynamics—and there were many 
decades of progress in physics and chemistry before it appeared—the scale of tem-
perature was not, in any nontrivial sense, an interval scale. Yet these decades of 
progress would have been impossible had physicists and chemists refused either to 
record temperatures or to calculate with them.
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In point of fact we cannot verify the scale properties of many variables that we use 
in our analyses, but we can perform a variation of what one may call a scaling sensitiv-
ity analyses. As an example, educational attainment is another variable frequently seen 
in regressions used by labor economists, either measured in years of schooling (Do we 
start counting at kindergarten, or pre-school?) or in universally defined levels of educa-
tion described by the International Standard Classification of Education codes (ISCED; 
UNESCO 2011). While the ISCED codes do not perfectly cross-classify all national 
education systems, they do yield an ordered set of educational attainment levels that 
attempts to represent equivalent types of education rather than just the number of years 
someone remained at school.

Although the choice of a particular numerical scale in an application of IRT is arbi-
trary, there are mathematical results on monotonicity properties that describe how 
increasing scale values are associated with increased expected outcomes on task per-
formance and other variables (e.g. Junker and Sijtsma 2000). Moreover, similar to the 
ISCED levels, most test score scales are accompanied by a categorization of levels; for 
example, they can be based on typical tasks that are carried out correctly with high 
probability by individuals in these levels. Other examples are scales that are anchored 
(i.e. given meaning) by relevant variables linked to the scale. The types of variables that 
are used for anchoring can be job categories or ISCED levels (What is the average score 
of test takers whose parents have a high-school degree as their highest degree of edu-
cation? What is the average score of test takers with one or two parents with masters 
or PhD level degrees?). Other variables used for anchoring can include, for example, 
the average scores achieved by developed countries, by developing countries, by stu-
dent populations defined by school type, by native language, etc. In assessments such 
as PIAAC, scales can be described further in terms of expected scores on the scale for 
individuals in different job categories, at different levels of educational attainment, or at 
different income levels for that matter.

The reporting scales in LSAS are usually anchored by a process called proficiency scal-
ing, which defines contiguous intervals on the scale associated with typical classes of 
problems or activities that individuals scoring at that level can master on a consistent 
basis. Finally, repeated use of a particular scale, together with the associated validity data 
and descriptions of what students at different ability levels can typically do, does achieve 
a certain interpretive familiarity over time.

JR refer to an example by Bond and Lang (2013) in which three different skills are 
measured in black and white student groups and the gap in test scores depends on how 
the skills are weighted. We could not agree more with the statement that the values of 
derived variables, such as group differences, will depend on how the scale is constructed 
through the weights assigned to the different component skill subscales. This is similar 
to what one sees in stock market indices: Different companies from different segments 
of the economy are included or excluded, and indices will be differentially sensitive to 
different events that may trigger market reactions.

What underlies the Bond and Lang (2013) example is an issue that occurs whenever 
one measures a variable that is not directly observable. Whether it is the literacy skills of 
students, or the health of a market segment, the degree to which a measure is sensitive 
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to differences or changes depends on the choice of indicators (tasks in student assess-
ments and stocks in indices).

To some extent, we cannot escape this scaling (and weighting and selection of indica-
tors) problem in any science, whether it is the use of adjustments in C14 carbon dating 
of archeological artifacts, or the measurement of cosmic distances based on signals col-
lected by radio telescopes, or stock indices or educational tests as measures of underly-
ing constructs. More importantly, the different indicators will be differentially sensitive 
to underlying group differences in the construct, as each indicator was selected based on 
the goal of representing different aspects of the underlying phenomenon. Thus, ‘varying 
gaps’ are not an indicator of a deficiency but, rather, a consequence of the different ways 
reasonable indices (or tests) can be constructed. The phenomenon is often referred to 
as the reliability/validity dilemma: A test (or index) that maximizes reliability will con-
tain only very similar components and will hence not be sensitive to the differences on 
outcome variables that are either caused by or cause, or are just correlated with, a much 
broader range of other measures.

Indeed, one could turn the question around and argue that there is absolutely no rea-
son why the black–white gap should be the same across different indicators of literacy. 
Different aspects of literacy are by definition distinguishable attributes of a broader con-
struct. Changes in pedagogy or policy may affect one attribute more than another. To 
that point, the expectation, for example, that the gap should be time-invariant when the 
measurement instrument changes to account for more complex literacy related activi-
ties in higher grade levels seems somewhat counter-intuitive, but would at least need a 
rather elaborate theoretical explanation why that should be the case.

Coming back to the scaling and scale level issue raised by JR, it is possible—and one 
could argue even necessary—to exploit this essential indeterminacy of the latent variable 
scale by utilizing scale transformation and linking methods to make proficiency scales 
comparable across cycles. This means that once a scale has been set (and anchored by 
proficiency level descriptors), then it can be used as the reference for future assess-
ments. The methods that help to ensure the comparability of the scales of future assess-
ments typically utilize common blocks of items over time. Measurement invariance 
models based on factor analysis, and their IRT equivalents, are then used to align the 
results of the current assessment cycle to the reference scale (Yamamoto and Mazzeo 
1992; Bauer and Hussong 2009; Mazzeo and von Davier 2008, 2013). This is done on an 
ongoing basis for NAEP, as well as for international assessments such as PISA, TIMSS, 
PIRLS, and PIAAC. Of course the defensibility of these linking procedures depends on 
the validity of certain invariance assumptions with respect to how the tasks on the test 
are responded to across different populations and cohorts (Mazzeo et al. 2008, 2013).

In addition, as JR point out (p. 92), it has to be understood that any transformation, 
whether based on small or large samples, arbitrarily applied to test scores may not yield 
comparable test scores even if they are numerically transformed onto the same scale. The 
linking methods and comparability/measurement invariance approaches cited above do 
not apply such transformations; rather they utilize (and test) invariance assumptions 
in the form of parameter constraints that lead to linked test scores on the same scale, 
thereby allowing comparisons across countries and over time.
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Plausible values as a special case of multiple imputations
Plausible values (PVs) are what the literature on missing data calls multiple imputations 
(Rubin 1987; Little and Rubin 2002). They are drawn from a model that describes the 
posterior distribution of one or more cognitive skills assessed with the test(s), given the 
responses to the test(s), as well as observed test taker characteristics. Our intent here 
is to make more transparent the technology underlying the generation of the cognitive 
data—in the form of plausible values—and to offer guidelines for use that we believe are 
consistent with that technology. As do JR, we address two cases: Cognitive data used as a 
criterion in a regression or used as a predictor in a regression.

As noted above, there is a difference between simpler test designs for individual-level 
reporting and decision making and LSAS for group- and population-level reporting. To 
reiterate, LSAS do not provide point estimates of an individual’s skills; rather, they pro-
vide conditional distributions that represent an estimate of the individual’s proficiency 
together with an estimate of the uncertainty associated with that estimate. Although one 
may assume that an individual has a true value on the latent trait, any finite test and any 
amount of additional information on the individual’s background cannot provide cer-
tainty about that true value: Even a test that has 100 items will not produce an error-free 
measure of proficiency. Another equally well-constructed test of 100 items will likely 
yield a slightly different score, even if the same test taker takes the two versions of the 
test on two consecutive occasions. These 100 items can be like attempts at picking a win-
ning stock 100 times, kicking a ball into a goal (an example used in the piece on plau-
sible values by von Davier et al. 2009), solving 100 math problems or playing 100 chess 
matches. Replications generate some level of variation in performance, and no amount 
of information can provide absolute certainty—in particular because the value of a latent 
trait is not directly observed, but can only be inferred by looking at manifest outcomes.

Conditional distributions of proficiency are utilized to generate plausible values 
(multiple imputations) that are a representation of our finite knowledge concerning an 
individual’s value on the latent trait scale, given the individual’s pattern of correct and 
incorrect responses, as well as information on her background characteristics. Mislevy 
(e.g. 1991) has shown that this approach ensures unbiased estimation of group differ-
ences for those characteristics that are part of the imputation model.

Groups are usually defined by some combination of factors such as gender, race/eth-
nicity, location, etc. See also von Davier et al. (2009) for a comparison of the estimates 
when using—or not using—the background data in the imputation-based approach. 
Test makers have taken advantage of the flexibility afforded them by LSAS by building 
very large item pools for administration in order to ensure broad representation of the 
skill domain. The pool size is driven by the number of facets of the focal construct to be 
assessed, by the need to have a range of item difficulties, as well as by cost considera-
tions. The first is intended to satisfy the design criterion of construct representation and 
the second the criterion of reasonably accurate measurement all along the proficiency 
scale.

A typical item pool can consist of hundreds of items, far too many to administer to 
any one individual, especially considering that testing large number of students or adults 
presents a considerable burden on participating schools or households, as well as on sur-
vey organizations. In addition, considerable time is required to complete the BQ that 



Page 9 of 16Braun and von Davier ﻿Large-scale Assess Educ  (2017) 5:17 

elicits information on various domains including demographics, socio-economic-status, 
education and extracurricular skill-related activities. In adult assessments, the BQ also 
collects data on work history and income, as well as work and non-work activities that 
may be related to skill development or labor market success.

The solution is to divide the item pool into a collection of carefully designed, mutu-
ally exclusive blocks (as they are called in NAEP) or clusters (as they are called in PISA). 
Depending on the LSAS, each examinee is administered one or more of these blocks, 
along with the (common) BQ block. In NAEP, for example, the blocks are organized 
into booklets, each consisting of two cognitive blocks, according to a balanced incom-
plete block design. That is, each block appears in the same number of booklets, each 
time paired with a different block and balanced overall with respect to order. A booklet 
is randomly assigned to each examinee. For more details, see Mazzeo and von Davier 
(2013). As a result, employing IRT and using all the data generated by the administra-
tion, it is possible to construct a single proficiency scale on which test performance can 
be represented.

A problem would arise, however, if individuals were assigned a single score on the 
proficiency scale based on their item responses alone—as would be the case in a typi-
cal end-of-course test administration. The problem is that because each individual is 
exposed to a set of items that constitute a small fraction of the full item pool, the cor-
responding estimate of proficiency would be associated with a large error variance. 
Aggregating these imprecise individual scores to the group level typically yields biased 
estimates of the proficiency distribution of the group. Notably, this would be the case 
no matter which individual level estimator was used, maximum likelihood estimates, or 
bias-corrected versions such as the WLE (Warm 1989), or Bayesian estimates such as 
the expected-a posteriori estimates (EAP). Each would yield a particular type of biased 
estimate. An illustration of the result of using individual-level estimates is given by (von 
Davier et al. 2009).

Explanatory IRT using latent regressions in LSAS
The solution is to introduce the plausible value (PV) machinery based on a model that 
involves a combination of IRT and a latent regression (Mislevy 1991; Adams et al. 1997; 
Andersen 2004; von Davier et al. 2007). It is important to recognize that this approach 
was adopted specifically to produce unbiased estimates of group-level statistics. As JR 
note, this is an adaptation of Rubin’s (1987) missing data imputation model. The techni-
cal details can be found in Mislevy (1991). For a recent overview of current develop-
ments see von Davier and Sinharay (2013).

The basic idea is to treat the individual’s location on the (latent) proficiency scale as 
missing data. The observed data consists of her responses to the cognitive items and to 
the BQ questions. The machinery comprises a multi-dimensional IRT component (for 
item calibration) and a normal theory, latent regression (LR) model that links the esti-
mand to the background factors. The structural part of the LR model is characterized by 
a matrix of regression coefficients, Γ , and a variance–covariance matrix, 

∑
. In practice, 

because the number of variables associated with the BQ factors numbers in the thou-
sands, the original set of predictor variables is replaced by a large, but manageable, num-
ber of principal components sufficient to account for at least 90% of the variance.
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The estimation process yields maximum likelihood estimates for both Γ  and 
∑

. In 
practice, 

∑
 is held fixed at its MLE, denoted by 

∑
MLE

, while multiple versions of Γ  are 
obtained as independent draws from an estimate of its sampling distribution, denoted 
by FG. This is a multivariate normal distribution with mean ΓMLE and an estimate of the 
variance–covariance matrix of ΓMLE. Thus, to obtain K PVs for an individual, one makes 
K independent random draws from FG: Γ1, . . . ,ΓK . Denote one such random draw by g. 
Combining g with the vector of cognitive responses and the set of principal components 
for the individual yields a trial mean vector. The PV is then generated as a random draw 
from a multivariate normal distribution with that mean vector and variance–covariance 
matrix ∑MLE. The process is repeated K times. Details regarding this sampling process 
can be found in von Davier et al. (2007, 2009, 2013).

The use of plausible values as dependent variables
In order to obtain estimates of desired quantities in secondary analysis such as group 
differences or, more generally, the parameters of a linear regression model, calcula-
tions are carried out K times, once for each set of PVs and the results averaged. Mis-
levy (1991) proves that this process yields unbiased estimates of mean proficiencies for 
groups defined by the factors incorporated in the latent regression model. This result 
is consistent with the broader literature on estimation with multiple imputations (Little 
and Rubin 2002). Further, if PVs are used as the criterion in a linear regression, then the 
corresponding regression coefficient estimates, obtained by combining the K estimates 
generated by the K sets of PVs, are unbiased (or approximately so because of the use of 
principal components rather than the original variables)—as long as the latent regres-
sion that generated the PVs is ‘larger than’ the secondary analyst’s model (e.g. Mislevy 
1991; von Davier et al. 2009; Junker et al. 2012, p. 736).

Standard results for the calculation of variance estimates and corrected degrees of 
freedom using multiple imputations (Little and Rubin 2002) apply directly to analyses 
using PVs. Parameter estimates are obtained by averaging the results from the K repli-
cations. The variance component that estimates measurement uncertainty is calculated 
following Little and Rubin (1987, 2002). The equations are also given in (von Davier et al. 
2009). Note that the secondary analysis model is typically a subset of the latent regres-
sion model used to generate the PVs. However, if variables beyond those in the latent 
regression are used in a secondary analysis, then biased estimates may result (Mislevy 
1991; Meng 1994). On the other hand, since the PVs generating model typically includes 
as many factors as are available (“kitchen-sink approach”: Graham 2012), even these 
additional variables may be effectively included by proxy, to the extent that they are cor-
related with the variables incorporated in the latent regression.

Although not central for the argument made below with regard to PVs, it is appro-
priate to note that JR (p.100) features a table taken from Briggs (2008) that does not 
include estimates based on the PV machinery. Rather, it compares group mean esti-
mates obtained with either ML or EAP. As expected, the EAP estimates differ from those 
obtained using maximum likelihood in the well-known way: Both sets of results are 
biased and, in fact, are likely biased in opposite directions.

PVs are neither maximum likelihood estimates nor EAPs, so that any conclusions 
drawn from that table are not germane to the points made by JR later on. Recall that PVs 
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are random draws from an individual-specific family of posterior distributions based on 
a comprehensive imputation model that contains both background data and test perfor-
mance indicators. Therefore, the K  PVs associated with an individual are (unlike the val-
ues compared in the table) not test scores in the usual sense and do not at all correspond 
to the true score model of CTT. They should not be confused with the EAP estimators, 
as suggested in JR. Instead, PVs are intermediate values in the calculation of group level 
statistics such as group means, regression coefficients, or correlations.

JR also offer examples of situations where certain school-level characteristics are of 
interest but were not included in the conditioning model. In actual practice, this may not 
be a problem. Such characteristics are either drawn directly from items incorporated in 
the school questionnaire and are part of the conditioning, or indirectly, through inclu-
sion of a dummy coded school identifier. If particular characteristics that become sub-
sequently available are of interest, then supplementary latent regression models can be 
run to generate new PVs so as to ensure unbiased estimation. Software for conducting 
these latent regression model analyses is available upon request from organizations such 
as ETS (PC Windows version DGROUP, Rogers and Blew 2012) and ACER (Conquest; 
Adams et al. 1997).

The use of plausible values as independent variables
Some of the issues that arise when PVs are used in regression models as independent 
variables are similar to those that arise with fallible predictors. (These are sometimes 
referred to as “errors in variable” models.) Others are specific to PVs. First, it is well-
known (Fuller 2006) that in the presence of fallible predictors the corresponding regres-
sion coefficients may be deflated (i.e. biased toward zero). Potentially, the application of 
method of moments or more recent generalized approaches that take heteroscedasticity 
into account (Lockwood and McCaffrey 2014) can yield corrected estimates.

The concerns raised with the use of PVs appear to be a particular instance of a gen-
eral problem treated by Meng (1994). Meng addresses the validity of results based on an 
analysis incorporating PVs. He defines the concept of congeniality between the model 
generating the multiple imputations and the model of the secondary analyst. When con-
geniality holds, the results are valid but when it fails to hold, bias is likely to arise. The 
specific case of PVs is treated in Junker et al. (2012), Schofield et al. (2015), and Schofield 
(2015). In effect, they argue that in many situations congeniality fails to hold.

Lack of congeniality can occur in many ways. Suppose, for example, that it is sus-
pected that the outcome of interest, say wages, and the imputed proficiency values are 
statistically associated in non-linear ways, and so the secondary analyst’s model contains 
non-linear transformation of the outcome variable or one or more of the independent 
variables; however, the latent regression does not include such terms. In this setting, a 
custom-made latent regression model, or a mixed effects model of the type suggested by 
Schofield et al. (2015) might prove of value. On the other hand, if the imputation model 
is a latent regression model that contains all cognitive response data and an extensive 
collection of background data in the form of a contrast-coded set of predictors, as is the 
case in LSAS, then the family of secondary analysis models that are congenial with the 
imputation model will be very large. In particular, the latent regression model used in 
LSAS is specified using predictors as ordinal variables in dummy-coded form, so that 
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non-linear relationships between variables such as earnings, years of schooling, or home 
resources can be captured because they are incorporated as effects at different levels of 
these variables. Finally, LSAS do differ in the number and types of two-factor interac-
tions among predictors that are formally incorporated into the pool of variables used 
for the latent regression. NAEP, for example, employs a comprehensive set of two-factor 
interactions.

JR (p. 102) display a real data example of the use of PVs that is taken from Junker et al. 
(2012). The data are an extract from the National Adult Literacy Survey (1992). They 
model log(weekly wages) as a function of race (Black, non-Hispanic White), literacy 
skill, and other variables. Comparing estimates using the Mixed Effects Structural Equa-
tion (MESE) approach and one using PVs, there are small but non-trivial differences in 
the estimated regression coefficients for the Black–White gap and for cognitive skills. 
With MESE, cognitive skills account for 74% of the Black–White log(weekly wages) gap. 
However, using PVs only 61% of the gap is explained. Thus, in this example, the extent 
to which the race gap in wages is accounted for by skill differences is somewhat smaller 
with PVs. JR prefer the MESE estimates, because the reduction is greater, and the model 
for generating the PVs is not compatible with the wage equation model.

Although it is neither explicit in JR nor in Junker et al. (2012), one reason may be that 
log(weekly wages) was used as the criterion but it is unlikely such a transformation was 
used in the NALS conditioning model. However, the extent to which a substantial bias 
occurs cannot be completely determined using real data, as the true ability variable is 
unobserved, and each estimate that is used in its place relies on certain assumptions and 
approximations. Also note that Junker et al. (2012) state that “If the form of the second-
ary analyst’s research model is the same as the …institutional conditioning model …its 
estimate using institutional PVs … will be an unbiased…”

We now present a case in which the imputation model used to generate the plausible 
values (called the “institutional conditioning model” by Junker et al.) is compatible with 
the analyst’s model, based on simulated data. A disadvantage of real data is that the true 
effects of the contributing variables are unknown. The advantage of simulation is that 
the “true” ability is known and is used to generate the data. It is then possible to compare 
the estimated regression parameters from different strategies for estimating ability with 
those obtained when true ability is used.

Table 1  Estimated regression coefficients for  a model predicting wages (raw) based 
on  skill variable theta (either true value, or PVs, or WLE, MLE, EAP estimates), gender 
and education

Simulation setup similar to the one found in von Davier et al. (2009)

The quantities printed in bolditalics and italics are those regression coefficient estimates that are adversely affected by the 
use of EAP, MLE as well as WLE estimates in the regression. These quantities are biased, while the estimates obtained using 
PVs are very close to the estimates calculated using the true person parameters

Estimator for θ Intercept COG SEX EDU

True ability 9.967 1.012 0.002 0.024

PVs 9.951 0.998 0.009 0.057

EAP 9.718 0.810 0.009 0.539
MLE 9.567 0.548 0.017 0.871
WLE 9.697 0.668 0.010 0.592
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We model wages as a function of cognitive skills (COG in the table), gender (SEX 
in the table), education level (EDU in the table) with three ordered levels (low =  1, 
medium =  2, high =  3), and other variables. The generating model had the following 
characteristics: (i) Wages were highly correlated with COG but not with SEX or EDU; 
(ii) COG had a positive correlation with EDU but not with SEX. The PVs were generated 
using all item response data in a balanced incomplete block design given in (von Davier 
et al. 2009), as well as the covariates wage, EDU and SEX. The three estimators of COG 
(WLE, MLE, EAP) were all based on item responses alone.

Table 1 displays the results for this example and provides evidence of how estimates 
based on PVs and the true (generating) ability are quite similar, while estimates based 
on using EAP, MLE, or WLE are biased. The mean of the individual PVs is the EAP and, 
hence, a regression that uses the average of the 5 PVs rather than each of the 5 PVs in 
separate regressions will produce biased results that are similar to those obtained using 
the EAP. Note that these results are expected given the characteristics of the estima-
tors. Also, similar effects were shown and explained by (von Davier et al. 2009) as well as 
OECD (2009), chapter 6.

It can be seen that the results obtained with true ability (the one used to generate the 
simulated data) and with the PVs agree more closely than those obtained with EAP, 
MLE, and WLE. The tabled values in boldface demonstrate that EAP, MLE and WLE do 
not fully control for ability in this regression, resulting in inflated estimates of the effect 
of EDU (educational level). The estimated effect of EDU is much reduced when the true 
(generating) theta or the PVs are employed, as both can fully control for this effect.

Table 2 shows the same regression estimated with log(wages) as the dependent vari-
able. Apart from the scale change, the results appear to be quite similar. The estimated 
regression parameters when using true ability or the PVs agree well, while the param-
eter estimates from EAP, WLE and MLE are inflated for EDU and deflated for ability. 
What makes Table 2 particularly interesting is that one could argue that the condition-
ing model and the secondary analyst’s model are not (particularly) congenial, as the 
log(wages) variable was not included in conditioning for the PVs.

Recent years have seen the problem of congeniality of the imputation model and sub-
stantive model earning greater attention. The main concern is not that all variables have 
to be in the same configuration in both models, but rather that the imputation model 
contains all variables (in the same transformed or untransformed form and, if needed, 
interacted with other variables). as the substantive model (Daniels et al. 2014; Bartlett 

Table 2  Estimated regression coefficients for a model predicting log(wages) based on skill 
variable theta (either true value, or PVs, or WLE, MLE, EAP estimates), gender and educa-
tion

Simulation setup similar to the one found in von Davier et al. (2009)

Estimator for θ Intercept θ Gender EDU

True ability 2.2697 0.1074 0.0014 0.0038

PVs 2.2688 0.1067 0.0017 0.0067

EAP 2.2432 0.0860 0.0021 0.0584
MLE 2.2272 0.0581 0.0030 0.0937
WLE 2.2411 0.0709 0.0022 0.0640
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et al. 2014; von Hippel 2009; Quartagno and Carpenter 2016). However, log(wages) and 
wages are strictly monotone increasing functions of each other, so that a linear approxi-
mation of one by the other in a restricted interval is probably quite serviceable.

Although a single example is not definitive, it does suggest that the use of PVs as an 
independent variable can be a reasonable strategy when estimating a model that includes 
variables (or their strict monotone transforms) that were part of the imputation model 
for generating the PVs. This approach, performed separately for each set of PVs and then 
combined using the rules for calculations with multiple imputations proposed by Little 
and Rubin (2002) will allow researchers to evaluate the utility of the PVs as predictors in 
regressions.

Discussion
As JR assert, the use of measures of cognitive skills in labor economic studies is becoming 
more common. Many econometricians, and other researchers as well, are unaware of the 
complex processes that generate cognitive data and their implications for analysis. In this 
article, we have focused on the issues that arise in the analysis of data from LSAS, which are 
quite different from those found in more traditional settings. The crucial distinction is that 
in the former case interest centers on estimating proficiency distributions at the group-level 
or population-level. Individual-level estimates are not of interest and are not produced.

We argue that the relevant psychometric literature on PVs, as well as the more general 
statistical literature on multiple imputations, gives reason for optimism. This is certainly 
the case when PVs are used as criterion variables and may generally be the case even 
when they are used as predictor variables. The latter question certainly deserves further 
attention, using both real and simulated data. Of course, following good statistical prac-
tice and exercising due caution in interpreting results is always recommended.
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