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Abstract

Background: In the context of international large scale assessments, it is often not
feasible to implement a complete survey of all relevant populations. For example, the
OECD Program for International Student Assessment surveys both students and
schools, but does not obtain information from teachers. In contrast the OECD Teaching
and Learning International Survey assesses teachers and schools but does not assess
students. Clearly, important information is missing from both assessments. One
approach to obtaining information from both surveys is through data fusion – a variety
of methods that can be used to create a synthetic data set containing information from
both surveys.

Methods: This paper presents an experimental evaluation of a representative group of
data fusion methods using data from Iceland – the only OECD country that
implemented both PISA and TALIS to all members of the relevant populations.

Results: On the basis of a set of validity criterion we find that Bayesian bootstrap
predictive mean matching and the EM-bootstrap methods perform best with respect
to creating a usable synthetic data file for research purposes.

The OECD Program for International Student Assessment (PISA) and the OECD
Teaching and Learning International Survey (TALIS) constitute two of the largest ongoing
international student and teacher surveys presently underway. Data generated from these
surveys offer researchers and policymakers opportunities to identify particular edu-
cational institutional arrangements – that is, how aspects of educational systems are
organized – to promote equality of educational opportunity both within and between
countries.
Naturally, policymakers are interested in all three levels of the school system – students,

teachers, and schools, in order to fully understand within and between country differ-
ences in the inputs, processes, and outcomes of education. However, a serious limitation
of these data collection efforts is that each survey is missing an important component of
the educational system in their design – namely, PISA is missing teacher level data and
TALIS is missing student level data. The PISA and TALIS surveys are not, at present,
linked. An ideal approach to linking the PISA survey to the TALIS survey is to sample
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schools and administer both PISA and TALIS. However, because a simultaneous admin-
istration of both surveys may not be feasible for many countries, this limits the extent to
which information unique to each survey can be understood jointly.
In contrast to a design-based approach, a statistical approach to linking the PISA survey

to the TALIS survey involves the creation of a synthetic cohort of data – that is, a new data
file that combines information from both surveys. Two approaches are common and will
be explored in this study. The first is statistical matching, which involves finding units in
the two separate files that are “close” in some statistical sense, and then filling in missing
data with the data from the unit and its match. The second approach involves imputation,
which treats the goal of creating a synthetic file as a large missing data problem. The
approach is to use information common to both surveys to impute plausible values of the
missing data occurring in both surveys. Throughout this paper, we will use the generic
term data fusion to mean the creation of the synthetic data file.
The current study is a systematic evaluation of a set of data fusion methods focused on

the goal of creating a synthetic file of PISA and TALIS data. We evaluate the extent to
which eachmethod provides a synthetic data set that maintains the essential properties of
PISA and TALIS, concentrating on a set of validity criteria established by Rässler (2002)
as described below.
Our evaluation relies on an experimental comparison of the validity of each method

relative to a clearly defined standard. For this purpose, we use data from Iceland.We chose
Iceland because it is the only OECD country that implemented PISA and TALIS on the
population of PISA students, all TALIS teachers, and all PISA and TALIS schoolsa. The
experimental study will provide a proof of concept that fusing PISA and TALIS is feasible
for countries that wish to draw on the added value of both surveys for research and policy
analysis.
The organization of this paper is as follows. In the next section, we outline the problem

of data fusion with particular focus on validity criteria that can be used to evaluate the
quality of data fusion. Next, we outline themethods to be examined in this paper. It should
be noted that a large number of methods exist for data fusion. We will examine six meth-
ods that are representative of the broad array of data fusion methods available, including
non-parameteric and parametric algorithms. Our focus will also be on methodologies
that are available within the R statistical programming environment (RDevelopment Core
Team, 2010). Our focus on the R statistical programming environment reflects our view
that the open source and free nature of R can allow maximum accessibility across all
countries to support the fusion of data sources generally and PISA and TALIS specifically.
Next, we will present the design of our study. The results will follow. The paper closes
with recommendations and limitations resulting from fusing PISA and TALIS. Annotated
software code is made available in the appendices.

The policy context
Effective educational policy rests on the availability of reliable information about both
the structure and process of educational systems. In this section we describe one poten-
tial policy question that can be more fully understood by fusing PISA and TALIS data.
However, the application of data fusion is not limited to this particular question.
PISA obtains samples of students across more than 40 countries and economies, allow-

ing researchers to relate variation in characteristics of national educational institutions to
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levels of performance and inequality in student learning. In other words, researchers can
use PISA to identify particular educational institutional arrangements that promote edu-
cational excellence and equality among students. For example, recent research utilizing
data from PISA suggests that countries with a more strongly differentiated educational
system tend to have higher levels of inequality of educational opportunity by social class
and race/ethnicity; and countries with a more standardized educational system have
lower levels of inequality of opportunity compared to those with unstandardized systems
(Van de Werfhorst and Mijs 2010).
Although much has been documented relating institutional arrangements to student

performance, more recently the focus has turned to detailed descriptions of how variation
in the way educational systems are structured shapes what takes place in the classroom.
In other words, more attention is being paid to how the process of education varies within
and between countries. PISA administers surveys of students and school administra-
tors, and the patterns revealed from their responses suggest that the best performing
education systems embrace the diversity in students capacities, interests, and social back-
ground with individualized approaches to learning. These education systems also provide
clear and ambitious standards focused on complex, higher order thinking, and prioritize
teacher and administration quality (OECD 2010b).
An additional source of data on school processes comes from TALIS. While PISA

links institutional characteristics to student performance, TALIS links institutional char-
acteristics to aspects of school and classroom climate from the perspective of teachers
and school administrators. For example, TALIS asks teachers and principals about the
disciplinary climate of the school. Extant research suggests that classroom disciplinary
climates affect student outcomes and attainment, and that many countries consider
discipline a high priority policy issue (OECD 2009). However, only by linking the
TALIS and PISA surveys can researchers fully model the relations between institutional
differentiation, disciplinary climate, and student learning.
Because learning occurs in the context of classrooms, aspects of teacher practices and

classroom climate are key to understanding the mechanisms through which policy deci-
sions might impact educational performance and inequality in learning. However, at
present it appears infeasible, for practical and/or political reasons, to design and imple-
ment a large three level-international survey with students nested in classrooms, and
in turn nested in schools. An alternative approach, then, would be to statistically com-
bine PISA and TALIS in order to more carefully and universally describe school systems,
with the intent of reporting associations between performance, equality, and educa-
tional policy, and how these factors combine to produce a social system which can
be described from the perspective of families, students, teachers, and school adminis-
trators. Statistically combining two, relatively distinct, data sources is the goal of data
fusion.

Background on data fusion
Data fusion involves filling in missing data from two surveys in order to obtain a
“synthetic” set of data that can be considered as generated from a population of relevance
to the original surveys. It is convenient to categorize data fusion methods as either non-
parametric (i.e. those not based on an underlying model for the observed and missing
data) or parametric (i.e. methods based on assuming an underlying model for observed
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and missing data described by a set of parameters). In both cases, however, the problem
is one of addressing the issue of missing data – that is, TALIS is missing student level data
available from PISA, and PISA is missing teacher level data available in TALIS.
In the context of PISA and TALIS, we can consider two types of missing data; unit and

item non-response. However, when considering the fusion of the two data sets, a very
large amount of unit missing data obtains because the surveys contain different items
and units of analysis. What is required to move forward with data fusion is a general
theoretical framework for the problem of missing data.
Following the seminal work of Rubin (1976, see also; Little and Rubin 2002; Schafer

1997; Enders 2010) let R be a missing data indicator, taking the value of 1 if the data are
observed, and 0 if the data are missing. Let f (R) be the associated probability distribution
of R. Further, let y be the complete data, yobs represent observed data and ymiss represent
missing data. Finally, let φ be the scalar or vector-valued parameter describing the process
that generates the missing data. The underlying mechanism that generates missing data
can be considered either ignorable or non-ignorable. An ignorable missing data mecha-
nism is one in which inferences are not affected by the process that generated the missing
data.
There are two types of missing datamechanisms that can be considered ignorable. Take,

for example, two variables from the TALIS teacher questionnaire, say teacher job satis-
faction (jobsat) and teacher self-efficacy (selfef ), and assume that there is missing data on
selfef. If the missing data on selfef is unrelated to the observed values of both jobsat and
selfef, then the missing data are considered to bemissing completely at random orMCAR.
More formally, MCAR implies that

f (R|y,φ) = f (R|φ), for all y, φ. (1)

Under the assumption of MCAR, such methods as listwise deletion or regression impu-
tation can be used to treat missing data (although they might not be desirable approaches
for other reasons). Next, imagine a situation in which the missing data on selfef is unre-
lated to observed selfef, but may be related to observed jobsat. For example, perhaps
teachers with lower job satisfaction tend not to report their levels of self-efficacy. This
type of missing data is referred to as missing at random or MAR. Again, in terms of our
notation, MAR implies that

f (R|y,φ) = f (R|yobs,φ), for all ymiss, φ (2)

Under MAR, inferences will be valid, and there now exist many methods for handling
missing data under the assumption of MAR.
In real data contexts, MCAR and MAR are fairly unrealistic assumptions. A more

realistic situation is one in which the missing data mechanism is non-ignorable. Tak-
ing our example of job satisfaction and self-efficacy, we may find that missing data on
self-efficacy is related to self-efficacy. That is, perhaps teachers with low self-efficacy do
not report their levels of self-efficacy regardless of their level of job satisfaction. This
type of missing data problem is referred to as not missing at random or NMAR. More
formally,

f (R|y,φ) = f (R|yobs, ymiss,φ), for all y, φ (3)
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Under NMAR, inferences derived from conventional approaches are not valid, and what
is required is a substantive model of interest that incorporates a model of the missing data
process.
Despite the fact that NMAR is perhaps the more realistic scenario for missing data

problems, advances in handlingmissing data have generally beenmade under the assump-
tion of MAR, where the assumption of MCAR is considered mostly unrealistic. There
is, however, one unique situation in which MCAR might be reasonably expected to
hold – and that is where the missing data are missing by design. One example of missing
by design are assessment plans that involved balanced incomplete block spiralling frame-
works (see e.g. Kaplan 1995) – such as the design for the cognitive outcome assessments
in PISA. Another example of concern to this paper is the case of statistically fusing dif-
ferent surveys. In the case of PISA and TALIS, the two surveys have no units in common
but do have variables in common – in particular, variables from the survey of principals
in both the PISA and TALIS samples. Because there are no units in common across the
two surveys, the missing data are reasonably considered to be MCARb.

Levels of validity in data fusion

An immediate question that is raised when considering the problem of filling in missing
data, particularly in the context of large sample surveys such as PISA and TALIS, is the
validity of the method used to fuse the data sets. This is of prime importance to our
goal of fusing PISA and TALIS insofar as the results of these surveys carry major policy
consequences. An important discussion of the problem of validity in the context of data
fusion can be found in Rässler (2002).
We begin by introducing notation that closely follows Rässler (2002). Let Y denote the

np × pmatrix of data from PISA, let X denote the nt × t matrix of data from TALIS, and
let Z be the nc× cmatrix of data common to both PISA and TALIS, np = 1, 2, . . .Np; nt =
1, 2, . . .Nt ; nc = 1, 2, . . . ,Nc; p = 1, 2, . . .P; t = 1, 2, . . .T ; c = 1, 2, . . .C. Further, denote
by fX,Y ,Z the joint density function of the X,Y , and Z, and f̃X,Y ,Z be the corresponding
joint density function after data fusion. Specific observations drawn from X, Y, and Z will
be denoted as xi, yi, and zi, respectively. Following Rässler (2002), four levels of validity
can be distinguished when considering the problem of data fusion.

First level validity: preserving individual values

The most difficult level of validity that can be achieved in data fusion concerns the ability
of the algorithm to reproduce the true but unknown individual values of the sample data.
That is, does the algorithm provide the values for the missing data in PISA and TALIS that
would have been observed had those variables been presented and answered? Because
the true individual values are unknown, the only way that first level validity can be estab-
lished is via a simulation study Rässler (2002). Although the data from Iceland provide
an opportunity to assess first level validity, it is usually impossible or at least unnecessary
to achieve this level of validity. First, in order for the algorithm to reproduce individual
values perfectly, the missing data would have to be perfectly predicted by the data com-
mon to both surveys (as would be the case if a unique identifier is included in the two
data sets). Second, the algorithms that we will be examining are designed to reproduce
expected values under a given model, and not individual values. Third, imputation algo-
rithms are designed to produced a dataset that can be used for secondary analyses based
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on summary statistics and not individual values. Thus, for this paper, we will not assess
first level validity.

Second level validity: preserving joint distributions

The idea behind second level validity is that the joint distribution of all of the variables
in the synthetic data set be preserved after data fusion. For this to be true, we must first
assume that the PISA and TALIS schools (within a country) were sampled independently
within and across the surveys. Then, we can assume that the synthetic file is a random
sample from a synthetic distribution. Rässler (2002) shows that this will hold only if the
variables unique to PISA and unique to TALIS are conditionally independent given the
variables common to both surveys. That is, fX,Y |Z = fX|ZfY |Z = f̃X,Y |Z .

Third level validity: preserving covariance/correlation structures

Both PISA and TALIS not only inform education policy for countries, but they both serve
as important sources for research and analysis. In that case, statistical modeling methods
that rely on the covariances and higher order moments of the data – such as regression
analysis and factor analysis – are often employed as analytic methodologies. If the goal is
statistical modeling of the synthetic data, then the covariance structure of the data before
and after matching should be the same. As with second level validity, the synthetic data set
should represent a sample from a synthetic population that has the same covariance struc-
ture as the actual population of interest. Following Rässler (2002), if we let c̃ov(X,Y ) be
the covariances of the variables in the synthetic population, and cov(X,Y ) be the covari-
ances of the true population, then the only way in which these two covariances are equal
to each other is if X and Y are on average conditionally uncorrelated give the common
variables z used in the match. To see this, let

c̃ov(X,Y ) = cov[E(X|Z),E(Y |Z))] , (4)

be the synthetic covariances. Then, because

cov(X,Y ) = E[cov(X,Y |Z)]+ cov[E(X|Z),E(Y |Z)] , (5)

it follows that the only way for c̃ov(X,Y ) = cov(X,Y ) is if the E(cov(X,Y |Z)) = 0. This
paper will provide an assessment of third level validity.

Fourth level validity: preservingmarginal distributions

The lowest level of validity and a minimum requirement for data fusion is that the
marginal distributions of the individual variables in the original surveys be preserved after
the statistical match. Formally, if ˆ̃fy is the empirical marginal distribution of the PISA
variables and ˆ̃fy,z is the empirical joint distribution of the PISA variables and variables
common to PISA and TALIS in the synthetic sample, then after the match they should
not differ meaningfully from f̂y and f̂y,z, the marginal and joint distributions from PISA,
respectively. We will provide a descriptive assessment of fourth level validity.

Methods
In this section, we describe the data fusion methods we will evaluate in the context of the
PISA-TALIS fusion. As noted earlier, there are scores of different methods that can be
used for data fusion, and it is beyond the scope of this paper to evaluate every approach
that is currently available. Our approach for this paper, therefore, is to examine a handful
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of the most representative approaches and to provide a detailed evaluation of their useful-
ness and validity in providing a synthetic file. For our experimental study with Iceland, we
will concentrate on the third and fourth levels of validity described earlier because these
are the most important levels for research and policy analysis using PISA and TALIS.
A common feature of all data fusion methods, and, admittedly, a limitation in the con-

text of PISA and TALIS, is that the data must be aggregated to a common unit of analysis.
For PISA and TALIS, the only level of analysis common across the surveys is the school.
Thus, student and teacher data must be aggregated to their respective school level before
data fusion can proceed. In doing so, the multilevel structure of each survey is lost. Data
fusion, therefore, takes place by identifying school level variables that are common across
PISA and TALIS. Any number of variables will do, but the more variables in common,
the more information can then be brought to bear to create a synthetic file. In cases in
which a variable has been measured on a different scale across the two surveys, the extant
literature suggests that they should be converted to z-scores, even if the variables are cat-
egorical (e.g. Rässler 2002). Differences in the scales of categorical variables can also be
handled by collapsing one, or both, to a common set of categories.
We organize this section as follows. First, we will describe a non-parametric approach

based on so-called “hot deck imputation” – namely distance hot deck matching. The
remaining approaches will be parametric and based on file concatenation and multiple
imputation (Rubin 1986,1987). The file concatenation perspective sees data fusion as a
missing data problem with the goal of imputing values for the missing data. However,
rather than imputing a single value for a missing data point and treating it as fixed, the
multiple imputation framework accounts for uncertainty about the missing data by cre-
ating multiple plausible missing values resulting in multiple data sets. The data sets are
then combined in specific ways for analysis purposes.
Within the multiple imputation perspective, we will describe approaches derived from

the frequentist and Bayesian frameworks of statistics. Within the frequentist framework,
we will examine two methods – stochastic regression imputation and predictive mean
matching. Within the Bayesian framework, we will describe Bayesian linear regression
imputation via chained equations, Bayesian bootstrap predictive mean matching, and the
EM boostrap – the latter being a hybrid of Bayesian and frequentist methods.

Nonparametric hot deck matching

Hot deck imputation procedures require that a distinction be made between a “donor”
data set and a “recipient” data set. As noted by D’Orazio et al. (2006), there are sev-
eral factors that need to be considered when designating a donor and recipient data set.
The two most important, according to D’Orazio et al. (2006) concerns the phenomenon
under study and the accuracy of information contained in the two surveys. In the former
case, matching PISA and TALIS should yield a synthetic data set that retains the ability
to draw valid and reliable inferences of policy relevance. In the latter case, it does not
make much sense to match two data sets in which the information from either or both
surveys is inaccurate. An example concerns matching data sets when the matching units
were obtained at very different time points. In such cases, it may not be reasonable to
assume that the synthetic file represents independent and identically distributed obser-
vations from the same population. In the case of PISA and TALIS, it is true that these
surveys were not implemented at the same time. At the school level within a country, the
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argument would have to be made that TALIS schools are different from their correspond-
ing PISA schools, perhaps due to the implementation of some country level policy during
the interim in which PISA and TALIS were implemented. We are assuming that within
a country, the time difference between the implementation of PISA and TALIS did not
result in important exogenous changes across schools.
In addition to these substantive concerns, the sample sizes of the data sets are also

a consideration. In the case of PISA and TALIS, the school sample sizes are markedly
different; PISA, on average, samples twice as many schools as TALIS. Thus, it is common
practice to assign the role of the recipient data set to the smaller of the two - in this case
TALIS. We can see why this is reasonable. If TALIS was the donor survey, then records in
TALIS would be imputed more than once into PISA, which could then artificially reduce
the variability of the distributions of the variables in the synthetic data set.
The essence of hot deck imputation is that missing data in a recipient file (TALIS) are

filled in with actual values from a donor data file (PISA) based on a pre-specified algo-
rithm. This approach requires that the donor data set be at least as large or larger than the
recipient data set. Once a PISA donor is found for a TALIS recipient, the missing data for
the TALIS recipient is given the value of the PISA donor. The resulting synthetic data set
has a sample size equivalent to that of the original TALIS sample. A number of algorithms
exist for hot deck matching, however for this paper we will focus our attention only on
nearest neighbor hot deck matching. For our analyses, will use the R program StatMatch
(D’Orazio 2011) for non-parametric hot deck matching.

Distance hot deckmatching

Distance hot deck matching is perhaps the oldest form of hot deck matching and has
been used in a variety of applications. The idea is simple. The algorithm finds a school in
PISA that is closest to a school in TALIS based on a chosen metric of “distance”. For the
purposes of this paper, we chose the Euclidean distance metric. For simplicity, following
D’Orazio et al. (2006) let z be a single matching variable. Then, a donor from PISA for the
tth record in TALIS is chosen such that

dpt∗ = min
1<t<nt

|zTt − zPp |, (6)

Once that school is found, the missing data for the TALIS school is given the value
obtained from the PISA school. If two or more donor schools are found to match a TALIS
school, then one school is chosen at random.

Frequentist approaches to data fusion

As noted earlier, in addition to nonparametric methods based on variants of hot deck
imputation, parametric data fusion in the form of file concatenation andmultiple imputa-
tion can also be considered. In this case, the resulting synthetic data set has a sample size
which is the sum of the sample sizes of the separate surveys. In this section, we consider
two frequentist-based statistical data fusion methods, both of which are implemented in
the R software programmice (van Buuren and Groothuis-Oudshoorn 2010).

Stochastic regression imputation

A common approach to imputation is based on linear regression analysis. Under the
assumption that the missing data are at least MAR, the regression imputation approach
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uses linear regression to obtain predicted values for the missing observations. Thus, in
the case of PISA and TALIS, variables that are unique to TALIS would be regressed on
the variables common to PISA and TALIS. From here, missing data is filled in using the
predicted values of the TALIS missing data. The method proceeds similarly for filling in
missing PISA data.
The difficulty with linear regression imputation is that because the imputed values

are predictions from a regression equation, they will lie precisely on the regression line
and hence lead to underestimation of residual variability. This lack of variability in the
imputed values is clearly not realistic, and, moreover, will result in an overestimation of
the correlations (and hence R2) in subsequent analyses. To remedy this problem, a resid-
ual value is drawn from a normal distribution with a mean of zero and a variance equal
to the residual variance of the regression equation. This residual value is added to the
predicted value, yielding stochastic regression imputation.
With only one residual drawn from a normal distribution, the imputed missing data

value is still treated as unique and fixed. Given that missing data are, by definition,
unknown, it may be more reasonable to obtain multiple predicted values of the missing
data by drawing multiple residual values from the normal distribution. These multiple
draws, when added to the regression equation, will yield multiple data sets each with a
different predicted value for the missing data. In this way, uncertainty in the predicted
values of the missing data are addressed. Subsequent analyses are then based on analyz-
ing all of the data sets simultaneously and then pooling the results according to rules set
down by Rubin (1987)c. For this study, we use the norm.nob option in the R software pro-
grammice (van Buuren andGroothuis-Oudshoorn 2010) to conduct stochastic regression
imputation.

Predictivemeanmatching

Regression imputation and hot deckmatching set the groundwork for so-called predictive
mean matching introduced by Rubin (1986). In our context, the essential idea is that a
missing value in PISA is imputed by matching its predicted value based on regression
imputation to the predicted values of the observed data on the basis of some distance
metric. Then, the procedure uses the actual observed value for the imputation. That is,
for each regression, there is a predicted value for the missing data and also a predicted
value for the observed data. The predicted value for the observed data is then matched to
a predicted value of the missing data using, say, a nearest neighbor distance metric. Once
the match is found, the actual observed value (rather than the predicted value) replaces
the missing value. In this sense, predictive mean matching operates much like hot deck
matching. For this study, we use the pmm option withinmice to conduct predictive mean
matching.

Bayesian approaches to data fusion

In the previous section, we concentrated on two approaches to data fusion that lie within
the so-called “frequentist” paradigm of statistics. This paradigm is most closely associated
with Sir R. A. Fisher and rests on a view that equates probability with long run frequency
and the idea of identically repeatable experiments. Along with likelihood theory (also
associated with Fisher), the general frequentist paradigm views parameters (such as pop-
ulation means, variances, and regression coefficients) as unknown and fixed. A sample,
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taken from the population is then used to provide an estimate of the unknown param-
eters, and the notion of identically repeatable samples from the population allow us to
estimate the sampling variability around the estimates of the model parameters.
In contrast to the frequentist school of statistics, the Bayesian school adopts an entirely

different view of statistical inference. Specifically, the Bayesian school views all unknown
quantities, and in particularly parameters, as random variables that can be described by
a probability distribution that characterizes our uncertainty about the average value and
variation of the parameter. This probability distribution is referred to in the Bayesian
literature as the prior distribution. Bayes’ theorem is used to link the prior distribution to
the actual data distribution (analogously, the likelihood) yielding a posterior distribution
of the model parameters (see Kaplan and Depaoli 2013, for an overview of Bayesian
inference).
The central reason for adopting a Bayesian perspective to the problem of data fusion

(and other missing data problems more generally) is that by viewing parameters proba-
bilistically and specifying a prior distribution on the parameters of interest, the imputa-
tionmethod (described next) is Bayesianly proper (Rubin 1987) insofar as the imputations
reflect uncertainty about the missing data as well as uncertainty about the unknown
model parameters.Moreover, this view of statistical inference allows for the incorporation
of prior knowledge of model parameters, which can further reduce uncertainty in model
parameters. In the context of international large scale assessments, such prior knowl-
edge can come from previous fusion studies, where the prior information can be encoded
as values of the hyperparameters of the fusion model. It is important to point out that
although the method of stochastic regression imputation described above has a Bayesian
flavor, it is not Bayesianly proper insofar as it does not account for parameter uncertainty,
but rather only uncertainty in the predicted missing data values.

Bayesian regression imputation via chained equations

In this section we concentrate our discussion on a Bayesianly proper form of multiple
imputation using the method of chained equationsd. The method of chained equations
recognizes that inmany instances, it might be better to engage in a series of single univari-
ate imputations along with diagnostic checking rather than a omnibus multivariate model
for imputation that might be sensitive to specification issues. An overview of imputations
via chained equations can be found in van Buuren (2012).
The essence of the chained equations approach is that a univariate regression model

consistent with the scale of the variable with missing data is used to provide predicted
values of the missing data given the observed data. Thus, if a variable with missing data
is continuous, then a normal model is used. If a variable is a count, then a Poisson model
would be appropriate. This is a major advantage over other Bayesianly proper methods
such as data augmentation (Tanner and Wong 1987) that assume a common distribution
for all of the variables. Once a variable of interest is “filled-in”, that variable, along with
the variables for which there is complete data, is used in the sequence to fill in another
variable. In general, the order of the sequence is determined by the amount of missing
data, where the variable with least amount of missing data is imputed first, and so on.
Once the sequence is completed for all variables with missing data, the posterior dis-

tribution of the regression parameters are obtained, and the process is started again.
Specifically, the filled-in data from the previous cycle, along with complete data are used
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for the second and subsequent cycles (Enders 2010). The Gibbs sampler (Geman and
Geman 1984) is used to generate the sequence of iterations. Finally, the algorithm can run
these sequences in parallel m number of times obtaining m imputed data sets. For the
purposes of this paper, we will utilized the norm option as implemented inmice.

Bayesian bootstrap predictive meanmatching

Multiple imputation via chained equations is inherently a parametric method. That is, in
estimating a Bayesian linear regression, the posterior distributions are obtained via Bayes’
theorem which requires parametric assumptions. It may be desirable, however, to relax
assumptions regarding the posterior distributions of the model parameters, and to do this
requires a replacement of the step that draws the conditional predictive distribution of the
missing data given the observed data. A hybrid of predictive mean matching, referred to
as posterior predictive mean matching, proceeds first by obtaining parameter draws using
classical multiple imputation approaches. However, the final step then uses those values
to obtain predicted values of the data followed by conventional predictivemeanmatching.
Posterior predictive mean matching sets the groundwork for Bayesian bootstrap pre-

dictive mean matching (BBPMM). The goal of BBPMM is to further relax the distribution
assumptions associated with draws from the posterior distributions of the model param-
eters. The algorithm begins by forming a Bayesian bootstrap of the observations Rubin
(1981,1987). The Bayesian bootstrap (BB) is quite similar to conventional frequentist
bootstrap (Efron 1979), except that it provides a method for simulating the posterior
distribution of the parameters of interest rather than the sampling distribution of param-
eters of interest, and as such, is more robust to violations of distributional assumptions
associated with the posterior distribution.
Following Rubin (1981), one replication of the Bayesian bootstrap is formed by gen-

erating n − 1 random variates from a uniform (0,1) distribution u1,u2, . . . ,un−1. Next,
these variates are sorted in ascending order and gaps di = ui − ui−1 are calculated, with
i = 1, 2, . . . , n−1, andwhere d0 = 0 and dn = 1. Then, the di are the probabilities attached
to the data yi, (i = 1, 2, . . . , n). For each BB replication, the parameters of interest are
calculated. The resulting distributions of the parameters over all BB replications are the
posterior distributions of the parameters of interest. Rubin (1981) shows that the Bayesian
bootstrap gives results that are very similar to the conventional bootstrap, except that the
interpretation is different: the Bayesian bootstrap simulates the posterior distributions of
the parameters of interest and provides likelihood statements regarding the parameters,
whereas the conventional bootstrap simulates the sampling distribution of the parameters
and provides frequency statements regarding the parameters (Rubin 1981, pg. 131).
In the context of missing data, the Bayesian bootstrap can be used for multiple imputa-

tion. The algorithm follows closely the description in the previous paragraph. Again, let
yobs = (y1, y2, . . . , ynobs). We draw nobs random numbers from a uniform (0,1) distribu-
tion, sort them in ascending order, and let u0 = 0 and u1 = 1. The gaps di are calculated
as above. Then a uniform(0,1) random number is drawn independently nmiss times. We
impute yi, (i = 1, 2, . . . , nobs) if di−1 < u < di. For multiple imputation, this procedure is
repeatedm times.
With the Bayesian bootstrap as the foundation, BBPMMobtains estimates of the regres-

sion parameters from the BB sample. This is followed by the calculation of predicted
values of the observed and missing data based on the regression parameters from the BB
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sample. Then, predictive mean matching is performed as described earlier. As with con-
ventional MI, these steps can be carried out m ≥ 1 times to create m multiply imputed
data sets. For this paper, we use the R software program BaBooN (Koller-Meinfelder 2011)
to implement BBPMM.

A hybrid method: the EM bootstrap

In this section we examine an approach that combines Bayesian imputation concepts with
the frequentist idea of bootstrap sampling Efron (1979) along with the use of the EM
algorithm. The idea is to extend the EM algorithm using a bootstrap approach but also
allowing for the incorporation of priors on model parameters.
Following Honaker and King (2010) and Honaker (personal communcation, June 2011)

the first step is to bootstrap the PISA and TALIS concatenated data set to create m
versions of the incomplete data, where m ranges typically from 3 to 5 as in other mul-
tiple imputation approaches. Bootstrap resampling involves taking a sample of size n
with replacement from the original dataset. Here, the m bootstrap samples of size n are
obtained from the PISA and TALIS concatenated file, where n is the total sample size
of the file. Second, for each bootstapped data set, the EM algorithm is run. It is here
that Honaker and King (2010) allow for the inclusion of prior distributions on the model
parameters estimated via the EM algorithm.
Notice that because m boostrapped samples are obtained, and that each EM run

may contain priors, then once the EM algorithm has run, the model parameters will
be different. Indeed, with priors, the final results are the maximum a posteriori (MAP)
estimates – the Bayesian counterpart of the maximum likelihood estimates. Because we
have complete data for Iceland, in this paper we elicit informative priors based on the
known distributions of the missing variables. Specifically, we apply a matrix of means
and standard deviations from the complete Iceland data. In practice, however, this
information would be unknown. Nevertheless, for data fusion problems of this sort, we
reasonably assume MCAR and so it may be justified to use the means and standard devi-
ations of the observed variables to obtain priors. Also, findings from matching current
cycles of PISA and TALIS could be used to inform the specification of priors for future
data fusion exercises.
With priors in hand, missing values are imputed based on the final converged estimates

for each of the m datasets. These m versions can then be used in subsequent analyses.
This approach is referred to as the EM-Bootstrap EMB (Honaker and King 2010) and
implemented in the R program Amelia (Honaker et al. 2010) which we will use in our
analyses below.

Data source
The PISA 2009 survey design samples schools proportional to size followed by a sam-
ple of the target student population within those schoolse. The target student population
was based on target age rather than school grade levels to allow for international com-
parability. The eligible age range at the time of the assessment was between 15 years
and 3 months and 16 years and 2 months to ensure that students were assessed before
they completed compulsory education. Also, only those who had completed at least 6
years of formal schooling were eligible for the study and those with intellectual dis-
abilities or limited language proficiency in the language of the test were excluded.
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PISA collects student-level and school-level data from reports by students, school
administrators, and parents across 34 OECDmember countries and 41 partner countries
and economiesf.
For TALIS, a two-stage stratified probability sample was employed with lower

secondary education teachers (level 2 of the 1997 revision of the International Stan-
dard Classification of Education, ISCED 97) as second stage units randomly selected
from randomly selected schools. The surveys were in the field from October 2007 to
May 2008. TALIS provides teacher-level and school level data from reports by teach-
ers and school administrators across 16 member countries and 7 partner countries and
economiesg.

Data from Iceland

Recall that we are utilizing data from Iceland because Iceland implemented both the
PISA and TALIS surveys and thus provides a unique opportunity to study the validity
of the data fusion algorithms. In total, 142 schools participated in either the TALIS sur-
vey or the PISA survey. Of these, 122 PISA and TALIS schools were able to be matched.
The 20 schools that were unmatched were eligible for TALIS or PISA, but not both.
An additional 39 schools were excluded due to large amounts of missing data on vari-
ables needed for the matching procedures. Finally, 5 schools were excluded because
they were identified to be influential outliers. Thus, the data fusion procedures utilize
data from 78 schools in Iceland with full information from the PISA and TALIS data
sets.
For our experiment with data from Iceland, preliminary analyses indicated that ran-

domly deleting data would yield a sample size that was likely too small to effectively
judge the quality of the matching procedures. To address this problem, we duplicated the
Iceland data and then removed PISA data for half the sample and TALIS data for the
other half of the sample. This led to a sample of 78 schools with PISA data and 78 schools
with TALIS data. Because the duplication and subsequent deletion of the data were not
dependent on any of the observed PISA, TALIS or common variables, the missing data
are missing completely at randomh.

Variables
PISA administers surveys to school principals and to students. TALIS administers surveys
to school principals and to teachers. Common variables are drawn from the school prin-
cipal surveys from PISA and TALIS. These are the variables that are used in the matching
methods to generate the matched data sets.

Table 1 Summary statistics and conditional covariancematrix for original Iceland data

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Selfef 156.00 0.30 0.35 0.31 0.31 0.39 -0.58 1.02 1.60 -0.27 -0.44 0.03

Jobsat 156.00 3.13 0.20 3.12 3.13 0.18 2.75 3.57 0.82 0.17 -0.51 0.02

Joyread 156.00 -0.09 0.33 -0.13 -0.09 0.27 -0.93 0.91 1.84 0.28 0.89 0.03

Metasum 156.00 -0.17 0.37 -0.16 -0.18 0.32 -0.96 1.20 2.17 0.44 1.69 0.03

Joyread Metasum

Selfef -0.02 -0.04

Jobsat 0.01 -0.01
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Table 2 Summary statistics and conditional covariancematrix for Iceland data: hot deck
distancematching

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Selfef 78 0.30 0.36 0.31 0.31 0.39 -0.58 1.02 1.60 -0.27 -0.41 0.04

Jobsat 78 3.13 0.20 3.12 3.13 0.18 2.75 3.57 0.82 0.16 -0.49 0.02

Joyread 78 -0.05 0.31 -0.09 -0.06 0.30 -0.93 0.91 1.84 0.55 1.38 0.04

Metasum 78 -0.18 0.39 -0.16 -0.18 0.38 -0.96 1.20 2.17 0.33 1.02 0.04

Joyread Metasum

Selfef -0.00 0.02

Jobsat -0.01 -0.01

Matching variables

We were able to match on several indicators and indices that are similar in both the
PISA and TALIS school administrator surveys. Both sets of data include information
on school sector, the size of the school community, the total enrollment in the school,
a measure of the availability of school material resources, the extent to which teacher
absenteeism interferes with student learning, a measure of the extent to which student-
related factors affect the school climate, and a measure of the disciplinary climate of the
schooli.
There may be other variables in the student or parent surveys from PISA, or the teacher

surveys from TALIS that can be used for the matching procedure. These would need to
be standardized and averaged to the school level prior to applying the matching proce-
dures. Including more variables for the match is generally better, although increasing the
variables included in the matching procedure necessitates a larger school sample in both
PISA and TALIS. Also, in certain contexts, a reduced set of variables may be used depend-
ing on their usefulness for the data fusion procedure. For example, in Iceland there are
very few private schools. Because of the lack of variation in the school sector variable, it
is not useful for the match.
Another consideration for matching is to match within meaningful subpopulations.

Researchers may wish to match within private schools and within public schools, for
example. This would be a useful strategy if schools within sub-populations differ greatly
from each other. Sub-populations could be defined within school sector, regions, gov-
ernance structures, etc. We did not do this for the current analysis because the private
schools were dropped from the sample for reasons unrelated to their school sector
designation.

Table 3 Summary statistics and conditional covariancematrix for Iceland data: stochastic
regression imputation

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Selfef 78 0.30 0.37 0.31 0.31 0.39 -0.93 1.42 2.35 -0.13 0.03 0.01

Jobsat 78 3.12 0.20 3.11 3.12 0.18 2.41 3.82 1.40 -0.02 -0.01 0.01

Joyread 78 -0.05 0.34 -0.08 -0.06 0.31 -0.94 1.26 2.20 0.25 0.53 0.01

Metasum 78 -0.12 0.38 -0.14 -0.13 0.36 -1.18 1.20 2.38 0.30 0.57 0.01

Joyread Metasum

Selfef -0.08 0.02

Jobsat -0.03 0.03
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Table 4 Summary statistics and conditional covariancematrix for Iceland data: predictive
meanmatching

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

selfef 78 0.29 0.35 0.30 0.30 0.39 -0.58 1.02 1.60 -0.27 -0.48 0.01

jobsat 78 3.12 0.21 3.11 3.11 0.19 2.75 3.57 0.82 0.13 -0.61 0.01

joyread 78 -0.06 0.32 -0.11 -0.06 0.27 -0.93 0.91 1.84 0.24 0.73 0.01

metasum 78 -0.13 0.38 -0.11 -0.14 0.35 -0.96 1.20 2.17 0.54 1.74 0.01

Joyread Metasum

Selfef -0.01 0.00

Jobsat 0.00 -0.03

Unique variables

The central focus of PISA 2009 was proficiency in reading. PISA identified a cumula-
tive or cyclical model of how engagement in reading activities (e.g., enjoyment of reading
and diversity of reading materials) and approaches to learning (e.g., summarizing skills
and memorization strategies) promotes reading performance at the end of compulsory
education (OECD, 2010b, pg. 25). These skills are of interest to researchers studying
inequality because they have been shown to mediate the effects of socioeconomic advan-
tage on reading achievement (OECD, 2010b, pg. 91). To measure students’ engagement
in reading and learning strategies, we chose one indicator of each: “enjoyment of reading”
(joyread) and “summarizing skills ”(metasum). According to analysis of PISA 2009, 18%
of the student variation in reading performance across OECD countries can be explained
by variation in students’ enjoyment of reading (OECD, 2010b pg. 28) (22% ISL). Also, 21%
of the variation in reading performance across OECD countries can be explained by vari-
ation in summarizing skills (OECD 2010b, pg. 47) (20% ISL). Both measures are averaged
to the school level for analysis.
We chose two predictor variables of interest that measure teachers’ job-related atti-

tudes: “teacher job satisfaction” (jobsat) and “teacher self-efficacy” (selfef ). Job satisfaction
influences aspects of teachers’ behavior such as performance, absenteeism, and turnover
(OECD, 2009, p.111). Similarly, teachers’ self-efficacy influences their instructional stan-
dards and coping strategies (OECD, 2009, p. 111). Both job satisfaction and teacher
self-efficacy are linked to instructional practices and student achievement (Ashton and
Webb, 1986; Ross, 1998).The job satisfaction measure is taken from one item in the
TALIS teacher survey which asks the teachers to indicate how strongly they agree with
the statement “All in all, I am satisfied with my job.” The self-efficacy measure is a com-
posite of four items in the teacher survey. Teachers are asked to indicate how strongly

Table 5 Summary statistics and conditional covariancematrix for Iceland data: Bayesian
regression imputation

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Selfef 78 0.30 0.39 0.31 0.30 0.39 -1.07 1.92 2.99 -0.12 -0.02 0.01

Jobsat 78 3.13 0.22 3.11 3.12 0.20 2.47 3.88 1.41 0.12 0.07 0.01

Joyread 78 -0.04 0.35 -0.06 -0.04 0.33 -1.39 1.42 2.82 0.19 0.78 0.01

Metasum 78 -0.10 0.41 -0.11 -0.11 0.38 -1.14 1.29 2.43 0.33 0.47 0.01

Joyread Metasum

Selfef -0.03 -0.10

Jobsat 0.01 0.01



Kaplan and McCarty Large-scale Assessments in Education 2013, 1:6 Page 16 of 26
http://www.largescaleassessmentsineducation.com/content/1/1/6

Table 6 Summary statistics and conditional covariancematrix for Iceland data: Bayesian
bootstrap predictive meanmatching

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Selfef 78 0.27 0.35 0.30 0.28 0.41 -0.58 1.02 1.60 -0.18 -0.52 0.01

Jobsat 78 3.12 0.19 3.11 3.12 0.16 2.75 3.57 0.82 0.22 -0.51 0.01

Joyread 78 -0.08 0.31 -0.12 -0.08 0.26 -0.93 0.91 1.84 0.23 0.63 0.01

Metasum 78 -0.15 0.36 -0.14 -0.15 0.33 -0.96 1.20 2.17 0.31 1.22 0.01

Joyread Metasum

Selfef 0.01 0.01

Jobsat 0.01 0.02

they agree with the statements: “I feel that I am making a significant educational dif-
ference in the lives of my students”, “If I try really hard, I can make progress with
even the most difficult and unmotivated students”, “I am successful with the students
in my class”, and “I usually know how to get through to students.” Both the job satis-
faction measure and the teacher self-efficacy measure are averaged to the school level
for analysis.

Results
Software code for the data fusion methods is presented in Additional file 1: Annex A and
software code for implementing the validity checks is given in Additional file 1: Annex B
for the hot deck matching method only. Validity checking for the other methods would
be implemented in the same way.
An inspection of Table 1 shows the descriptive statistics for the Iceland data for

the original data and Tables 2, 3, 4, 5, 6, 7 and 8 show the results for each data
fusion algorithm. A complete set of descriptive statistics are provided including the
mean, standard deviation, median, trimmed mean, mean absolute deviation, mini-
mum, maximum, range, skewness, kurtosis, and standard error of the mean. A visual
comparison of the results suggests that most of the methods do a reasonably good
job of reproducing marginal descriptive values. Exceptions include stochastic regres-
sion imputation and Bayesian regression imputation using chained equations. Hot
deck matching does a reasonable job except with respect to skewness and kurtosis
estimates.
An inspection of Tables 1, 2, 3, 4, 5, 6 7 and 8 also present an assessment of third

level validity – namely the preservation of the correlation/covariance structure of the
data. Recall, that preservation of the correlation/covariance structure requires that the

Table 7 Summary statistics and conditional covariancematrix for Iceland data: EM
bootstrap

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Selfef 78 0.32 0.36 0.34 0.33 0.36 -1.11 1.38 2.49 -0.26 0.06 0.01

Jobsat 78 3.12 0.20 3.11 3.11 0.17 2.38 3.70 1.31 0.00 -0.04 0.01

Joyread 78 -0.03 0.33 -0.05 -0.03 0.31 -1.02 0.99 2.01 0.07 0.32 0.01

Metasum 78 -0.11 0.37 -0.11 -0.12 0.37 -1.06 1.20 2.26 0.20 0.45 0.01

Joyread Metasum

Selfef 0.01 0.00

Jobsat -0.00 -0.02
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Table 8 Summary statistics and conditional covariancematrix for Iceland data: EM
bootstrap with priors

Variable n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se

Selfef 78 0.30 0.33 0.30 0.31 0.37 -0.65 1.39 2.03 -0.19 -0.27 0.01

Jobsat 78 3.13 0.19 3.12 3.12 0.18 2.63 3.72 1.09 0.14 -0.24 0.01

Joyread 78 -0.06 0.30 -0.08 -0.07 0.27 -0.93 0.91 1.84 0.18 0.65 0.01

Metasum 78 -0.13 0.35 -0.13 -0.13 0.34 -0.97 1.20 2.18 0.19 0.91 0.01

Joyread Metasum

Selfef -0.00 0.00

Jobsat 0.02 0.01

conditional correlations among the unique variables given the matching variable should
be close to zero. As an example, inspection of Table 2 for hot deck matching reveals
that the conditional correlations are very small and not greater than 0.02. When com-
pared to the values in Table 1, we see that hot deck matching does an excellent job of
preserving correlation/covariance structure of the data. Overall, the results indicate that
while most methods do a reasonably good job of meeting third level validity, BBPMM
and the EM bootstrap stand out as being the best methods in terms of this validity
criteria.
Figures 1, 2, 3, 4, 5, 6 and 7 provide a visual inspection of the descriptive statistics results

presented above. Specifically, the kernel density plots represent smoothed histograms.We
compare the distribution of the synthetic data (solid line) against the original data (dotted
lines). We find that most all procedures yield a kernel density plot that matches the distri-
bution of the original variables quite well. In addition, we also present quantile-quantile
(Q-Q) plots in Figures 8, 9, 10, 11, 12, 13 and 14. A Q-Q plot is a graphical approach for

Figure 1 Kernel density plots for hot deck matching.
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Figure 2 Kernel density plots for stochastic regression.

comparing two probability distributions by plotting their quantiles against each other. If
the two probability distributions being compared are similar, the points in the Q-Q plot
will lie approximately on a straight line. A close inspection reveals that BBPMM provides
the best quantile-quantile plots overall, and particularly better than the EM bootstrap
method.

Figure 3 Kernel density plots for predictive meanmatching.
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Figure 4 Kernel density plots for Bayesian regression.

Discussion
The purpose of this paper was to provide a proof of concept on how one might imple-
ment a statistical match of PISA and TALIS. We argued at the beginning of the paper
that statistically matching PISA and TALIS might be a reasonable option for coun-
tries that are unable to administer both surveys to the same sample schools. Our

Figure 5 Kernel density plots for Bayesian bootstrap predictive meanmatching.
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Figure 6 Kernel density plots for the EM bootstrap.

analyses suggest that statistically matching PISA and TALIS is feasible and should
be seriously considered by countries interested in gleaning added value from both
surveys.
Among the methodologies that were considered in this paper, two stand out

as deserving serious consideration for matching PISA and TALIS – Bayesian

Figure 7 Kernel density plots for the EM bootstrap with priors.
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Figure 8 QQ plots for hot deck matching.

bootstrap predictive mean matching, and the EM-bootstrap. Both methodologies
worked quite well with respect to Rassler’s (2002) third and fourth level validity
criteria.
Our simulation study made use of data from Iceland. Because Iceland implemented

PISA and TALIS on all relevant students and schools, we were able to evaluate the ability

Figure 9 QQ plots for stochastic regression.
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Figure 10 QQ plots for predictive meanmatching.

of alternative methods in reproducing true correlations. In practice, however, the true
estimates of the correlation structure would be unknown. In this case, researchers would
need to make use of sensitivity analyses, the details of which are outlined in Rubin (1986).
A study of sensitivity to violations of assumptions was beyond the scope and purpose of
this paper.

Figure 11 QQ plots for Bayesian regression.
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Figure 12 QQ plots for Bayesian bootstrap predictive meanmatching.

As noted earlier, data fusion is typically limited to single level data structures. In
the case of PISA and TALIS, this requires aggregation of student and teacher level
data to the school level, respectively. Thus, the well known problems associated with
data aggregation are present in the statistically matched file. However, there does
exist a two-level data fusion algorithm in the software program mice (van Buuren

Figure 13 QQ plots for the EM bootstrap.
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Figure 14 QQ plots for the EM bootstrap with priors.

and Groothuis-Oudshoorn 2010) based on the Gibbs sampling algorithm. For those
PISA participating countries that opted for the international teacher questionnaire,
and assuming that there are teacher level variables common to TALIS and the PISA
teacher questionnaires, two level data fusion may be feasible and certainly worth
exploring.
In the context of cross-national education research, data fusion within countries allows

for a more nuanced analysis of cross-national differences. Recall that while both PISA
and TALIS allow researchers to link institutional characteristics to aspects of school and
classroom climate, only PISA offers measures of student learning, and only TALIS pro-
vides information about teachersï£¡ job-related attitudes. In order to fully understand
cross-national differences in outcomes, it is necessary to provide a complete description
of the inputs and processes that relate to differences in outcomes across countries. In all,
24 countries participated in the TALIS survey, and each of these has also participated
in PISA 2009. Matching the TALIS and PISA surveys for each of these 24 countries is
beyond the scope of the current study, however the potential for data fusion to provide
complete information on multiple countries is promising. For example, PISA data sug-
gest that the best performing education systems prioritize teacher and administration
quality, provide clear and ambitious standards focused on complex, higher order think-
ing, and embrace the diversity in students capacities, interests, and social background
through individualized approaches to learning (OECD 2010a). TALIS data suggest that
professional development, teaching practices, teachers beliefs and attitudes, school and
teacher evaluation methods are important for understanding and improving educational
processes (OECD 2009). In the absence of a new design that formally links through the
administration of PISA and TALIS jointly, data fusion provides the next best approach for
addressing these important policy questions.
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Conclusions
To conclude, this paper demonstrated the feasibility of statistically matching PISA and
TALIS, as well as demonstrated the effectiveness of six algorithms that could be employed
for this purpose. The feasibility of statistically matching PISA and TALIS is supplemented
by the accessibility of free and open source software - specifically, software packages
found within the R statistical computing environment (R Development Core Team 2010).
In the absence of a direct implementation of both surveys, national project managers for
PISA and TALIS may wish to invest in analytic and software training on methods of data
fusion.

Endnotes
aRather than drawing a sample of targeted students and teachers, Iceland surveyed the

entire population, which for PISA included all 15 year old students and and for TALIS
included all teachers who teach ISCED level 2 students (usually aged between 11 and
16). Our study includes schools where these two populations overlapped, that is schools
serving PISA students taught by TALIS teachers.

bOf course, within a survey, missing data on some variables, including those that are
common across PISA and TALIS might be MAR or NMAR. We will assume that
missing data on variables in common to both PISA or TALIS are at least MAR.

cHowever, see Reiter (2012) for a recent discussion of bias in variance estimates based
on Rubin’s combining rules and a Bayesian alternative.

dAnother popular form of Bayesianly proper imputation involves the data
augmentation algorithm of Tanner and Wong (1987).

eThere are additional complexities to the sampling designs of PISA and TALIS that
can be found in their respective technical reports.

fTo be included in the PISA study, a minimum of 150 schools must participate in the
surveys.

gTo be included in the TALIS study, a minimum of 200 schools must participate in the
surveys.

h Doubling the sample is not recommended in general. The results of the match will be
artificially improved as a result of the duplication. However, for the purposes of our
experiment, which compares data fusion strategies using the same duplicated data, we
do not expect this strategy to influence our recommendations for the preferred
matching method. This is because each method is equally subject to the artificial
improvements risked by the data duplication.

iInformation about the average disciplinary climate for each school was drawn from
student surveys in PISA and the teacher surveys in TALIS, and are averaged to the
school level. It has been shown that there is a high level of agreement on indicators of
disciplinary climates among teachers and students (OECD 2009 pg. 104), so we argue
that these variables are suitable to use as matching variables.

Additional file

Additional file 1: Annex A. # R Scripts for PISA-TALIS Match. Annex B. ## Script for calculating marginal
distributions and conditional covariance matrix. ## Needed to check third and fourth order validity.
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