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Introduction
Several large-scale educational survey assessments  (LESAs) such as the United States’ 
National Assessment of Educational Progress (NAEP), the International Adult Literacy 
Study (IALS; Kirsch 2001), the Trends in Mathematics and Science Study (TIMSS; Mar-
tin and Kelly 1996), and the Progress in International Reading Literacy Study (PIRLS; 
Mullis et al. 2003) involve the use of item response theory (IRT) models for score-report-
ing purposes (e.g., Beaton 1987; Mislevy et al. 1992; Von Davier and Sinharay 2014).

Standard 4.10 of the Standards for Educational and Psychological Testing (American 
Educational Research Association 2014) recommends obtaining evidence of model fit 
when an IRT model is used to make inferences from a data set. In addition, because of 
the importance of the LESAs in educational policy-making in the U.S. and abroad, it is 
essential to assess the fit of the IRT models used in these assessments. Although several 
researchers have examined the fit of the IRT models in the context of LESAs (for exam-
ple, Beaton 2003; Dresher and Thind 2007; Sinharay et al. 2010), there is a substantial 
scope of further research on the topic (e.g., Sinharay et al. 2010).

This paper suggests two types of residuals to assess the fit of IRT models used in 
LESAs. One among them can be used to assess item fit and the other can be used to 
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assess other aspects of fit of these models. These residuals are computed for several sim-
ulated data sets and four operational NAEP data sets. The focus in the remainder of this 
paper will mostly be on NAEP.

The next section provides some background, describing the current NAEP IRT model 
and the existing NAEP IRT model-fit procedures. The Methods section describes our 
suggested residuals. The data section describes data from four NAEP assessments. The 
Simulation section describes a simulation study that examined the Type I error rate and 
power of the suggested methods. The next section involves the application of the sug-
gested residuals to the four NAEP data sets. The last section includes conclusions and 
suggestions for future research.

Background
The IRT model used in NAEP

Consider a NAEP assessment that was administered to students  i, i = 1, 2, . . . ,N  , 
with corresponding sampling weights Wi. The sampling weight Wi represent the num-
ber of students in the population that student i represents (e.g., Allen et  al. 2001 
pp. 161–225). Denote the p-dimensional latent proficiency variable for student i by 
θ i = (θi1, θi2, . . . , θip)

′. In NAEP assessments, p is between 1 and 5. Denote the vector of 
item scores for student i by yi = (y′i1, y

′
i2, . . . , y

′
ip)

′, where the sub-vector yik contains the 
item scores yijk , j ∈ Jik, of student i to items (that are indexed by j) corresponding to the 
kth dimension/subscale that were presented to student i. For example, yik could be the 
scores of student i to the algebra questions presented to her on a mathematics test and 
θik could represent the student’s proficiency variable for algebra. Because of the use of 
matrix sampling (that refers to a design in which each student is presented only a subset 
of all available items) in NAEP assessments, the algebra questions administered to stu-
dent i are a subset Jik of the set Jk of all available algebra questions on the test. The item 
scores yijk can be an integer between 0 and rjk > 0, where rjk = 1 for dichotomous items 
and an integer larger than 1 for polytomous items with three or more score categories.

Let βk denote the vector of item parameters of the items related to the kth subscale, 
and let β = (β ′

1,β
′
2, . . . ,β

′
p)

′. For item j in Jik, let fjk(y|θik ,βk) be the probability given θik 
and βk that yijk = y, 0 ≤ y ≤ rjk, and let

Then fk(yik |θik ,βk) is the conditional likelihood of an examinee on the items corre-
sponding to the k-th subscale. Because of the between-item multidimensionality of the 
items (that refers to each item measuring only one subscale; e.g., Adams et al. 1997) used 
in NAEP, the conditional likelihood for a student i given θ i is given by

In Equation  2, the expressions fk(yik |θik ,βk) are defined by the particular IRT model 
used for analysis, which is usually the three-parameter logistic (3PL) model (Birnbaum 
1968) for multiple-choice items, the two-parameter logistic (2PL) model (Birnbaum 

(1)fk(yik |θik ,βk) =
∏

j∈Jik

fjk(y|θik ,βk).

(2)f (yi|θ i,β) =

p
∏

k=1

fk(yik |θik ,βk) ≡ L(θ i;β; yi).
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1968) for dichotomous constructed-response items, and the generalized partial-credit 
model (GPCM; Muraki 1992) for polytomous constructed-response items. Parame-
ter identification requires some linear constraints on the item parameters β or on the 
regression parameters Ŵ and �.

Associated with student i is a vector zi = (zi1, zi2, . . . , ziq) of background variables. It is 
assumed that yi and zi are conditionally independent given θ i and, for some p by q matrix 
Ŵ and some p by p positive-definite symmetric matrix �, the latent regression assump-
tion is made that

where Np denotes the p-dimensional normal distribution (e.g., Beaton 1987; Von 
Davier and Sinharay 2014). Let φ(θ;Ŵzi,�) denote the density at θ of the above normal 
distribution.

Weighted maximum marginal likelihood estimates may then be computed for the item 
parameters, the matrix Ŵ, and the matrix � by maximizing the weighted log likelihood

The resulting estimates are β̂ = (β̂
′

1, . . . , β̂
′

p), Ŵ̂, and �̂. The model described by Eqs. 1 – 4 
will henceforth be referred to as the “NAEP operational model” or the “NAEP model”. 
The model given by Eqs. 1 and 2 are often referred to as the “NAEP measurement model” 
or the “IRT part of the NAEP model”.

In this report, a limited version of the NAEP model is used where no background vari-
ables are employed, and θ i is assumed to have a multivariate normal distribution with 
means equal to 0 and constraints on the covariance matrix, so that the variances are 
equal to 1 if the covariances are all zero. Consideration of only this limited model allows 
us to focus on the fit of the IRT part (given by Eqs. 1 and 2) of the NAEP model rather 
than on the latent regression part (given by Eq. 3). If zi has a normal distribution, then 
this limited model is consistent with the general NAEP model. The suggested residu-
als can be extended to the case in which background variables are considered. These 
extensions are already present in the software employed in the analysis in this paper. 
For example, residuals involving item responses and background variables can indicate 
whether the covariances of item responses and background variables are consistent with 
the IRT model. The extensions can also examine whether problems with residual behav-
ior found when ignoring background variables are removed by including background 
variables in the model. This possibility is present if background variables that are not 
normally distributed are related to latent variables.

Existing tools for assessment of fit of the NAEP IRT model

The assessment of fit of the NAEP IRT model is more complicated than that of the IRT 
models used in other testing programs because of several unique features of NAEP. Two 
such major features are:

(3)θ i|zi ∼ Np(Ŵzi,�),

(4)ℓ(β ,Ŵ,�) =

N
∑

i=1

Wi log

∫

L(θ;β; yi)φ(θ;Ŵzi,�)dθ .
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• • Because NAEP involves matrix sampling, common model-fit tools such as the item-
fit statistics of Orlando and Thissen (2000), which are appropriate when all items are 
administered to all examinees, cannot be applied without modification.

• • Complex sampling involves both the sampling weights Wi and departures from cus-
tomary assumptions of independent examinees due to sampling from finite popula-
tions and due to first sampling schools and then sampling students within schools.

However, there exist several approaches for assessing the fit of the NAEP IRT model.
The primary model-fit tool used in the NAEP operational analyses is graphical item-fit 

analyses using residual plots and a related χ2-type item-fit statistic (Allen et al. 2001 p. 
233) that provide guidelines for treating the items (such as collapsing categories of poly-
tomous items, treating adjacent year data separately in concurrent calibration, or drop-
ping items from the analysis). However, the null distribution1 of these residuals and of 
the χ2-type statistic are unknown (Allen et al. 2001 p. 233).

Differential item functioning (DIF) analyses are also used in NAEP operational analysis 
to examine one aspect of multidimensionality (Allen et al. 2001 p. 233). In addition, the 
difference between the observed and model-predicted proportions of students obtain-
ing a particular score on an item (Rogers et al. 2006) are also examined in NAEP opera-
tional analyses. However, to evaluate when a difference can be considered large enough, 
the standard deviation of the difference is not used. It will be useful to incorporate the 
variability in the comparison of the observed and predicted proportions. As will be clear 
later, our proposed approach addresses this issue.

Beaton (2003) suggested the use of item-fit measures involving weighted sums and 
weighted sums of squared residuals obtained from the responses of the students to each 
question of NAEP. Let Êijk be the estimated conditional expectation of yijk given zi based 
on the parameter estimates β̂, Ŵ̂, and �̂, and let σ̂ijk be the corresponding estimated con-
ditional standard deviation of yijk. Let us consider item j that measures the k-th subscale 
and let Kjk be the set of students i who were presented the item. Beaton’s fit indices are 
of the forms

The bootstrap method (e.g., Efron and Tibshirani 1993) is used to approximate the null 
distribution of these statistics. Li (2005) employed Beaton’s statistics to operational 
NAEP data sets to determine the effect of accommodations for students with disabilities. 
Dresher and Thind (2007) employed Beaton’s statistics to 2003 NAEP and 1999 TIMSS 
data. They also employed the χ2-type item fit statistic provided by the NAEP version of 
the PARSCALE program, but they computed the null distribution of all statistics from 
their values for one simulated data set. However, these methods have their limitations. 
One simulated data set is inadequate to reflect a null distribution and the bootstrap 
method involved in the approach of Li (2005) is computationally intensive.

1  The null distribution refers to the distribution under perfect model fit.

∑

i∈Kjk

Wi

yijk − Êijk

σ̂ijk
and

∑

i∈Kjk

Wi

(yijk − Êijk)
2

σ̂ 2
ijk

.



Page 5 of 23van Rijn et al. Large-scale Assess Educ  (2016) 4:10 

Sinharay et al. (2010) suggested a simulation-based model-fit technique similar to the 
bootstrap method (e.g., Efron and Tibshirani 1993) to assess the fit of the NAEP statisti-
cal model. However, their suggested statistics were computed at the booklet level rather 
than for the whole data set and the p-values of the statistics under the null hypothesis of 
no misfit did not always follow a uniform distribution and were smaller than what was 
expected.

The above review shows that there is need for further research on the assessment of fit 
of the NAEP IRT model. We address that need by suggesting two new types of residuals 
to assess the fit of the NAEP IRT model.

Methods
We suggest two types of methods for the assessment of absolute fit of the NAEP IRT 
model: (1) item-fit analysis using residuals and (2) generalized residual analysis. We 
also report results from comparisons between different IRT models. For comparisons 
between IRT models, one can use the estimated expected log penalty per presented item 
that is given by

where l(β̂) is the log-likelihood of the measurement model and c(Jik) is the number of 
items in Jik. We make use of a slightly different version developed by Gilula and Haber-
man (1995), which is given by

where Ĥ is the estimated Hessian matrix of the weighted log likelihood, Î is the esti-
mated covariance matrix of the weighted log likelihood, and tr(M) denotes the trace of 
the matrix M. The matrices Ĥ and Î are based on the parameter estimates β̂, Ŵ̂, and �̂. A 
smaller value of PE or PE-GH indicates better model performance in terms of predic-
tion of the observed response patterns. For a discussion of interpretation of differences 
between estimated expected log penalties per presented item for different models, see 
Gilula and Haberman (1994). In applications comparable to those in this paper, changes 
in value of 0.001 are small, a change of 0.01 is of moderate size, and a change of 0.1 is 
quite large.

In the case of complex sampling, Î is evaluated based on variance formulas appro-
priate for the sampling method used. For a random variable X with sampled values Xi , 
1 ≤ i ≤ N , and sample weights Wi > 0, 1 ≤ i ≤ N , let W+ =

∑N
i=1Wi. Let the asymp-

totic variance σ 2(X̄) of the weighted average

(5)PE =
−l(β̂)

∑N
i=1Wi

∑p
k=1 c(Jik)

,

(6)PE-GH =
−l(β̂)+ tr([−Ĥ]−1Î)
∑N

i=1Wi
∑p

k=1 c(Jik)
,

X̄ = W−1
+

N
∑

i=1

WiXi
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be estimated by σ̂ 2(X̄). For example, in simple random sampling with replace-
ment and sampling weights Wi = 1, σ̂ 2(X̄) can be set to n−2

∑N
i=1(Xi − X̄)2 or 

[n(n− 1)]−1
∑N

i=1(Xi − X̄)2. With the sampling weights Wi randomly drawn together 
with the Xi, σ̂ 2(X̄) is given by

Numerous other formulas of this kind are available in sampling theory (Cochran 1977). 
Attention is confined here to standard cases in which [X̄ − E(X)]/σ̂ (X̄) has a standard 
normal distribution in large samples. The software used in this paper (Haberman 2013) 
treats simple random sampling with replacement, simple stratified random sampling 
with replacement, two-stage random sampling with both stages with replacement, and 
stratified random sampling in which, within each stratum, two-stage random sampling is 
employed with both stages with replacement. To analyze NAEP data, the software 
(Haberman 2013) computes the asymptotic variance under the assumption that the sam-
pling procedure is two-stage sampling with schools as primary sampling units;2 variance 
formulas for this case can be found, for example, in (Cochran 1977, pp. 301–309).

Item‑fit analysis using residuals

To assess item fit, Bock and Haberman (2009) and Haberman et al. (2013) employed a 
form of residual analysis in the context of regular IRT applications (that do not involve 
complex sampling or matrix sampling) that involves a comparison of two approaches to 
estimation of the item response function.

For item j in Jk and non-negative response value y ≤ rjk, let f̂jk(y|θ) denote the value of 
fjk(y|θk ,βk) with βk replaced by β̂k for θ = (θ1, . . . , θp). For example, for the two-param-
eter logistic (2PL) model, f̂jk(1|θ) is equal to

where âjk and b̂jk are the respective estimated item discrimination and difficulty param-
eters for the item. Let ĝi(θ) be the estimated posterior density at θ of θ i given yi and zi. 
Let δyijk be 1 if yijk = 1 and 0 otherwise, and let

Thus, as in Haberman et al. (2013), f̂jk(1|θ) can be considered as an estimated uncondi-
tional expectation of the item score at θ and f̄jk(y|θ) can be considered as an estimated 

W−2
+

N
∑

i=1

W 2
i (Xi − X̄)2.

2  The software does not employ a finite population correction that is typically used when the sampling is without 
replacement, as in NAEP—this is a possible area of future research. It is anticipated that the finite population correction 
would not affect our results because of large sample sizes in NAEP.

exp[âjk(θk − b̂jk ]

1+ exp[âjk(θk − b̂jk)]
,

(7)f̄jk(y|θ) =

∑

i∈Kjk
Wiĝi(θ)δyijk

∑

i∈Kjk
Wiĝi(θ)

.
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conditional expectation of the item score at θ, conditional on the data. If the IRT model 
fits the data, then both f̂jk(1|θ) and f̄jk(y|θ) converge to fjk(1|θ) as sample size increases.

Then the residual of item j at θ, which measures the standardized difference between 
f̂jk(1|θ) and f̄jk(y|θ), is defined as

where sjk(θ) is found by use of gradients of components of the log likelihood. Let q 
be a positive integer, and let T be a nonempty open set of q-dimensional vectors. Let 
continuously differentiable functions β∗, Ŵ∗, and �∗ on T and unique τ and τ̂ in T exist 
such that β∗(τ ) = β, Ŵ∗(τ ) = Ŵ, �∗(τ ) = �, β∗(τ̂ ) = β̂, Ŵ∗(τ̂ ) = Ŵ̂, and �∗(τ̂ ) = �̂. For 
each student i, let hi be a continuously differentiable function on T such that, for η in T, 
hi(η) = log

∫

L(θ;β∗(η); yi)φ(θ;Ŵ∗(η)zi;�∗(η))dθ. Let hi be the gradient function of hi, 
and let ĥi = hi(τ̂ ). Let ζ̂yjk(θ) and ν̂yjk(θ) minimize the residual sum of squares

for

(Haberman et al. 2013, Eq. 46). Then sjk(y|θ) is the estimated standard deviation s(X̄) for 
Xi = d̂yijk(θ) for i in Kjk and Xi = 0 for i not in Kjk.

If the model holds and the sample size is large, then tjk(y|θ) has an approximate stand-
ard normal distribution. Arguments used in Haberman et al. (2013) for simple random 
sampling without replacement (where all Wi = 1, p = 1, and all Jik’s are equal) apply 
virtually without change in sampling procedures under study. The asymptotic variance 
estimate s(X̄) is simply computed for Xi = d̂yijk(θ) for i in Kjk and Xi = 0 for i not in Kjk 
based on the complex sampling procedure used for the data. If the model does not fit the 
data and the sample is large, then the number of statistically significant residuals tjk(y|θ) 
will be much more than the nominal level.

As in Haberman et al. (2013), one can create plots of item fit using the above residuals.
Figure  1 shows examples of such plots for two dichotomous items. In each case, 

p = 1 . For each item, the examinee proficiency is plotted along the X-axis, the solid line 
denotes the values of the estimated ICC, that is, f̂j1(1|θ) from Eq. 8 for the item and for 
the vector θ with the single element θ1, and the two dashed lines denote a pointwise 95 % 
confidence band consisting of the values of f̄j1(1|θ)− 2sj1(1|θ) and f̄j1(1|θ)+ 2sj1(1|θ) , 
where f̄j1(1|θ) is given by Eq. 7. If the solid line falls outside this confidence band, that 
would indicate a statistically significant residual. These plots are similar to the plots of 
item fit provided by IRT software packages such as PARSCALE (Du Toit 2003). In Fig. 1, 
the right panel corresponds to an item for which substantial misfit is observed and the 
left panel corresponds to an item for which no statistically significant misfit is observed 
(the solid line almost always lies within the 95 % confidence band).

(8)tjk(y|θ) =
f̄jk(y|θ)− f̂jk(y|θ)

sjk(y|θ)
,

∑

i∈Kjk

Wi[d̂yijk(θ)]
2

d̂yijk(θ) = ĝi[δyijk − f̂jk(y|θ)] − ζ̂yjk(θ)− [ν̂yjk(θ)]
′ĥi
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The ETS mirt software (Haberman 2013) was used to compute residuals for item fit for 
the NAEP data sets. The program is available on request for noncommercial use.

This item-fit analysis can be considered a more sophisticated version of the graphical 
item-fit analysis operationally employed in NAEP. While the asymptotic distribution of 
the residuals is not known in the analysis employed operationally, it is known in our pro-
posed item-fit analysis.

Generalized residual analysis

Generalized residual analysis for assessing the fit of IRT models in regular applications 
(that do not involve complex sampling or matrix sampling) was suggested by Haberman 
(2009) and Haberman and Sinharay (2013). The methodology is very general and a vari-
ety of model-based predictions can be examined under the framework.

For a version of generalized residuals suitable for applications in NAEP, for student i, 
let Yi be the set of possible values of yi and ei(y, zi) be a real number where zi is the vec-
tor of covariates. Let yi∗ be a random variable with values in Yi such that yi∗ and yi are 
conditionally independent given θ i and have the same conditional distribution. Let

let êi be the estimated conditional expectation of ei(yi∗, zi) given yi and zi, and let

Let ζ̂ and ν̂ minimize 
∑N

i=1Wid̂
2
i  for

Let s2 be the estimate σ̂ 2(X̄) for Xi = d̂i. Then the generalized residual is

Under very general conditions, if the model holds, then t has an asymptotic standard 
normal distribution (Haberman and Sinharay 2013). A fundamental requirement is that 

O = W−1
+

N
∑

i=1

Wiei(yi, zi),

Ê = W−1
+

N
∑

i=1

Wiêi(yi, zi).

d̂i = ei(yi, zi)− êi − ζ̂ − ν̂
′ĥi.

t = (O − Ê)/s.
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Fig. 1  Examples of plots of item fit
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the dimension q is small relative to N. A normal approximation must be appropriate for 
d̄, where d has values di, 1 ≤ i ≤ N , such that

minimizes 
∑N

i=1 E(Wid
2
i ).

A statistically significant absolute value of the generalized residual t indicates that the 
IRT model does not adequately predict the statistic O.

The method is quite flexible. Several common data summaries such as the item pro-
portion correct, proportion simultaneously correct for a pair of items, and observed 
score distribution can be expressed as the statistic O by defining ei(yi, zi) appropriately. 
For example, to study the number-correct score or the first-order marginal distribution 
of a dichotomous item j related to skill k, let

Then O is the weighted proportion of students who correctly answer item j of subscale k, 
and t indicates whether O is consistent with the IRT model. Because generalized residu-
als for marginal distributions include variability computations based on the IRT model 
employed, they provide a more rigorous comparison of observed and model-predicted 
proportions of students obtaining a particular score on an item than provided in Rogers 
et al. (2006).

For an example of a pairwise number-correct or the second-order marginal distribu-
tion, if j and j′ are distinct dichotomous items related to skill k, let

Then O is the weighted proportion of students who correctly answer both item  j and 
item  j′, and t indicates whether O is consistent with the IRT model. Residuals for the 
second-order marginal may be used to detect violations of the conditional independence 
assumption made by IRT models (Haberman and Sinharay 2013).

It is possible to create graphical plots using these generalized residuals. For example, 
one can create a plot showing the values of O and a 95 % confidence interval given by 
Ê ± 1.96s. A value of O lying outside this confidence interval would indicate a general-
ized residual significant at the 5 % level. The ETS mirt software (Haberman 2013) was 
used to perform the computations for the generalized residuals.

Assessment of practical significance of misfit of IRT models

George Box commented that all models are wrong (Box and Draper 1987, p. 74). Simi-
larly, Lord and Novick (1968, p. 383) wrote that it can be taken for granted that every 
model is false and that we can prove it so if we collect a sufficiently large sample of data. 
According to them, the key question, then, is the practical utility of the model, not its 
ultimate truthfulness. Sinharay and Haberman (2014) therefore recommended the 
assessment of practical significance of misfit, which comprises the determination of the 
extent to which the decisions made from the test scores are robust against the misfit of 
the IRT models. We assess the practical significance of misfit in all of our data examples. 

di = ei(yi, zi)− E(ei(yi∗, zi)|yi, zi)− ν′hi(τ )

ei(yi, zi) =

{

1 if i is in Kjk and yijk = 1,
0 otherwise·

ei(yi, zi) =

{

1 if i is in Kjk ∩ Kj′k and yijk = yij′k = 1,
0 otherwise·
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The quantities of most practical interest among those that are operationally reported in 
NAEP are the subgroup means and the percent at different proficiency levels. We exam-
ine the effect of misfit on these quantities.

Data
We next describe data from four NAEP assessments that are used to demonstrate our 
suggested residuals. These data sets represent a variety of NAEP assessments.

NAEP 2004 and 2008 long‑term trend mathematics assessment at age 9

The long-term trend Mathematics assessment at age 9 (LTT Math Age 9; see e.g., 
Rampey et al. 2009) is supposed to measure the students’

• • knowledge of basic mathematical facts,
• • ability to carry out computations using paper and pencil,
• • knowledge of basic measurement formulas as they are applied in geometric setting, 

and
• • ability to apply mathematics to daily-living skills (such as those related to time and 

money).

The assessment has a computational focus and contained a total of 161 dichotomous 
multiple-choice and constructed-response items divided over nine booklets. For exam-
ple, a multiple-choice question in the assessment, which was answered correctly by 
44 % of the examinees, is “How many fifths are equal to one whole?” This assessment 
has many more items per student than the usual NAEP assessments. The items covered 
the following topics: numbers and numeration; measurement; shape, size, and position; 
probability and statistics; and variables and relationships. The data set included about 
16,000 examinees most of whom belong to Grade 4 with about 7300 students in the 2004 
assessment and about 8600 students in the 2008 assessment. It is assumed in the opera-
tional analysis that there is only one skill underlying the items.

NAEP 2002 and 2005 reading at grade 12

The NAEP Reading Grade 12 assessment (e.g., Perie et  al. 2005) measures the read-
ing and comprehension skills of students in grade 12 by asking them to read selected 
grade-appropriate passages and answer questions based on what they have read. The 
assessment measures three contexts for reading: reading for literary experience, read-
ing for information, and reading to perform a task. The assessment contained a total of 
145 multiple-choice and constructed-response items divided over 38 booklets. Multi-
ple-choice items were designed to test students’ understanding of the individual texts, 
as well as their ability to integrate and synthesize ideas across the texts. Constructed-
response items were based on consideration of the texts the students read. Each student 
read approximately two passages and responded to questions about what he or she read. 
The data set included about 26,800 examinees with 14,700 students from the 2002 sam-
ple and 12,100 students from the 2005 sample. It is assumed that there are three skills (or 
subscales) underlying the items, one each corresponding to the three contexts.



Page 11 of 23van Rijn et al. Large-scale Assess Educ  (2016) 4:10 

NAEP 2007 and 2009 mathematics at grade 8

The NAEP Mathematics Grade 8 assessment measures students’ knowledge and skills 
in mathematics and students’ ability to apply their knowledge in problem-solving sit-
uations. It is assumed that each item measures one among the five following skills 
(subscales): number properties and operations; measurement; geometry; data analy-
sis, statistics and probability; and algebra. This Mathematics Grade 8 assessment (e.g., 
National Center for Education Statistics 2009) included 231 multiple-choice and con-
structed-response items divided over 50 booklets. The full data set included about 
314,700 examinees with 153,000 students from the 2007 sample and 161,700 students 
from the 2009 sample.

NAEP 2009 science at grade 12

The NAEP 2009 Science Grade 12 assessment (e.g., National Center for Education Sta-
tistics 2011) included 185 multiple-choice and constructed-response items on physi-
cal science, life science, and earth and space science divided over 55 booklets. It is 
assumed that there is one skill underlying the items. The data set included about 11,100 
examinees.

Results for simulated data
In order to check Type I error of the item-fit residuals and the generalized residuals for 
first-order marginals and second-order marginals, we simulated data that look like the 
above-mentioned NAEP data sets but fit the model perfectly. The simulations were per-
formed on a subset of examinees for Mathematics Grade 8 because of the huge sample 
size for the test. We used the item-parameter estimates from our analyses of the NAEP 
data sets using the constrained 3PL/GPCM (see Table 4). Values of θ were drawn from 
the normal distribution with separate population means for the assessments with two 
years and unit variance. The original booklet design was used, but sampling weights and 
primary sampling units were not used.

Item‑fit analysis using residuals

Type I error rates

For the item-fit residuals, the average Type I error rates at the 5  % level of signifi-
cance over 25 replications, evaluated at either 11 or 31 points, are shown in Table 1. The 
rates are considerably larger than the nominal level.

To explore the inflated Type I error rates of the item-fit residuals, Fig.  2 shows the 
Type I error rates as a function of θ and the test information functions for the four NAEP 
data sets.

Table 1  Average Type I error for generalized residuals of item response functions

Assessment Average type I error

11 points 31 points

LTT math age 9 12 10

Reading grade 12 10 9

Math grade 8 9 8

Science grade 12 14 14
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The item-fit residuals were computed at either 11 or 31 points between −3 and 3. It 
can be seen that more residuals are significant for larger absolute values of θ, which is 
in line with earlier results (see, e.g., Haberman et al. 2013; Fig. 2). In addition, there is 
a relationship between the Type I error rates and the test information function; Type 
I error rates become larger as information goes down. Obviously, there is a relation-
ship between the Type I error rates and the sample sizes. This is best seen for the Sci-
ence Grade 12 data set (last row), which is the smallest data set (for which the sample 
size is about 11,000, with an average of about 1900 responses per item); first, the Type I 
error rates for item-fit residuals computed at 11 points get closer to the nominal α of  .05 
than those at 31 points; second, the peak of the test information function is between 
θ = 1 and θ = 2, indicating that the items are relatively difficult (note that the mean 
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Fig. 2  Type I error rates for item-fit residuals (left) and test information functions (right) for the four NAEP 
data sets (First row LTT math age 9;  Second row reading grade 12;  Third row math grade 8;  Fourth row science 
grade 12)
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and standard deviation of θ are fixed to zero and one for model identification purposes). 
Given that there are not many students with θ > 2 and that even for these students the 
items can still be relatively difficult, the Type I error rate shows a steep incline between 
θ = 2 and θ = 3.

Thus, it can be concluded that the Type I error rates for the item-fit residuals are close 
to their nominal value if there are enough students and if there is substantial information 
in the ability range of interest.

Power

The samples of all four NAEP data sets are large and, therefore, the power to detect mis-
fit is generally expected to be large; however, we performed additional power analysis for 
the item fit residuals using the item parameters of the LTT Math Age 9 assessment. Note 
that this assessment consists of dichotomous items only.

For the item-response functions, we consider four bad/misfitting item types (see e.g., 
Sinharay 2006, p. 441):

1.	 Non-monotone for low θ: 
p(Y = 1|θ) = 1

4 logit
−1(−4.25(θ + 0.5))+ logit−1(4.25(θ − 1)).

2.	 Upper asymptote smaller than 1: p(Y = 1|θ) = 0.7logit−1(3.4(θ + 0.5)).
3.	 Flat for mid θ: p(Y = 1|θ) = 0.55logit−1(5.95(θ + 1))+ logit−1(5.95(θ − 2)).
4.	 Wiggly, non-monotone curve: 

p(Y = 1|θ) = 0.65logit−1(1.5θ)+ 0.35logit−1(sin(3θ)).

The item response functions for these for item types are shown in Fig. 3. The LTT math 
age 9 assessments consists of 161 items. We assigned 16 items to be bad items, with each 
type associated with four items. The simulations are set up in the same way as before, 
but with the item probabilities for the bad items determined by the equations above. 
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The number of replications is 25. The item response functions are again evaluated at 31 
points between −3 and 3.

The power for the four bad item types are shown in Table 2. We computed two val-
ues of power for each bad item type: one for the 31 points between θ = −3 and θ = 3 
and one for the 21 points between θ = −2 and θ = 2. As expected, both values of power 
are satisfactory for each bad item type. For bad items of type 4, the values of power are 
smaller compared to other bad item types, but this is due to the fact that the IRT model 
can approximate the wiggly curve reasonably well.

In addition, we simulated data under the 1PL, 2PL, and 3PL model and fitted the 1PL 
to all three data sets, the 2PL to the latter two, and the 3PL to the latter only. This set up 
gives us additional Type I error rates for other model types and power for the situation 
in which the fitted model is simpler than the data-generating model (see e.g., Sinharay 
2006; Table 1).

The results of these simulations are shown in Table 3. In this table, the diagonals indi-
cate Type I error and the off-diagonals indicate the power. The Type I Error rates are 
inflated, which is in line with the previous results. The power to detect misfit of the 1PL 
is very reasonable, but it is quite low for the 2PL.

Generalized residual analysis

For first-order marginals, or the (weighted) proportion of students who correctly answer 
the dichotomous items or receive a specific score on a polytomous item, we used 25 rep-
lications for each of the four NAEP data sets. For second-order marginals,3 however, we 
used only five replications, because the computation of these residuals for a single data 
set is very time consuming (several hours).

For the generalized residuals for first-order marginals, the average Type I error rates 
at the 5 % level are 7 % for LTT Math Age 9 for long-term trend, 1 % for Reading Grade 

3  or the weighted proportion of students who correctly answer a pair of dichotomous items or receive a specific pair of 
scores on a pair of items one of which is polytomous.

Table 2  Power of the item-fit residuals for LTT math age 9 simulations

Item type Mean (−3 to 3) Mean (−2 to 2)

Bad item 1 74 84

Bad item 2 96 94

Bad item 3 86 90

Bad item 4 52 68

Table 3  Type I error (diagonals) and  Power (off-diagonals) of  item-fit residuals for  differ-
ent model combinations for LTT math age 9

Item-fit residual Data-generating model

Fitted model 1PL 2PL 3PL

1PL 9 65 66

2PL 11 27

3PL 20
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12, 0 % for Math Grade 8, and 6 % for Science Grade 12, respectively. Note that most 
of the Type I error rates for the first-order marginals are rather meaningless, because 
IRT models with item-specific parameters should be able to predict observed item score 
frequencies well. For the generalized residuals for second-order marginals, the average 
Type I error rates at the 5 % level are 6 % for LTT Math Age 9, 5 % for Reading Grade 12, 
and 6 % for Science Grade 12, respectively. Thus, the Type I error rates of the generalized 
residuals for the second-order marginals are close to the nominal level, and seem to be 
satisfactory.

Results for the NAEP data
We fitted the 1-parameter logistic (1PL) model, 2PL model, 3PL model with constant 
guessing (C3PL), and 3PL model to the dichotomous items and the partial credit model 
(PCM) and GPCM to the polytomous items to each of the above-mentioned data sets. 
For the LTT Math Age 9, Reading Grade 12, and Math Grade 8 data, which had two 
assessment years, a dummy predictor was used so that population means for the two 
years are allowed to differ. The ETS mirt software (Haberman 2013) was used to perform 
all the computations, including the fitting of the IRT models and the computation of the 
residuals.

Table  4 shows the estimated expected log penalty per presented item based on the 
Gilula–Haberman approach. The two missing values in the last row denote that the cor-
responding assessments (LTT math and science) involve only one subscale. Note that 
the multidimensional models are so-called simple structure or between-item multidi-
mensional models (e.g., Adams et al. 1997). Before discussing the results, we stress that 
serious model identification issues were encountered with the 3PL models for all four 
data sets. First, good starting values needed to be provided in order to find a solution. 
Second, parameters with very large standard errors were found for the 3PL model. For 
example, the standard error of the logit of the guessing parameter for one item in the 
Math Grade 8 data was as high as 20.04, while about 31,200 students answered this item. 
Note that these issues were not encountered with the C3PL model. Now, we can make 
two observations based on the results in Table 4. First, there is some improvement in fit 
when item-specific slope (discrimination) parameters are used: For all four NAEP data 
sets, the biggest improvement in fit was seen between the unidimensional 1PL/PCM and 
2PL/GPCM. Second, the improvement in fit beyond the 2PL/GPCM seems to be small. 

Table 4  Relative model fit statistics (PE-GH) for unidimensional (1D) and multidimensional 
(MD) models

a  Three-dimensional model
b  Five-dimensional model

Model LTT math age 9 Reading grade 12 Math grade 8 Science grade 12

1D 1PL/PCM 0.465 0.634 0.607 0.643

1D 2PL/GPCM 0.456 0.629 0.601 0.636

1D C3PL/GPCM 0.455 0.629 0.600 0.634

1D 3PL/GPCM 0.454 0.629 0.600 0.634

MD 3PL/GPCM – 0.628a 0.600b –
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That is, the addition of guessing parameters and multidimensional simple structures 
only lead to very small improvements in fit.

The estimated correlations between the three (latent) dimensions in the multidimen-
sional 3PL/GPCM are .86, .80 and .80 for the Reading assessment. The estimated corre-
lations between the five (latent) dimensions in the multidimensional 3PL/GPCM for the 
Math Grade 8 data are shown in Table 5.

We next summarize the results from the application of our suggested IRT model-fit 
tools to data from the four above-mentioned NAEP assessments using the unidimen-
sional model combinations.

Item‑fit analysis using residuals

For each of the four NAEP data sets, we computed the item-fit residuals at 31 equally-
spaced values of the proficiency scale between −3 and 3 for each score category (except 
for the lowest score category) of each item. Haberman et al. (2013) recommended the 
use of 31 values. Further, some limited analysis showed that the use of a different num-
ber of values does not change the conclusions. This resulted in, for example, 31 residuals 
for a binary item and 62 residuals for a polytomous item with three score categories.

The results are shown in Table 6. The percentages of significant results for the item-fit 
residuals are all much larger than the nominal level of 5 %. There is a substantial drop in 
the percentages from the 1PL/PCM to the other three models. However, the percentages 
show a steady decrease only for the LTT Math Age 9 assessments with increasing model 

Table 5  Correlations between dimensions in five-dimensional 3PL/GPCM for math grade 8 
data

2 3 4 5

1. Number properties and operations .97 .93 .96 .95

2. Measurement – .96 .96 .94

3. Geometry – .93 .92

4. Data analysis and probability – .94

5. Algebra –

Table 6  Percent significant residuals under different unidimensional models

Residual Model LTT math  
age 9

Reading  
grade 12

Math  
grade 8

Science 
grade 12

Item-fit residual 1PL/PCM 67 43 75 47

2PL/GPCM 40 26 64 33

C3PL/GPCM 35 27 64 28

3PL/GPCM 28 29 64 33

First-order marginal 1PL/PCM 0 0 0 0

2PL/GPCM 0 0 0 0

C3PL/GPCM 29 5 0 19

3PL/GPCM 0 0 0 0

Second-order  
marginal

1PL/PCM 47 15 27 18

2PL/GPCM 31 13 19 15

C3PL/GPCM 31 13 19 15

3PL/GPCM 31 14 19 15
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complexity (note that this assessment contains the largest proportion of MC items). For 
the other three data sets, the percentages of significant residuals are similar after the 
2PL/GPCM.

In the operational analysis, the number of items that were found to be misfitting and 
removed from the final computations were two, one, zero and six, respectively, for the 
four assessments.

Figure 4 shows the item-fit plots and residuals for a constructed response item from 
the 2005 Reading Grade 12 assessment. In the top panel, the solid line shows the esti-
mated ICC of the item ( f̂j1(1|θ) from Eq. 8) and the dashed lines show a corresponding 
pointwise 95 % confidence band ( f̄j1(1|θ)− 2sj1(1|θ) and f̄j1(1|θ)+ 2sj1(1|θ)). The bot-
tom panel shows the residuals. The figure shows that several residuals are statistically 
significant. In fact, except for three or four residuals, all the residuals are statistically 
significant. In addition, several of them are larger than 5. Thus, the 2PL model does not 
fit the item. Figure 5 shows the operational item fit plot (PARPLOT) for the same item. 
The plot shows the estimated ICC using a solid line. The triangles indicate the “empir-
ical ICC” and the inverted triangles indicate the “empirical ICC” during the previous 
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Fig. 4  Item-fit plots and residuals for a 2005 reading grade 12 item
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administration of the same item (in 2004). In NAEP operational analysis, the misfit of 
the item was not found serious—so the item was retained.

The item fit residuals can also be used to check if the item response function of a par-
ticular item provides sufficient fit across all different booklets that contain the item. This 
provides an opportunity to study item misfit due to, for example, item position effects 
(e.g., items that are at the end of the booklet can be more difficult due to either speeded-
ness or fatigue effects; see, for example, Debeer and Janssen 2013). Figure 6 shows the 
item fit residuals per booklet for a multiple choice LTT Math Age 9 item. It can be seen 
that the fit residuals for lower abilities improve if the 3PL is used instead of the 3PL. 
Interestingly, the residuals for booklet 8 are more extreme than those for the other three 
booklets.

Generalized residual analysis

The second block of Table 6 shows the percentage of statistically significant generalized 
residuals for the first-order marginal without any adjustment (that is, larger than 1.96 in 
absolute value) for all data sets and different models. The percentages are all zero except 
for the C3PL/GPCM. This can be explained by the fact that all but the C3PL/GPCM 
have item-specific parameters that can predict the observed proportions of item scores 
quite well. Only the C3PL/GPCM can have issues with this prediction, for example, if 
there is variation in guessing behaviors. This latter seems to be the case for LTT Math 
Age 9 but not for Math Grade 8.

Fig. 5  Operational item fit plot for a 2005 reading grade 12 item
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The third block of Table 6 shows the percentage of statistically significant generalized 
residuals for the second-order marginals. The percentages are considerably larger than 
the nominal level  (also than the Type I error rates found in the simulation study) and 
show that the NAEP model does not adequately account for the association among the 
items. The misfit is most apparent for LTT math age 9.

Figure 7 shows a histogram of the generalized residuals for the second order marginal 
for the 2009 Science Grade 12 data.

Several generalized residuals are smaller than −10, which provides strong evidence of 
misfit of the IRT model to second-order marginals.

Researcher such as Bradlow et al. (1999) noted that if the IRT model cannot account 
for the dependence between item-pair properly, then the precision of proficiency esti-
mates will be overestimated and showed that accounting for the dependence using, for 
example, the testlet model would not lead to overestimation of the precision of pro-
ficiency estimates. Their result implies that if we found too many significant general-
ized residuals for second-order marginals for items belonging to common stimulus 
(also referred to as testlets by, for example, Bradlow et al. 1999), then application of a 
model like the testlet model (Bradlow et al. 1999) would lead to better fit to the NAEP 
data. However, we found that the proportion of significant generalized residuals for 
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second-order marginals for item pairs belonging to testlets is roughly the same as those 
for item pairs not belonging to testlets. Thus, there does not seem to be an easy way to 
rectify the misfit of the NAEP IRT model to the second-order marginals.

Assessment of practical significance of misfit

To assess the practical significance of item misfit for the four assessments, we obtained 
the overall and subgroup means and the percentage of examinees at different proficiency 
levels (we considered the percentages at basic or above, and proficient or above) from 
the operational analysis. These quantities are reported as rounded integers in operational 
NAEP reports (e.g., Rampey et al. 2009). Note that these quantities were computed after 
omitting the items that were found misfitting in the operational analysis (2, 1, 0 and 6 
such items for the four assessments). Then, for any assessment, we found the nine items 
that had the largest number of statistically significant item-fit residuals. For example, for 
the 2008 long-term trend Mathematics assessment at Age 9, nine items with respectively 
19, 19, 19, 19, 18, 18, 17, 17 and 16 statistically significant item-fit residuals (out of a total 
of 31 each) were found.

For each assessment, we omitted scores on the nine misfitting items and ran the NAEP 
operational analysis to recompute the subgroup means (rounded and converted to the 
NAEP operational score scale) and the percentage of examinees at different proficiency 
levels. We compared these recomputed values to the corresponding original (and opera-
tionally reported) quantities.

Interestingly, in 48 such comparisons of means and percentages for each of the four 
data sets, there was no difference in 44, 36, 32 and 47 cases, respectively, for the long-
term-trend, reading, math and science data sets. For example, the overall average score 
is 243 (on a 0-500 scale) and overall percent scoring 200 or above is 89 in both of these 
analyses for the 2008 long-term-trend Mathematics assessment at age 9. In the cases 
when there was a difference, the difference was one in absolute value. For example, the 
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operationally reported overall percent at 250 or above is 44 while the percent at 250 or 
above after removing 9 misfitting items is 45 for the 2008 long-term-trend Mathematics 
assessment at age 9.

Thus, the practical significance of the item misfit seems to be negligible for the four 
data sets.

Conclusions
The focus of this paper was on the assessment of misfit of the IRT model used in large-
scale survey assessments such as NAEP using data from four NAEP assessments. Two 
sets of recently suggested model-fit tools, the item-fit residuals (Bock and Haberman 
2009; Haberman et al. 2013) and generalized residuals (Haberman and Sinharay 2013), 
were modified for application to NAEP data.

Keeping in mind the importance of NAEP in educational policy-making in the U.S., 
this paper promises to make a significant contribution by performing a rigorous check of 
the fit of the NAEP model. Replacement of the current NAEP item-fit procedure by our 
suggested procedure would make the NAEP statistical toolkit more rigorous. Because 
several other assessments such as IALS, TIMSS and PIRLS use essentially the same sta-
tistical model as in NAEP, the findings of this paper will be relevant to those assessments 
as well.

An important finding in this paper is that statistically significant misfit (in the form of 
significant residuals) was found for all the data sets. This finding concurs with the state-
ment of George Box that all models are wrong (Box and Draper 1987, p. 74) and a simi-
lar statement of (Lord and Novick 1968, p. 383). However, the observed misfit was not 
practically significant for any of the data sets. For example, the item-fit residuals were 
statistically significant for several items, but the removal of some of these items led to 
negligible differences in the reported outcomes such as subgroup means and percentages 
at different proficiency levels. Therefore, the NAEP operational model seems to be use-
ful though it is “wrong” (in the sense that the model was found misfitting to the NAEP 
data using the suggested residuals) from the viewpoint of George Box. It is possible that 
the lack of practical significance of the misfit is due to the thorough test development 
and review procedures used in NAEP, which may filter out any serious IRT-model-fit 
issues. The finding of the lack of practical significance of the misfit is similar to the find-
ing in Sinharay and Haberman (2014) that the misfit of the operational IRT model used 
in several large-scale high-stakes tests is not significant.

Several issues can be examined in future research. First, one could apply our suggested 
methods to data sets from other large-scale educational survey assessments such as 
TIMSS, PIRLS, and IALS. Second, Haberman et al. (2013) provided detailed simulation 
results demonstrating that the Type I error rates of their item-fit residuals in regular IRT 
applications are quite close to the nominal level as the sample size increases and those 
results are expected to hold for our suggested item-fit residuals (that are extensions of 
the residuals of Haberman et al. 2013) as well, but it is possible to perform simulation 
studies to verify that. It is also possible to perform simulations to find out the extent of 
model misfit that would be practically significant. Third, we studied the practical conse-
quences of item misfit in this paper; it is possible in future research to study the practical 
consequences of multidimensionality; for example, there is a close relationship between 
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DIF and multidimensionality (e.g., Camilli 1992) and it would be of interest to study the 
practical consequences of multidimensionality on DIF. Fourth, it is possible to further 
explore the reasons of the first-order marginal not being useful in our analysis. Sinharay 
et al. (2011) also found the generalized residuals of Haberman and Sinharay (2013) for 
the first-order marginal to be not useful in assessing the fit of regular IRT models. These 
residuals might be more useful to detect differential item functioning (DIF). For exam-
ple, the generalized residuals for the first-order marginals for males and females can 
be used to study gender-based DIF (although the Type I error might be low, the power 
would be larger). Finally, several students taking the NAEP, especially those in twelfth 
grade, lack motivation (e.g., Pellegrino et al. 1999). It would be interesting to examine 
whether that lack of motivation affects the model fit in any manner.
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