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Introduction
The Trends in International Mathematics and Science Study (TIMSS) 2019 cycle marked 
the transition from paper-based to computer-based testing and included more innova-
tive constructed response (CR) items (Martin et al., 2020). In contrast to conventional 
multiple-choice (MC) items, CR items facilitate deeper and more complete learning by 
asking students to define a problem, perform investigations, and communicate findings 
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(Bennett, 1991; Darling-Hammond & Adamson, 2010; Liu et al., 2014). In science edu-
cation, the use of CR items is encouraged to examine the understanding of core ideas 
and conduct scientific practices (Zhai et al., 2020). However, the wider use of CR items 
in international large-scale assessments (ILSAs) has been limited due to the resource-
intensive nature of human scoring and the challenges for reliable and accurate scoring of 
huge volumes of multilingual student responses (Yamamoto et al., 2017).

The human scoring of CR items is known to be expensive, time-consuming, and 
labor-intensive. Bennett (1991) stated that the operational cost and efforts associated 
with CR items are generally more substantial than traditional MC items. This disparity 
has become even wider with advances in computer-based data collection and machine 
scoring of selected response (for example MC) items using statistical programming lan-
guages such as SAS and R. In addition, the recruitment of professional human raters, 
rigorous training, and continuous monitoring are needed to achieve a high level of con-
sistency and accuracy (Ramineni & Williamson, 2013; Zhang, 2013). Even with inten-
sive training and monitoring, scoring issues derived from fatigue, distraction, and rater 
effects like severity and leniency still occur (McClellan, 2010; Myford & Wolfe, 2009; von 
Davier et al., 2023; Wolfe & McVay, 2012).

Although the TIMSS & PIRLS International Study Center provides detailed explana-
tions of scoring rubrics and extensive training to mitigate such risks, achieving a high 
level of scoring reliability involves a significant workload and expense for participating 
countries. Among the many challenges, human raters in participating countries must be 
trained with scoring materials translated into their native language(s) by head-scorers 
or scoring trainers who attended an international scoring training where materials were 
provided in English (Martin et al., 2020). Therefore, scoring large volumes of multilin-
gual responses is subject to potential scoring inconsistencies not only across countries 
but also across raters within each country.

The current study follows a common strategy in multilingual natural language process-
ing (NLP), employing machine translation (MT) to translate various non-English lan-
guages into English (Balahur & Turchi, 2012; Lucas et al., 2015; Montalvo et al., 2015). 
Automated scoring in ILSAs is thought to be more challenging than in the monolin-
gual contexts since most NLP tools and research are predominantly focused on Eng-
lish (Hovy & Prabhumoye 2021). In the past few years, MT has advanced significantly. 
META’s artificial intelligence (AI) model, No Language Left Behind, produces high-qual-
ity translations for 200 different languages (META, 2022). Google Translate supports 
133 languages, including 24 low-resource languages (Caswell, 2022). OpenAI’s Genera-
tive Pre-trained Transformer (GPT) models also emerged as excellent translators, gen-
erating contextually relevant translations (Hendy et al., 2023; Timothy, 2023). Jiao et al. 
(2023) found that ChatGPT competes well with commercial translation engines, espe-
cially for high-resource languages.

In addition to MT, this study proposes using the Bag-of-Words (BoW) to score CR 
items requiring very short answers in ILSAs. The BoW identifies unique words (features) 
within the data and counts the frequency of each word in individual texts. Although the 
BoW representation is often criticized for its sparsity, high dimensionality, and chal-
lenges in capturing complex meanings, it can be a suitable approach for scoring CR items 
that ask for brief answers including key concepts. In the TIMSS items selected for this 
study, students often provide succinct answers with fourth-grade level words and their 
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responses have many identical keywords, which is one of the features of simple CR items 
(Yamamoto et al., 2017). This characteristic contributes to the lower sparsity and dimen-
sionality of the BoW representation, suggesting that BoW can efficiently extract crucial 
keywords to classify correct and incorrect responses. de Vries et al. (2018) advocate for 
the utility of combining BoW with MT for text analysis in a multilingual context. Also, 
the verifiable key features of BoW enable subject-domain experts to review whether the 
features used for automated scoring align with the established rubric. More importantly, 
using the common key features in all responses helps mitigate possible scoring inconsis-
tencies across countries and languages.

Despite the considerable interest in automated scoring, most studies have focused 
on applications in the monolingual context. This study aims to show that the combina-
tion of automated scoring and MT can be a useful support for or even an alternative to 
human scoring in ILSAs involving diverse countries and languages. This study addresses 
the following questions:

1. Can automated scoring achieve comparable performance to human scoring across 
different countries and languages without compromising the psychometric properties 
of items?

2. Does MT appropriately convert non-English language responses into English to 
construct a unified cross-lingual automated scoring model?

3. What are the sources of misalignment between human and automated scoring?

Background
There has been a long desire to apply automated scoring in education. Starting with Ellis 
Page’s first automated scoring engine (Page, 1966), early research dates back to the late 
1960s. Recent advances in digital data collection, NLP, machine learning algorithms, 
computer software, and hardware have enabled the operational use of automated scor-
ing in multiple assessment programs (Foltz et al., 2020) such as ETS’s e-rater, Duolingo’s 
English Test, and Pearson’s Intelligent Essay Assessor. Despite these accomplishments, 
the use of automated scoring in multilingual contexts is still lacking. The fundamental 
difficulty in multilingual automated scoring is to ensure consistent and accurate scoring 
of a vast number of responses across all the languages in which ILSAs are administered. 
Given that the 2019 cycle of TIMSS collected data from 64 countries written in 50 dif-
ferent languages (Martin et al., 2020), the application of automated scoring in ILSAs may 
be considered challenging.

While the initial concept of MT was proposed by Warren Weaver in 1947, MT has 
shown significant improvement with the advent of neural networks (Britz et al., 2017; 
Hutchins, 2007; Wang et al., 2021). Recent MT engines provide fast, accurate, and afford-
able translation with minimal or no loss of meaning. To tackle multilingual responses in 
ILSAs, we chose to use MT and construct a unified model for all languages instead of 
developing separate models for each language. This cross-lingual model alleviates the 
laborious task of collecting and building training sets for individual languages, especially 
those with low resources. Although monitoring translation quality is crucial, achieving a 
‘perfect’ translation is not the primary goal. Rather, our focus is on demonstrating that 
machine-translated responses can be automatically scored with an accuracy level equiv-
alent to or surpassing that of non-translated responses (i.e., English language responses).
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Moreover, the abundance of responses collected in ILSAs has historically posed a chal-
lenge for scoring CR items. Modern NLP and artificial neural networks (ANNs) can eas-
ily handle large datasets due to powerful computer algorithms. Unlike early machine 
scoring from the mid-to-late 1900s, which was impractical for ILSAs due to their reli-
ance on manual feature selection and rule-based techniques (Cahill & Evanini, 2020), 
contemporary AI models can automatically learn patterns and rules from the data, sav-
ing both time and labor. ANNs are more extensive and flexible compared to previous 
machine-supported scoring and can be applied to various tasks, including automated 
scoring, text classification, paraphrasing, language generation, and question-answering 
(Abiodun et al., 2018; Kim, 2014; Mallinson et al., 2017; Prakash et al., 2016; Prasanna & 
Rao, 2018; Sutskever et al., 2011; Wang & Jiang, 2016).

This study aims to investigate the performance of AI-powered automated scoring in 
ILSAs, with a focus on the application of MT in scoring short CR items.

Methods
Data

The current study used six short CR items from TIMSS 2019. These items are homog-
enous in terms of the subject domain (science), target students (fourth-grade students), 
dichotomous scoring (correct response = 1; incorrect response = 0), and the elicitation of 
very short responses. We analyzed the multilingual student responses involving eight 
countries and six different languages: four Latin alphabet languages (German, French, 
Turkish, and English) and two non-Latin alphabet languages (Chinese and Korean). 
These countries and languages were selected to examine whether automated scoring 
could perform consistently across different types of languages. The selection of lan-
guages was also based on the availability of native speakers of these languages working 
at the TIMSS & PIRLS International Study Center, where this study was conducted. The 
item-by-country sample sizes are shown in Table  1. Detailed data information can be 
shared upon request.

The student responses were very succinct—after translation, they averaged 33 char-
acters with Google Translate and 36 characters with ChatGPT. This is notably short in 
comparison to the common definition of short texts, which have a maximum length of 
200 characters (Song et al., 2014). The range of response lengths varied from 18 to 57 
characters for Google Translate and 23 to 57 characters for ChatGPT. Interestingly, C5, 
an English-speaking country, had the lengthiest average responses, ranging from 43 to 
61 characters across all six items.

Table 1 Item-by-country sample size
Item C1 C2 C3 C4 C5 C6 C7 C8 Total
Item 1 535 406 462 540 1,204 351 489 530 4,517
Item 2 492 392 459 532 1,208 361 481 538 4,463
Item 3 593 459 528 565 1,208 360 518 549 4,780
Item 4 562 437 482 544 1,194 337 488 539 4,583
Item 5 543 434 461 545 1,214 368 518 536 4,619
Item 6 625 447 531 547 1,205 373 536 551 4,815
Note C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country
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Procedures

Data partitioning

The data was split into training and test sets at a ratio of 80:20. Within the training set 
(80% of the whole data), cross-validation (CV) was performed, using 80% for training 
and 20% for validating the model’s performance. The test set (20% of the whole data) is 
independent and previously unseen data. During the data split, we assigned a subset of 
double-scored responses to the training set. This subset of responses was derived from 
200 randomly selected responses per country, which were scored by two independent 
human raters during TIMSS 2019 data collection. We duplicated responses that received 
consistent scores from both human raters while excluding responses with conflicting 
scores. This approach aimed to include more reliable responses into the training set and 
thus construct more accurate ANNs (Ilse et al., 2018). Sample sizes for the multilingual 
training set and individual countries’ test set are shown in Table 2.

Multiple MT

We employed Google Translate API and ChatGPT API (i.e., gpt-3.5-turbo) to trans-
late non-English language responses into English using Python (version 3.11.4). Google 
Translate is a translation engine supporting more than 100 language pairs that uses a 
pre-trained neural MT model (Google, 2023a). It automatically detects the source lan-
guage and translates non-English responses into English. ChatGPT, on the other hand, 
is a large language model that uses self-attention mechanisms to produce context-based 
natural language responses. It is the most powerful and cost-effective model in the GPT-
3.5 models (OpenAI, 2023a). We instructed ChatGPT to translate a given non-English 
language response into English considering the context (i.e., the English stem/question 
of the item). Incorporating the context in the prompt directed ChatGPT to generate 
a more question-relevant translation rather than a translation without context, which 
could take a different off-topic direction if responses were unclear, short, or both.

MT enabled the ANNs to be trained and tested on very large English-only data that 
includes both native English responses and non-English responses translated into Eng-
lish. The advantage of multiple MT is that it can lead to improved translation quality 
rather than relying on a single translation engine. We aimed to select a more suitable 
MT tool between Google Translate and ChatGPT for more accurate automated scoring. 
The evaluation of MT quality is goal-oriented. The aim is to select MT that extracts use-
ful features applicable to all languages, rather than solely focusing on perfect translation. 
Obtaining common BoW features is possible when the key concepts in a variety of lan-
guages are appropriately transformed by the translation engine of choice.

Table 2 Sample size for multilingual training set (80%) and individual country’s test set (20%)
Item Training Test

C1 C2 C3 C4 C5 C6 C7 C8 Total
Item 1 4,216 144 117 129 147 279 106 133 143 1,198
Item 2 4,236 137 118 130 144 279 108 135 147 1,198
Item 3 4,411 158 130 145 153 278 106 142 149 1,261
Item 4 4,232 150 127 131 147 275 102 132 144 1,208
Item 5 4,328 146 126 129 148 280 109 143 146 1,227
Item 6 4,412 163 129 145 148 277 109 145 150 1,266
Note C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country
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Pre-processing, BoW, & ANNs

We applied the identical pre-processing, BoW, and ANN procedures to two sets of trans-
lated responses: (1) Google-translated responses with native English responses, and (2) 
ChatGPT-translated responses with native English responses. The preferred MT was 
determined using the test set, considering average human-machine score agreements 
and the log odds ratio for individual countries (described further in the results).

Common NLP pre-processing steps were applied such as tokenization, lower-cas-
ing, spelling correction, and stemming (reducing a word to its stem). NLP tools such 
as NLTK and pyspellchecker in Python were used. Regarding spelling correction, we 
replaced misspelled words in the test set with correct words elicited from the training 
set (Jung et al., 2022). For English-speaking countries (here only C5), an additional spell-
ing correction was implemented by replacing misspelled words with the first suggested 
word from pyspellchecker. The rationale for this additional step was that many non-Eng-
lish misspelled words were corrected during MT, while English responses, which did not 
undergo MT, were left with more misspelled words. Following spelling correction, we 
only maintained words appearing at least 0.05% in the training set to exclude any irrel-
evant words in the feature matrix. The BoW represented all translated responses and 
English language responses within a common key feature matrix. For example, the BoW 
can transform a student response, “because weather is cold”, into {“because”, “weather”, 
“is”, “cold”}, which could be projected to {0, 1, 1, 1}.

Next, Fully-connected feed-forward neural networks (FNNs) were implemented using 
the sklearn package in Python. Being structured into the input, hidden, and output lay-
ers, FNNs have no cyclic connections between layers, and all the neurons in successive 
layers are connected. They are frequently used in practical applications because of their 
fast learning speed and acceptable performance (Han et al., 2019; Le & Huynh, 2016). 
The BoW key features were fed to the input layer and then processed through the hidden 
layer and output layers. Machine scores of 1 and 0 were represented in the output layer. 
We performed a 5-fold CV on the training set to select the most optimized values of 
hyperparameters, such as the number of hidden neurons. CV is a widely used technique 
in machine learning to assess the capability of models to generalize their predictions 
to new data and prevent overfitting (Berrar, 2019). We trained the FNNs on 80% of the 
training set and tested them on 20% of the training set (validation or development set). 
The final FNN was then applied to the unseen test set.

Evaluation Metrics

The evaluation of automated scoring performance included standard text classification 
metrics such as the exact match ratio, Cohen’s kappa (κ), F1 scores, and standardized 
mean score difference (SMD). Additionally, translation performance between Google 
Translate and ChatGPT was evaluated using the log odds ratio (LOR). Psychometric 
measures, including adjusted item-total correlations (AITC) and item difficulty, were 
used to examine the impact of automated scoring on the psychometric quality of the 
items.

Exact match ratio. The exact match ratio, a widely used metric, quantifies the pro-
portion of agreement between machine and human scores. Instances where human 
and machine scores perfectly aligned were categorized as Both Incorrect (BI) and Both 
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Correct (BC) response pairs. Disagreements were represented by Disagrees (D1 and D2) 
in pairs (see Table 3).

ExactMatchRatio =
BI +BC

BI +BC +D1 +D2

Cohen’s Kappa. Cohen’s kappa is considered a more robust measure than the exact 
match ratio, as it evaluates inter-rater agreement beyond chance. A kappa of 0 indicates 
an agreement equivalent to chance. We opted for the standards set by Landis and Koch 
(1977): values ≤ 0.00 classified as poor, 0.00-0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as 
moderate, 0.61–0.80 as good, and 0.81-1.00 as very good agreement. Liu et al. (2014) 
also applied these criteria to assess their automated scoring engine, which was used for 
scoring low-stake items. We assessed inter-rater reliability using the kappa statistic for 
both human-human and human-machine scoring.

Kappa =
Pobservation − Pchance

1− Pchance

F1 scores. F1 scores serve as a crucial metric, especially for imbalanced data, as they 
measure the harmonic mean of precision and recall, ranging from 0 to 1. Higher F1 
scores indicate low false negatives (D1) and false positives (D2), implying lower human-
machine score disagreements in this study (refer to Table 3). Given the uneven class dis-
tribution (correct vs. incorrect) in some items in our study, F1 scores provide a more 
accurate representation of automated scoring performance.

Precision =
BC

BC +D2

Recall =
BC

BC +D1

F1 score =
2× BC

2× BC +D1 +D2
=

2× (precision× recall)

(precision + recall)

SMD. SMD refers to the mean score difference between human and machine scores 
divided by the pooled standard deviations. An SMD of 0 indicates that there is no dif-
ference between human and machine scores. Positive values mean that automated scor-
ing yields a higher mean score than human scoring while negative values indicate the 
opposite. SMD is also a good metric to assess the discrepancy in item difficulty between 
human and machine scores. Williamson et al. (2012) suggested using a threshold of 0.15 
to indicate a satisfactory level of agreement. SMD is calculated as below:

SMD =
XM −XH√
(S2

M + S2
H)/2

Table 3 Confusion matrix in automated scoring
Human Score
Incorrect (0) Correct (1)

Machine Score Incorrect (0) Both Incorrect (BI) Disagree (D1)
Correct (1) Disagree (D2) Both Correct (BC)



Page 8 of 18Jung et al. Large-scale Assessments in Education           (2024) 12:10 

where XM  and XH  are the mean of machine and human scores, respectively. S2
M  and 

S2
H  are the variance of machine and human scores, respectively.
LOR. The odds ratio compares two sets of odds, representing the ratios of the prob-

ability of an event occurring to the probability of it not occurring. In this study, an event 
occurring signifies a match between the machine score and the human score. We calcu-
lated the odds for the exact match ratio in both Google and ChatGPT-translated data 
using a logarithmic scale. A LOR value of 0 means that the exact match ratio derived 
from Google and ChatGPT-translated data is the same, indicating an equivalent transla-
tion effect. A negative LOR, resulting from a greater exact match ratio in Google-trans-
lated data compared to ChatGPT data, implies that Google Translate provides more 
appropriate translations for automated scoring. Conversely, a positive LOR implies that 
ChatGPT provides more suitable translations than Google Translate.

LOR = LN

(
PChatGPT/(1− PChatGPT )

PGoogle/(1− PGoogle)

)

AITC. AITC is the correlation between each item and the total score, excluding the item 
of interest. This correlation was employed to prevent biased estimation. In TIMSS 2019, 
items are grouped into 14 blocks consisting of 10 to 14 items (Mullis & Martin, 2017). 
In each scoring method (i.e., human and automated scoring), the AITC was calculated 
by assessing the correlation between each item and the percentage of correct responses 
within the item’s block, excluding the item itself.

Item difficulty. Item difficulty measures the percentage of correct responses, with 
lower values indicating more challenging items. We computed item-by-country diffi-
culty using both human and machine scores to explore whether different scoring meth-
ods influenced item difficulty.

Results
Reliability of human scoring

Human-human inter-rater reliability was computed using the double-scored responses 
from the within-country reliability scoring sample. Human raters showed high to per-
fect agreements, with kappa values ranging from 0.84 to 1.00 across items and countries. 
These values indicate the high reliability of human scoring. Notably, C6 consistently 
reached perfect inter-rater reliability for all items. This perfect inter-rater reliability was 
consistently observed in all other CR items for fourth graders in TIMSS 2019. This might 
be attributed to a potential misunderstanding of double-scoring, wherein human raters 
are not permitted to discuss discrepancies to establish a consensus See Table 4.

Table 4 Item-by-country kappa (human-human inter-rater reliability)
Item C1 C2 C3 C4 C5 C6 C7 C8 Average
Item 1 0.94 0.89 0.93 0.99 0.97 1.00 0.89 0.93 0.94
Item 2 0.98 0.98 0.95 0.94 0.94 1.00 0.98 0.99 0.97
Item 3 0.97 0.94 0.98 1.00 0.90 1.00 0.98 0.99 0.97
Item 4 0.95 0.99 0.84 0.97 0.89 1.00 0.85 0.86 0.92
Item 5 0.88 0.98 0.91 0.98 0.94 1.00 1.00 0.94 0.95
Item 6 0.97 0.98 0.96 0.99 0.91 1.00 0.96 1.00 0.97
Average 0.95 0.96 0.93 0.98 0.93 1.00 0.94 0.95 0.95
Note C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country
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MT selection for automated scoring

High human-machine score agreements were observed across the items and countries 
for both Google Translate and ChatGPT (see Tables 5 and 6), although automated scor-
ing exhibited slightly superior performance on ChatGPT-translated data. The Chat-
GPT MT method consistently achieved agreements exceeding 0.85, except for C6 in 
item 6 (0.77). The lower agreement for this country and item is further explored in the 
discussion.

Next, the performance of Google Translate and ChatGPT API was assessed using 
LOR. Although the overall translation quality appears comparable, ChatGPT demon-
strates superior performance, as indicated by more positive LORs (see Table 7). Chat-
GPT was particularly useful for misspelled responses where context (question) plays a 
crucial role in the translation. Hence, we opted for ChatGPT as our preferred MT tool 
and proceeded to evaluate the performance of automated scoring based on ChatGPT-
translated data.

Table 5 Item-by-country exact match ratio (google translate)
C1 C2 C3 C4 C5 C6 C7 C8 Average

Item 1 0.90 0.90 0.91 0.89 0.89 0.82 0.89 0.85 0.88
Item 2 0.93 0.97 0.95 0.95 0.95 0.98 0.93 0.96 0.95
Item 3 0.97 0.95 0.96 0.95 0.93 0.98 0.97 0.97 0.96
Item 4 0.92 0.94 0.89 0.90 0.89 0.79 0.89 0.88 0.89
Item 5 0.92 0.94 0.82 0.84 0.85 0.86 0.92 0.90 0.88
Item 6 0.96 0.96 0.88 0.88 0.96 0.83 0.96 0.91 0.92
Average 0.93 0.94 0.90 0.90 0.91 0.88 0.93 0.91 0.91
Note C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country

Table 6 Item-by-country exact match ratio (ChatGPT)
C1 C2 C3 C4 C5 C6 C7 C8 Average

Item 1 0.88 0.91 0.94 0.90 0.92 0.92 0.93 0.87 0.91
Item 2 0.92 0.99 0.95 0.95 0.95 0.97 0.94 0.95 0.95
Item 3 0.98 0.98 0.97 0.95 0.92 0.99 0.97 0.97 0.97
Item 4 0.95 0.93 0.85 0.90 0.88 0.86 0.94 0.90 0.90
Item 5 0.92 0.90 0.85 0.86 0.85 0.92 0.92 0.92 0.89
Item 6 0.98 0.96 0.94 0.91 0.96 0.77 0.94 0.87 0.92
Average 0.94 0.95 0.92 0.91 0.91 0.91 0.94 0.91 0.92
Note C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country

Table 7 Item-by-country LOR
Item C1 C2 C3 C4 C5 C6 C7 C8 Average
Item 1 -0.20 0.12 0.44 0.11 0.35 0.93 0.50 0.17 0.32
Item 2 -0.14 1.12 0.00 0.00 0.00 -0.42 0.16 -0.23 0.00
Item 3 0.42 0.95 0.30 0.00 -0.14 0.70 0.00 0.00 0.30
Item 4 0.50 -0.16 -0.36 0.00 -0.10 0.49 0.66 0.20 0.11
Item 5 0.00 -0.55 0.22 0.16 0.00 0.63 0.00 0.25 0.10
Item 6 0.71 0.00 0.76 0.32 0.00 -0.38 -0.43 -0.41 0.00
Average 0.16 0.19 0.25 0.12 0.00 0.32 0.16 0.00 0.13
Note 1 LOR = Log odds ratio

Note 2 C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country
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Comparability of automated scoring to human scoring

Automated scoring using MT demonstrated comparable performance to human scor-
ing across multiple metrics. Machine scores demonstrated good agreement with human 
scores, with average F1 score and kappa of 0.88 and 0.80, respectively (see Tables 8 and 
9). Machine scoring was slightly stricter than human scoring with an average SMD of 
-0.04 but the difference was marginal (see Table 10). However, Item 5 in C1, C4, C5, and 
C7 exhibited relatively moderate-to-low values for both F1 scores, ranging from 0.40 to 
0.68, and kappa, ranging from 0.36 to 0.62. Item 6 in C6 also displayed a relatively low 
kappa of 0.53 and a substantial SMD of -0.32, a pattern also flagged in the moderate 
exact match ratio of 0.77. Performance on items 5 and 6 will be explored further in the 
discussion.

Table 8 Item-by-country F1 scores
C1 C2 C3 C4 C5 C6 C7 C8 Average

Item 1 0.81 0.88 0.93 0.88 0.88 0.92 0.87 0.86 0.88
Item 2 0.90 0.99 0.95 0.96 0.94 0.97 0.93 0.94 0.95
Item 3 0.99 0.99 0.98 0.97 0.95 0.99 0.97 0.95 0.97
Item 4 0.94 0.91 0.90 0.87 0.91 0.92 0.96 0.75 0.90
Item 5 0.67 0.71 0.77 0.68 0.68 0.74 0.40 0.74 0.67
Item 6 0.97 0.92 0.95 0.93 0.94 0.81 0.90 0.74 0.90
Average 0.88 0.90 0.91 0.88 0.88 0.89 0.84 0.83 0.88
Note C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country

Table 9 Item-by-country kappa (human-machine inter-rater reliability)
C1 C2 C3 C4 C5 C6 C7 C8 Average

Item 1 0.72 0.81 0.87 0.80 0.82 0.83 0.82 0.73 0.80
Item 2 0.83 0.98 0.91 0.89 0.90 0.94 0.88 0.90 0.90
Item 3 0.94 0.93 0.92 0.87 0.80 0.97 0.94 0.93 0.91
Item 4 0.89 0.85 0.60 0.78 0.71 0.53 0.84 0.69 0.74
Item 5 0.62 0.65 0.66 0.59 0.58 0.70 0.36 0.70 0.61
Item 6 0.95 0.90 0.89 0.81 0.91 0.53 0.86 0.65 0.81
Average 0.82 0.85 0.81 0.79 0.79 0.75 0.78 0.77 0.80
Note C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country

Table 10 Item-by-country SMD
C1 C2 C3 C4 C5 C6 C7 C8 Average

Item 1 0.06 -0.04 0.03 -0.14 0.02 -0.06 0.05 0.04 -0.01
Item 2 0.04 -0.02 -0.03 -0.04 -0.05 -0.02 0.03 0.01 -0.01
Item 3 -0.02 -0.02 0.03 -0.08 -0.09 -0.03 0.00 -0.03 -0.03
Item 4 -0.08 -0.11 -0.10 -0.07 -0.16 0.15 -0.03 -0.05 -0.06
Item 5 0.02 -0.10 0.05 -0.25 -0.06 -0.22 0.11 0.02 -0.05
Item 6 0.02 -0.02 -0.05 -0.07 -0.01 -0.32 -0.09 0.03 -0.06
Average 0.01 -0.05 -0.01 -0.11 -0.06 -0.08 0.01 0.00 -0.04
Note 1 SMD = Standardized mean score difference

Note 2 C1 & C2 = German-speaking countries; C3 = French-speaking country; C4 = Turkish-speaking country; C5 = English-
speaking country; C6 & C7 = Chinese-speaking countries; C8 = Korean-speaking country
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Impact of automated scoring on psychometric properties

Both human and machine scoring demonstrated good AITC across items on aver-
age, with a slightly higher value for human scoring (rhuman = 0.35; rmachine= 0.33) (see 
Table 11).

The AITC generally displayed consistent patterns across countries and scoring meth-
ods, with a slightly stronger correlation in human scoring (see Table  12). Particularly 
noteworthy is Item 6 in C6, where the item-total correlations consistently remained high 
in automated scoring (rhuman = 0.44; rmachine= 0.44), despite being flagged by other metrics 
such as the moderate exact match ratio value (0.77), moderate kappa value (0.53), and 
large SMD (-0.32). These results suggest that while automated scoring may be stricter 
than or deviate from human scoring, the common gold standard, it does not necessar-
ily compromise the item’s contribution to the instrument or internal consistency. Such 
discrepancies do not necessarily indicate errors in automated scoring but could point 
to potential errors or challenges within the human scoring process. This will be further 
discussed in the discussion.

Moreover, we observed that AITC can be different within the same language coun-
tries depending on the scoring method. This pattern was notable for Item 5 in German-
speaking countries (C1 and C2) and Chinese-speaking countries (C6 and C7). In C1, 
human scores showed higher AITC (rhuman= 0.23), while in C2, machine scores displayed 
higher AITC (rmachine= 0.23). Similarly, in C6, the AITC was higher with human scores 
(rhuman= 0.27) whereas in C7, the reverse was true (rmachine= 0.32). Also, machine scores 
can even yield higher AITC within the same language countries. For Item 1, the AITC 
was similar between human and machine scores in C6 (0.30), but the AITC was notice-
ably higher with machine scores in C7 (rmachine= 0.23 > rhuman= 0.13).

Next, the overall patterns of country-by-item difficulty remained consistent across the 
scoring methods (see Figs.  1, 2, 3, 4, 5 and 6). Importantly, even uncommon patterns 
were maintained across the scoring method (refer to Fig. 3). In human scoring, Item 3 
was relatively easy for students in C7 (rhuman = 0.54) and C8 (rhuman = 0.72), while chal-
lenging for the other countries, as indicated by item difficulties below 0.30. This distinc-
tive pattern was also similarly reflected in the automated scoring: C7 (rmachine = 0.54) and 
C8 (rmachine = 0.71) showed a high percentage of correct responses, whereas the other 
countries reported low values below 0.25. Yet, we observed noticeable gaps between 
human and machine scores for C2, C5, and C6 in Item 4, and for C4 and C6 in Item 5. 
Particularly, C6 consistently showed a gap of 0.06, 0.08, and 0.16 for Items 4, 5, and 6, 
respectively. These disparities will be further examined in the discussion.

Table 11 Item-by-scoring method AITC
Human Score Machine Score

Item 1 0.38 0.36
Item 2 0.33 0.32
Item 3 0.36 0.36
Item 4 0.34 0.31
Item 5 0.26 0.22
Item 6 0.45 0.41
Average 0.35 0.33
Note AITC = Adjusted Item-total Correlation
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Discussion
Toward consistent and resource-efficient scoring

The present study found that automated scoring has great potential for supporting and 
even possibly replacing the need for labor-intensive human scoring in multilingual con-
texts. Despite the small test sample size, the automated scoring resulted in generally 
good agreements between human and machine scores without negatively affecting psy-
chometric characteristics. This finding implies that MT effectively extracted common 
BoW key features that could be used in all countries and languages while retaining the 
core meaning. While human scores can vary depending on human rater understand-
ing and biases, automated scoring using shared key features could help reduce scoring 
inconsistencies within or between countries.

Moreover, automated scoring can significantly reduce the expenses associated with 
human scoring. Human scoring of multilingual responses in ILSAs necessitates substan-
tial costs, time, and labor. In contrast, the application of automated scoring was remark-
ably cost-effective and time-efficient. Regarding MT, Google Translate costs $20 per 
one million characters (Google, 2023b), and ChatGPT $0.002 per 1,000 tokens (around 
750 words) (OpenAI, 2023b). MT per student response took 0.14 and 0.42 s by Google 
Translate and ChatGPT, respectively. Running the ANNs per item took approximately 
7.50 min via Python. Considering that inconsistency and high expenses are the funda-
mental challenges of human scoring, this study suggests that automated scoring may 
soon be an efficient alternative to human scoring, and allow for more reliable and consis-
tent scoring of CR items in ILSAs.

Misalignment between human and automated scoring

To better understand the nature of misclassified responses, we investigated the likely 
sources of the human-machine score disagreement. The potential causes we considered 
are three-fold: (1) errors in automated scoring, (2) errors in human scoring, and (3) true 
score uncertainty.

First, errors in automated scoring refer to instances where the machine classified 
responses as incorrect (machine score 0), whereas a human rater classified them as cor-
rect (human score 1) (refer to D1 in Table 3). Regarding the BoW approach, we found 
the lexical diversity of correct responses is one important source of error. Although 
most correct student responses are homogeneous in this study, we found that the cor-
rect answer to Item 4 can be expressed in multiple ways. For instance, the keyword of 
Item 4 was sieve – which was found to be expressed by students as a bucket with holes, 
colander, drainer, filter, net, strainer, sifter, separator, wire mesh, etc. The BoW did not 
capture these low-frequency keywords in its feature matrix, but human raters accu-
rately scored a variety of responses as long as they conveyed similar concepts. In future 
studies, advanced NLP models such as word embedding (e.g., the WordNet-based lem-
matization) could be used to identify and address a variety of synonyms (Chen et al., 
2019; Mikolov et al., 2013).

Next, errors in human scoring indicate instances where a human rater classified 
responses as incorrect (human score 0), whereas the machine classified them as correct 
(machine score 1) (see D2 in Table 3). Humans are not perfect, and therefore, human 
scores could be inconsistent or inaccurate. Although the inter-rater reliability of human 
scoring was very high (κ = 0.97–1.00) in this study, we observed slight within-country 
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and between-country inconsistencies. Concerning Item 5, human scores were affected 
by how students described the key concept of increasing heart rate. In some cases, simi-
lar responses received different scores depending on the country. Some human raters 
marked responses as correct even if they only included numbers indicating elevated 
heart rates, like 150 or 200, despite the students being asked to provide a brief ‘descrip-
tion’ of the changes in heart rate. This demonstrates that achieving a perfect agreement 
between humans and machines is unattainable, especially in multilingual contexts.

Fig. 3 Country-by-item difficulty of item 3. Note C1 & C2 = German-speaking countries; C3 = French-speaking 
country; C4 = Turkish-speaking country; C5 = English-speaking country; C6 & C7 = Chinese-speaking countries; 
C8 = Korean-speaking country

 

Fig. 2 Country-by-item difficulty of item 2. Note C1 & C2 = German-speaking countries; C3 = French-speaking 
country; C4 = Turkish-speaking country; C5 = English-speaking country; C6 & C7 = Chinese-speaking countries; 
C8 = Korean-speaking country

 

Fig. 1 County-by-item difficulty of item 1. Note C1 & C2 = German-speaking countries; C3 = French-speaking 
country; C4 = Turkish-speaking country; C5 = English-speaking country; C6 & C7 = Chinese-speaking countries; 
C8 = Korean-speaking country
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Lastly, disparities between human and machine scores may stem from the uncertainty 
in the true score, defined as the expected value of the observed score. True scores can 
be uncertain for ambiguous responses, especially for misspelled responses. The level of 
acceptable misspellings can be subjective and may vary depending on human raters. For 
example, the keyword of Item 6 was rust which is 生銹 (shēngxiù/) in traditional Chi-
nese characters. However, in C6, misspelled or non-existent words were scored as cor-
rect responses by the human rater due to their phonetic similarity: (a) 生秀, (b) 生受, 
(c) 生廋, (d) 生瘦, and (e) 生獸. The misspelled second characters (a) 秀 (/xiù/), (b) 受 

Fig. 6 Country-by-item difficulty of item 6. Note C1 & C2 = German-speaking countries; C3 = French-speaking 
country; C4 = Turkish-speaking country; C5 = English-speaking country; C6 & C7 = Chinese-speaking countries; 
C8 = Korean-speaking country

 

Fig. 5 Country-by-item difficulty of item 5. Note C1 & C2 = German-speaking countries; C3 = French-speaking 
country; C4 = Turkish-speaking country; C5 = English-speaking country; C6 & C7 = Chinese-speaking countries; 
C8 = Korean-speaking country

 

Fig. 4 Country-by-item difficulty of item 4. Note C1 & C2 = German-speaking countries; C3 = French-speaking 
country; C4 = Turkish-speaking country; C5 = English-speaking country; C6 & C7 = Chinese-speaking countries; 
C8 = Korean-speaking country
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(/shòu/), (c) 廋 (/sōu/), (d) 瘦 (/shòu/), and (e)獸 (/shòu/) have the identical or similar 
pronunciation of the correct character 銹 (/xiù/). These responses, constituting 44% of 
the misalignments in C6, were scored as incorrect by the machine. This led to a sub-
stantial negative SMD (-0.32) and a large disparity in item difficulty between human and 
machine scores (0.16). Chinese native speakers said that human scores may have differed 
in whether the raters considered these misspelled responses as correct.

Directions for future research

We observed that the differences between human and machine scores were derived from 
various factors, not just the error of ANN classifications. While benchmarking human 
scoring is still important, Bennett and Bejar (1998) stressed that relying solely on human 
scores to assess automated scoring is counterproductive due to the fallibility of human 
raters. Rather, the central focus in automated scoring should be on the accuracy, con-
sistency, and fairness of machine scores. Thus, it is imperative to investigate whether 
machine scores accurately capture the intended construct, evaluate the alignment of fea-
tures used in automated scoring with the rubric, and identify any potential biases or fair-
ness issues. (Attali, 2013; Bennett & Zhang, 2015; Bowler et al., 2020; Madnani & Cahill, 
2018). Through comprehensive evaluation and validation, we can advance toward more 
reliable and accurate automated scoring.

Limitation

One limitation of this study is the absence of human evaluation of MT quality. Although 
we generally reviewed MT by comparing text length similarities between the original 
and translated responses and checking any hallucinations from ChatGPT, we did not 
use an MT quality metric such as the bilingual evaluation understudy (BLEU) metric 
- which measures the word-based overlap between MT output and professionally trans-
lated human text. However, considering our ultimate goal to expand automated scor-
ing to ILSAs administered in over 100 languages, it is crucial to employ automated MT 
evaluation rather than relying on human judgment to assess MT quality. While we used 
a combination of multiple MT and LOR as one approach, future research can explore 
the integration of automated MT evaluation into automated scoring.

Conclusion
This study investigated the potential of automated scoring in ILSAs. The findings showed 
that automated scoring with MT could be a promising support or alternative to human 
scoring, which has inherent concerns of inconsistency and high expense. With the ongo-
ing advancement in MT and ANNs, we anticipate the performance of automated scoring 
will continue to improve, making it easier to use and reliably score short CR items in 
ILSAs. We suggest that future research expands the scope of automated scoring to more 
languages and countries with advanced NLP and ANN approaches.
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