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Introduction
International comparative assessments such as PISA (Programme for International Stu-
dent Assessment) or TIMSS (Trends in International Mathematics and Science Study) 
have the power to influence educational policy and practice to a large extent (Sedat & 
Arican, 2015). Item response theory (IRT; Baker, 2001) has traditionally been used to 
analyze such large-scale assessments and to provide information about students’ abili-
ties. This method summarizes students’ overall ability in a particular subject (e.g., math-
ematics, reading, or science) by means of a single ability score (Chen, 2017; Nájera et al., 
2019). Student achievement is then compared across countries and an international 
benchmark is set. Unfortunately, the general ability score provides neither teachers nor 
policymakers with the fine-grained diagnostic information necessary to determine if 
students have mastered a particular domain. This makes the implementation of a tar-
geted educational strategy based on international large-scale assessments difficult. Cog-
nitive diagnosis assessment (CDA) allows to understand students’ assessment outcomes 
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by fine-grained attributes1 that are directly related to students’ success in a given subject 
domain so that statistical data analysis may provide richer information regarding what 
types of attributes students have mastered (Jurich & Bradshaw, 2014).

The Generalized Deterministic Inputs, Noisy “And” Gate model (G-DINA; de la Torre, 
2011), one of the popularly used psychometric models for the CDAs, can be used for 
just this purpose. The G-DINA aims to measure to what extent students master a set of 
cognitive attributes (e.g., fractions, proportions, and decimals as a fine-grained cognitive 
mathematic attribute) to improve educational policy and practice. Some studies have 
already employed the G-DINA to analyze data from international comparative tests, 
such as PISA (Jia et al., 2021; Wu et al., 2020). However, before the G-DINA can be used 
on international assessments to perform the CDA, a content analysis of the test must 
occur (von Davier & Lee, 2019). Domain experts conduct this analysis to identify a set of 
related attributes or skills that measure a few broad domains and to define each item by 
the subset of attributes (Nájera et al., 2019). Researchers refer to such an internal struc-
ture where the item-attribute relations are specified as a “Q-matrix” (Tatsuoka, 1984). 
This two-dimensional matrix with items and attributes defining rows and columns, 
respectively, includes only one (the attribute is required to solve the item) or zero (the 
attribute is not required to solve the item).

Currently, using the Q-matrix for international tests has two major drawbacks. First, 
the Q-matrix is designed by the judgements of experts. In other words, content experts 
specify the cognitive attributes and their relations with the items. The expert-designed 
Q-matrix is not always perfect and it could be possible to have some misspecifications. 
When the content analysis of the Q-matrix is conducted by the fallible judgements of 
subject-matter experts (Chen, 2017; Nájera et al., 2019; Terzi & de la Torre, 2018), mis-
specifications of the Q-matrix could have serious consequences for the estimation of 
students’ attribute patterns and the interpretation of the data consequently (de la Torre 
& Chiu, 2016; Köhn & Chiu, 2018; Nájera et al., 2019). Additionally, experts from differ-
ent countries may have disagreements on the relationship between items and attributes 
because of their different educational backgrounds, country-specific curriculum, and 
teaching situations. Those disagreements may produce uncertainty about the Q-matrix, 
which provides space for further improvements as well. Because of those, research-
ers have proposed various refinement methods (Chiu, 2013). This study addresses the 
potential impact of a misspecified Q-matrix on the CDA in TIMSS and explores the per-
formance of refined Q-matrices.

Second, the same Q-matrix is specified for every participating country. The question 
that arises in the literature is that, despite the prior work on this issue, little evidence 
supports the use of a common Q-matrix for different types of population groups. That is, 
we cannot simply assume that the expert-designed universal Q-matrix from the TIMSS 
will perform similarly when used to analyze data from different countries. Further, we 
seek to determine if a particular refinement approach performs better across various 
countries.

1 An attribute can be defined as a “skill or content knowledge that is required to solve a test item.” (Choi et al., 2015).
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In the following section, we describe the conceptual background of the G-DINA and 
two different Q-matrix refinement methods. Next, we apply these techniques to study 
whether different Q-matrix refinement approaches come to different solutions within 
and between countries, and what solution provides the best model fit. Finally, we investi-
gate the usefulness of country-specific Q-matrices.

G‑DINA

The G-DINA belongs to the family of Cognitive Diagnostic Models (CDMs; Rupp et al., 
2010), which is considered as a special case of Latent Class Models (LCMs; Hagenaars 
& McCutcheon, 2002) where the attribute patterns are modelled to categorize students 
by means of latent class variables. To be specific, the attribute patterns of the students 
are conceptually unobservable and therefore have to be measured by their observed 
responses to a set of items in a test (Chen, 2017). CDMs are confirmatory models in 
nature because the relationships between the categorical latent variables (attributes) and 
the test items are defined a priori in a Q-matrix (Ravand & Robitzsch, 2015). There are a 
number of different modelling approaches within CDMs that have been in use, depend-
ing on how relationships between attributes and item responses are modelled and how 
attributes themselves are combined (Ravand & Robitzsch, 2015; Rupp et al., 2010).

Many CDMs assume certain relationships between items and attributes, such as the 
Deterministic, Inputs, Noisy, “And” Gate model (DINA; de la Torre, 2009; Junker & 
Sijtsma, 2001) which assumes that attributes are conjunctive, the Deterministic, Inputs, 
Noisy, “Or” Gate model (DINO; Templin & Henson, 2006) which assumes that attrib-
utes are disjunctive, and so forth. However, sometimes, the attribute relationship is 
unclear before the model application. In that respect, the G-DINA seems to be a reason-
able choice to fit real-life data because it does not have constraints for the relationship 
of attributes (i.e., conjunctive, disjunctive, and additive assumption for attributes; de la 
Torre, 2011).

A saturated G-DINA for dichotomous responses with identity link is expressed as fol-
lows (de la Torre, 2011; von Davier & Lee, 2019). The model estimates the probability of 
success for item j under different attribute patterns. k refers to a required attribute based 
on Q-matrix and K ∗

j  is the total number of required attributes for item j. α∗
lj denotes the 

reduced attribute vector for item j,l = 1, ..., 2
K ∗
j  , which keeps only required attributes. 

P
(
Xj = 1|α∗

lj

)
 denotes the probability of the correct answer to item j conditional on 

attribute patternα∗
lj . For instance, in a test designed for measuring four attributes, 

answering item j correctly needs the 2nd, 3rd, and 4th attribute (i.e.,K ∗
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order interaction effects can be added to the model, but are skipped here due to parsi-
mony (denoted by three dots in the formula). Parameters of the G-DINA are estimated 
by an expectation–maximization implementation of marginalized maximum likelihood 
estimation (de la Torre, 2011).

Q‑matrix refinement methods

To handle uncertainty about some of the item-attribute relations in the Q-matrix, sev-
eral studies proposed parametric (de la Torre & Chiu, 2016) and nonparametric (Chiu, 
2013; Desmarais & Naceur, 2013) approaches to validate and refine the initial design. 
It is important to notice that these methods are all confirmatory in nature in the sense 
that they refine the Q-matrix initially designed by experts (Nájera et al., 2019). Further-
more, these refinement methods only handle misspecifications of how items are linked 
to the attributes (misspecification of rows in the Q-matrix or q-vectors) and not mis-
specification of the set of underlying attributes (misspecification of the columns of the 
Q-matrix) (Chiu, 2013). Lastly, these refinement methods are data-driven, so they use 
students’ answers to the test to construct a refined Q-matrix. Thus, a Q-matrix refined 
by the same method but using a different dataset (e.g., the TIMSS 2011 8th grade math-
ematics scores from a different country), is therefore likely to be different.

Stepwise validation method

The stepwise validation method for Q-matrix refinement was proposed by Ma and de 
la Torre (2020a, b). It combines the G-DINA Discrimination Index (GDI; de la Torre 
& Chiu, 2016) and the Wald statistic based on the G-DINA given an expert-defined 
Q-matrix, which can be regarded as an extended version of the GDI method. This 
method is originally designed for graded response data in tandem with the sequential 
G-DINA. When dichotomous items are applied, this method can still work based on 
the G-DINA. Compared to other Q-matrix refinement methods, the stepwise validation 
method does not need assumptions about the processing function and it can consider 
the item parameter estimation errors because of including the Wald statistic (Ma & de la 
Torre, 2020a, b). The mechanism of this method can be simply explained by two steps. 
The first step is to select required attributes by using GDI and the second step is to com-
pare candidate attributes based on the Wald statistic. The criteria corresponding to GDI 
for selecting the best-recommended q-vector is Proportion of Variance Accounted For 
(PVAF). de la Torre and Chiu (2016) recommended 0.95 as the rule of thumb for PVAF. 
When the PVAF of q-vectors is larger than 0.95, a q-vector with the lowest number of 
attributes will be recommended.

The operation is explained in detail and a flowchart can be consulted in Appendix 1 
(Fig.  3). For a certain item, two sets of attributes are defined, including a set A of all 
required attributes and a set B of all target (or candidate) attributes that need to be 
tested. A q-vector search bank C with all single-attribute competing q-vectors is defined 
as well. Initially, A is an empty set and B is a set with all attributes. The first step is to 
replace the provisional q-vectors in an expert-designed Q-matrix with the competing 
q-vector in C for the target attribute in B, and calculate relevant PVAF (Ma & de la Torre, 
2020a, b). The target attribute with the highest PVAF is defined as a required attribute, 
and it will be moved from B to A. The second step is to examine whether the q-vectors 
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with required attributes from A are recommended by GDI (i.e., PVAF > 0.95; Ma & de la 
Torre, 2020a, b). When the PVAF of the q-vector with the required attribute from A is 
higher than 0.95, the validation process will stop and it means the required attribute in 
A is validated. If not, the search bank C will be updated where the competing q-vector 
becomes a vector with all required attributes in A and one target attribute in B. There 
will be some competing q-vectors with all required attributes in A and different target 
attributes in B simultaneously. Then, the target attributes need to be examined whether 
they are necessary for competing q-vectors by performing tests based on the Wald sta-
tistic. If the Wald statistic suggests all target attributes are not necessary, the valida-
tion procedure will stop. Otherwise, at least one target attribute can be recommended. 
Among them, the one in the competing q-vector with the highest PVAF is regarded as 
the required attribute, and it will be moved from B to A. After that, the required attrib-
ute is examined by the Wald statistic, and the unnecessary one will be moved from A to 
B. The procedure is iterated until no attributes can be added or removed between set A 
and set B (Ma & de la Torre, 2020a, b).

Some limitations of this method have been identified. In the proposed algorithm, the 
cut-off value for PVAF in the part of GDI is fixed to 0.95, which has been criticized. Liu 
(2015) and Wang et al. (2018) supported that the cut-off value should be adjusted based 
on sample size. Another limitation is the Wald statistic. As Ma and de la Torre (2020a, b) 
said, the Wald test is an important component of the stepwise validation method and its 
performance can be further improved when using a better-estimated variance–covari-
ance matrix (Liu et al., 2019).

Chiu’s nonparametric classification method

Chiu (2013) also proposed a method to identify and correct mispecified q-vectors in a 
Q-matrix. The method is based on the nonparametric classification method and com-
parisons of the residual sum of squares (RSS) between the observed and predicted 
responses among all the possible Q-matrices given an expert-based Q-matrix. The algo-
rithm consists of various steps. A flowchart is added in Appendix 1 (Fig.  4) to clarify 
the different steps of the algorithm (Chiu, 2013). The algorithm begins by selecting the 
item with the highest RSS, which is most likely to be misspecified, and the q-vector that 
should be updated. Then, the algorithm searches over all possible q-vectors and replaces 
the q-vector under consideration with the one with the lowest RSS. The algorithm is 
an iterative procedure where it will stop when all items are visited and the RSS of each 
item hardly changes anymore (Chiu, 2013). An advantage of this method, compared to 
model-based methods, is that it does not rely on the model parameters of CDMs when 
optimizing the algorithm. Furthermore, the approach guarantees good student classifi-
cation even when the true CDM underlying the observed item responses is unknown. 
Performance, effectiveness, efficiency, and applicability were proven through simulation 
studies by Chiu (2013).

One major limitation of this method is that it is unable to handle missing data in 
the dataset. Because of the booklet design of many large-scale assessments (including 
TIMSS), the missingness by design is a common feature of these studies. Thus, we need 
to impute all the missing data before Chiu’s method can be performed. Second, Chiu’s 
method is a nonparametric method while parametric models should provide more 
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powerful results when the distributional assumptions are not violated, especially for 
large samples (Terzi & de la Torre, 2018).

The overarching goal of this study is to explore the adequateness of (1) the selected 
Q-matrix refinement techniques and (2) the country specificity of Q-matrices in the 
case of the TIMSS 2011 8th grade mathematics test. This leads to the following research 
questions:

• Do the country-specific refined Q-matrices offer a better model fit than the original 
Q-matrix designed by domain experts? If so, is there a particular refinement method 
that performs better (or worse) than other methods?

• Does using the country-specific Q-matrices with the best model fit alter the inter-
pretation of diagnostic assessments for the TIMSS 2011 eighth-grade mathematics 
assessment? If so, does this impact differ across countries?

Materials and methods
TIMSS 2011 8th grade mathematics

For this study, we used data from the TIMSS 2011 eighth-grade mathematics assess-
ment. Specifically, we used student responses to 89 items that were released in the 
TIMSS database. They were comprised of 48 multiple choice items, 32 open-ended 
questions, and 9 constructed response questions. A score of 1 was given to a completely 
correct answer and a score of 0 was given to a partly correct or wrong answer. Omit-
ted items were scored as incorrect (0) and missing items by design were scored as non-
available (NA). Two criteria were used to select countries in the database: (1) the TIMSS 
2011 results of the country were reliably measured (according to Mullis et al., 2012); and 
(2) the five countries are part of different continents. Consequently, we chose Finland 
(Europe), the USA (North America), Singapore (Asia), Australia (Oceania), and Tunisia 
(Africa) for the study. Table 1 provides the sample sizes from five countries.

Q‑matrix for 8th grade TIMSS 2011 mathematics

In order to analyze data  with the G-DINA, subject-matter experts must prepare a 
Q-matrix for the test items. Details about constructing Q-matrices with regard to TIMSS 
2007 and 2011 are presented in previous studies (Johnson et al., 2013). In essence, the 
procedure begins with four content domains specified in the original TIMSS frame-
work (i.e., number, algebra, geometry, and data & chance) where the domains are further 

Table 1 Number of (Selected) Students of TIMSS 2011 8th Grade Mathematics Test per Country

Selected students are students that filled in a TIMSS 2011 8th grade mathematics assessment booklet where at least one of 
the 89 items in the Q‑matrix was assessed

Country Total Students Selected Students

Finland 4,266 2,397

United States 10,477 5,909

Singapore 5,927 3,069

Australia 7,556 4,240

Tunisia 5,128 2,883

Total 33,354 18,498
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described by multiple topic areas and the accompanying 55 objectives that are a part of 
math curricula from a majority of countries. For TIMSS 2011 8th grade mathematics 
assessment, the experts combined more related objectives and defined a total of nine 
attributes comprised of 89 items. The list of attributes and the number of items involved 
in the Q-matrix can be found in Table 2. Descriptions of those attributes are available in 
Johnson et al. (2013) (see the excerpt in Appendix 2). The Q-matrix for those released 
item sets in the TIMSS 2011 8th grade mathematics assessment is available in Park et al. 
(2017).2 Figure  1 gives an example of a multiple-choice question among the released 
items. According to the Q-matrix, this item requires mastery of two attributes, expres-
sions, equations and functions and measurement to be answered correctly.

Analyses

Q‑matrix refinements and G‑DINA

The research questions were investigated empirically by fitting the G-DINA using the 
original and refined Q-matrices. First, the expert-designed Q-matrix (for the 89 selected 
items) was validated and refined based on the five selected countries’ data as well as on 
the combined data from the five countries by two selected refinement methods: (1) step-
wise validation method (further referred to as stepwise method) (2) Chiu’s nonparamet-
ric classification method (further referred to as Chiu’s method). Next, the Q-matrices 
of each of the five countries and of the combined data were compared with the expert-
designed Q-matrix. Thereafter, the analysis of the G-DINA with the different Q-matrices 
(i.e., one expert-designed Q-matrix and two refined Q-matrices based on two refinement 
methods) was conducted for each country. To avoid the problem of using the same data 
for refining the Q-matrix and estimating model-fit indices to make relevant evaluations 
stable and reliable, the data of each country were divided into two parts: a random sub-
set of 50% of the data was used for Q-matrix refinement and other 50% for the G-DINA 
estimation. This operation was repeated ten times and the average value for each model-
fit index was used as the evidence for conclusions. We used R 4.1.2 (R Core Team, 2021) 
with the G-DINA package (version 2.8.8; Ma & de la Torre, 2020a, b) and the NPCD 

Table 2 Attributes and Frequency of attributes in the Original Q-matrix

Attributes and frequency adopted from Johnson et al. (2013)

Attribute Frequency

Whole numbers and integers (1) 25

Fractions, decimals and proportions (2) 19

Patterns (3) 12

Expressions, equations and functions (4) 21

Lines, angles and shapes (5) 10

Measurement (6) 8

Location and movement (7) 9

Data organisation, representation and interpretation (8) 21

Probability (9) 5

2 The expert-designed Q-matrix can be found in Appendix 3.
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package (version 1.0–11; Zheng et al., 2019) to perform the Q-matrix refinements and 
G-DINA analysis.

Handling missing data

Since Chiu’s method is unable to handle missing data, we needed to replace the missing 
data with substitute values. To this end, the common imputation method of Predictive 
Mean Matching (PMM; Little, 1988; Rubin, 1986) was used for each column of the data. 
The basic idea of PMM is that for each missing value, the method forms a small set of 
candidate values and matches one of those observed values for the corresponding miss-
ing cell. By using PMM, all missing entries in the different datasets could be replaced. It 
is worth noting that most of the missings in the datasets were in fact produced by test 
design (i.e., booklet format) and the planned missings are considered as missing com-
pletely at random, so the analysis based on imputed data does not cause biased results 
(Little & Rubin, 2002). In order to make relevant estimated results reliable and make the 
methods comparison fair, the same imputed datasets were administrated for all follow-
ing Q-matrix comparisons (i.e., the expert-designed Q-matrix and the Q-matrix refined 
by the stepwise method and Chiu’s method).

Model evaluation criteria

A series of analyses were conducted within and across countries to provide answers to 
two research questions. Note that due to overlap between the two questions, some of 
the results provide answers to both. To deal with the first research question, model fit 
was investigated within and across countries. Specifically, Akaike’s Information Crite-
rion (AIC; Akaike, 1974) and Bayesian Information Criterion (BIC; Schwarz, 1978) were 
used as relative fit indices; the limited-information version of Root Mean Square Error of 
Approximation  (RMSEA2; Maydeu-Olivares & Joe, 2014; Ma & de la Torre, 2020a, b) and 
Standardized Root Mean Square Residual (SRMSR; Liu et  al., 2016; Maydeu-Olivares, 
2013) were used as absolute fit indices. As for the rule of thumb for these model-fit indi-
ces, lower AIC and BIC values indicate a better fit. Because clear guidelines for evaluat-
ing the G-DINA in terms of the  RMSEA2 and SRMSR are still lacking in the current 
literature (von Davier & Lee, 2019), we chose to use “Below 0.05” for SRMSR and “Below 
0.045” for  RMSEA2 to indicate good model fit. These cut-offs are currently used in rel-
evant research based on IRT models and loglinear cognitive diagnosis models (LCDM) 
respectively (Liu et al., 2016, 2017; Maydeu-Olivares et al., 2011). First, the best-fitting 
Q-matrix per country was determined by comparing the relative and absolute model 
fit criteria between the three different kinds of Q-matrices (i.e., original, stepwise, and 
Chiu’s Q-matrix) within each country. Then, mean rankings of model fit indices were 
calculated as a result of incorporating an expert-designed Q-matrix and the two refined 
Q-matrices in the G-DINA across five selected countries. The overall rank was calcu-
lated by (1) sorting the three Q-matrix types per country (e.g., 1 = best to 3 = worst for 
Finland), and then (2) averaging the given numbers over the five countries. That is, the 
Q-matrix ranked lowest indicates that it was able to provide the best model fit for the 
G-DINA analysis in general.

Given that different refinement methods were evaluated and the best-fitting solutions 
were chosen for each country, the second research question focused heavily on looking 



Page 9 of 36Delafontaine et al. Large-scale Assessments in Education           (2022) 10:19  

at their impact on the interpretation of TIMSS. Student attribute mastery percentages 
were calculated and compared within and across countries to verify if using different 
Q-matrices alters the estimation of diagnostic information from the TIMSS assessment 
in general and for each country separately. The calculation of percentages was based on 
an attribute mastery status of each student estimated by the G-DINA. Differences in stu-
dent attribute mastery between the original and the refined Q-matrices larger than 10% 
were retained as a remarkable difference.

Next, we calculated degrees of (dis-)agreement between the original and the two 
refined Q-matrices for all attributes. When the estimated student mastery matrices 
based on two comparable Q-matrices classified a student in the same category (master 
(1) or non-master (0)) we considered this as an agreement. When they classified a stu-
dent in a different category (classifying a non-master as a master or classifying a master 
as a non-master), we considered this as a disagreement. The percentages of mastery/
non-mastery agreement were calculated for each pair of Q-matrices for each country 
separately. As an example, the original Q-matrix was compared to the Q-matrix refined 
by the stepwise method in terms of the mastery agreement rate for one attribute in a 
dataset with 100 students. The estimated student mastery matrix from the original 
Q-matrix can be compared to the one from the refined Q-matrix. To that end, the num-
ber of the same mastery entries can be counted (for instance giving a value of 80 if both 
approaches agreed that 80 students mastered this attribute). The number of the differ-
ent mastery entries could be observed as well (for instance leading to a value of 20 if 
it was found that based on the original matrix 20 students mastered this attribute but 
the result based on the refined Q-matrix suggested they did not master this attribute). 
Then, the mastery agreement of this attribute between two Q-matrices in this dataset 
would be 80% (i.e., 80/(80 + 20)). This kind of calculation would be applied to each coun-
try and each attribute in the following analysis. The relevant results from five countries 
were combined to give an overall explanation of each attribute. The average results based 
on nine attributes were applied to present a general overview of differences in student 
classification between different Q-matrices across countries. Third, differences between 
Q-matrices concerning the interpretation of item parameter estimates, e.g., inter-
cept parameter that measures baseline effect (i.e., the success probability without any 
required attribute), were scrutinized.

Results3

First, the expert-designed Q-matrix was compared to different refined Q-matrices. 
The results suggest that the Q-matrices refined based on the combined five-countries 
data are dissimilar to the expert-designed Q-matrix. The percentage of different entries 
for the stepwise method is 26.59% and the one for Chiu’s method is 15.61%. Also, the 
Q-matrices refined based on each country’s data differ from the expert-designed 
Q-matrix, with the differential proportion ranging from 2.5% to 22.97%. Additionally, 
the refined Q-matrix based on the combined five-countries data is dissimilar from the 
Q-matrix based on each country’s data for both the stepwise method and Chiu’s method, 

3 In practice, Chiu’s method needs to set the condensation rule (i.e., “AND” or “OR”) due to the requirement of relevant 
R packages. Two condensation rules were both tried in the data analysis. Analyses based on “OR” rule did not converge, 
so the following parts only present results based on “AND” rule.
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and the percentage of different entries ranges from 12.11% to 28.21%. Overall, it can be 
confirmed that the expert-designed Q-matrix is different from the refined Q-matrices, 
and those differences are worth exploring further.

Goodness of fit

Goodness of fit within countries

Considering that Chiu’s method was applied under the conjunctive assumption, in order 
to make the methods comparison fairer, the interaction parameters of the G-DINA and 
the model comparison between the G-DINA and the DINA were scrutinized. We find 
that most of the interaction parameters in the G-DINA are not zero and not close to 
zero when the expert-designed Q-matrix and the refined Q-matrix from the stepwise 
method or Chiu’s method are applied. Furthermore, the DINA and G-DINA were com-
pared by model-fit indices and the likelihood ratio test based on each country’s data was 
analyzed. The results of model-fit indices present that almost all estimates support the 
G-DINA across five countries. Only the estimated SRMSR for the Finland data recom-
mends the DINA. All likelihood ratio tests support the G-DINA. Hence, it can be con-
firmed that using the G-DINA for the model comparison is acceptable.4

Table  3 gives the average AIC, BIC,  RMSEA2, and SRMSR of the G-DINA for each 
refinement method per country. According to the relative fit indices, the Q-matrix 
refined by the stepwise method appears to be the best fitting Q-matrix regardless of the 
criterion used for four out of the five selected countries (except Tunisia). For Tunisia we 
see a difference, the BIC value identifies the Q-matrix refined by the stepwise method 

Table 3 Results of G-DINA Model Fit

AIC Akaike Information Criterion, BIC Bayesian Information Criterion, RMSEA2 the limited‑information version of Root Mean 
Square Error of Approximation, SRMSR Standardized Root Mean Square Residual. The best fitting model is in boldface

Country Q‑matrix AIC BIC RMSEA2 SRMSR

Finland Original 120,390.5 124,375.4 0.0761 0.0862

Stepwise 117,980.4 122,176.9 0.0706 0.0745
Chiu 120,915.6 135,526.8 0.0711 0.0773

United States Original 292,238.3 296,929.5 0.0846 0.1099

Stepwise 276,331.3 282,622.1 0.0691 0.0735
Chiu 277,763.4 285,927.0 0.0705 0.0811

Singapore Original 137,450.0 141,628.3 0.0881 0.1205

Stepwise 125,654.6 131,715.5 0.0663 0.0795
Chiu 126,544.2 133,276.5 0.0651 0.0889

Australia Original 210,511.1 214,942.2 0.0851 0.1203

Stepwise 198,039.7 203,403.4 0.0689 0.0766
Chiu 197,796.4 206,006.8 0.0706 0.0784

Tunisia Original 138,141.2 142,270.6 0.0814 0.0935

Stepwise 133,381.0 138,004.0 0.0733 0.0796

Chiu 133,287.1 140,533.2 0.0712 0.0793
Five-countries data Original 948,582.3 954,166.9 0.0643 0.0973

Stepwise 890,001.8 901,176.7 0.0380 0.0427
Chiu 914,767.5 927,584.2 0.0461 0.0668

4 Relevant results can be consulted by the following link “https:// github. com/ suppl ement- mater ial/Q- matrix- paper”.

https://github.com/supplement-material/Q-matrix-paper
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as the most appropriate one, but the estimated values of other indices support Chiu’s 
method. None of the model-fit indices supports the original expert-designed Q-matrix. 
Interestingly, none of the G-DINA yielded a value lower than the cut-off value for the 
good model fit of 0.045  (RMSEA2) and 0.05 (SRMSR). Most of them are between 0.06 
and 0.12. Nevertheless, it is important to keep in mind that these cut-off values apply for 
LCDM and IRT models, and are not yet evaluated for the G-DINA. To make the con-
clusion of methods comparison solid, the five-countries-combined data was applied as 
well. The results indicates that fitting the G-DINA based on the Q-matrix refined by the 
stepwise method can produce a better model-fit evaluation than others, and the refined 
Q-matrix is always better than the expert-designed Q-matrix. Those findings are con-
sistent with the results based on each country’s data.

Goodness of fit across countries

The mean ranking of relative and absolute model fit indices for the different Q-matri-
ces can be found in Table 4. The relative fit indices identify the Q-matrix refined by the 
stepwise method as the most suitable one across countries (mean rank = 1.17), followed 
by the Q-matrix refined by Chiu’s method. Across all selected countries, the original 
Q-matrix is the least preferred. The absolute fit indices suggest the Q-matrix refined by 
the stepwise method is the best one (mean rank = 1.25) as well, followed by the Q-matrix 
refined by Chiu’s method and the universal expert-designed Q-matrix, which is the same 
as the results of mean rank based on the relative fit indices.

Student attribute mastery

Table 5 provides an overview of student mastery per attribute, per Q-matrix, and per 
country. Percentages in this table can be interpreted as follows: according to the original 
Q-matrix, 38.46% of the Finnish students have mastered the “Whole numbers and inte-
gers” attribute. To investigate differences between Q-matrix refinement approaches, we 
compared the percentages of the best fitting Q-matrix (i.e., Q-matrix refined by the step-
wise method) according to the model-fit indices (indicated in bold in Table 5, see Good-
ness of fit) with the percentages of the original Q-matrix. We considered a difference in 
student mastery percentages of 10% or more (compared to the original percentages) as a 
remarkable difference. These percentages were indicated by an *.

First, we find the most notable differences between the best-fitting and the original 
Q-matrix for Singapore. Six attributes show differences in attribute mastery larger than 

Table 4 Mean ranking of relative and absolute model fit indices per q-matrix across countries

AIC Akaike Information Criterion, BIC Bayesian Information Criterion, RMSEA2 the limited‑information version of Root Mean 
Square Error of Approximation, SRMSR Standardized Root Mean Square Residual

Q‑matrix Mean Ranking

Relative Fit Indices
(AIC and BIC)

Absolute Fit Index 
 (RMSEA2 and 
SRMSR)

Original 2.83 3.00

Stepwise 1.17 1.25

Chiu 2.00 1.75
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10% when comparing the original with the stepwise method’s Q-matrix. Except for 
“Fractions, decimals and proportions”, “Data organisation, representation and interpre-
tation”, and “Probability”, other attributes all show significant differences in percentages 
with a range from − 22.66% (“Expressions, equations and functions”; (47.93–61.97)/61.97 
in Table  5) to + 33.46% (“Whole numbers and integers”). Second, four attributes 
show large differences in student attribute mastery between the stepwise and origi-
nal Q-matrix in the case of the USA, Australia, and Tunisia. For the USA this encom-
passes the attributes: “Fractions, decimals and proportions” (− 34.11%), “Measurement” 
(−  20.62%), “Lines, angles and shapes” (−  38.52%), and “Data organization, represen-
tation and interpretation” (+ 11.89%). For Australia, it includes the attributes: “Expres-
sions, equations and functions” (−  10.75%), “Patterns” (−  32.29%), “Measurement” 
(− 12.98%), and “Probability” (− 16.18%). The results of Tunisia data show remarkable 
differences for “Whole numbers and integers” (12.67%), “Patterns” (−  69.73%), “Lines, 
angles and shapes” (13.79%), and “Data organization, representation and interpretation” 
(+ 25.89%). Third, for Finland, large differences in student attribute mastery between the 
best-fitting (the stepwise Q-matrix) and the original Q-matrix are found for three out of 

Table 5 Percentages of attribute mastery using expert-designed and refined Q-matrices

* difference in student attribute mastery between the original and the refined Q‑matrix greater than 10%

Attribute Q‑matrix Student Mastery (%)

Finland USA Singapore Australia Tunisia

Whole numbers and integers Original 38.46 53.34 56.57 46.46 31.49

Stepwise 32.54* 51.40 75.50* 46.04 35.48*

Chiu 43.55* 49.30 65.36* 52.50* 28.13*

Fractions, decimals and proportions Original 45.64 55.90 68.78 49.01 49.53

Stepwise 27.45* 36.83* 68.43 49.95 50.23

Chiu 67.88* 70.69* 70.58 45.35 64.00*

Patterns Original 31.46 26.23 41.22 45.28 45.72

Stepwise 32.17 26.99 47.02* 30.66* 13.84*

Chiu 36.55* 22.32* 55.03* 84.91* 35.17*

Expressions, equations and functions Original 52.86 52.50 61.97 37.29 42.00

Stepwise 56.90 51.40 47.93* 33.28* 39.40

Chiu 44.39* 59.10* 58.98 40.21 42.46

Lines, angles and shapes Original 40.88 23.34 40.34 39.65 30.45

Stepwise 30.50* 14.35* 44.51* 39.60 34.65*

Chiu 33.08* 34.29* 46.82* 33.30* 36.91*

Measurement Original 43.93 42.44 59.20 42.52 25.95

Stepwise 42.34 33.69* 50.64* 37.00* 26.88

Chiu 39.67 29.23* 63.08 26.04* 32.54*

Location and movement Original 53.98 41.72 53.99 43.80 47.90

Stepwise 57.53 41.78 47.61* 45.52 43.77

Chiu 72.01* 59.59* 60.05* 53.77* 34.24*

Data organisation, representation and 
interpretation

Original 75.84 51.41 53.63 35.50 18.35

Stepwise 75.59 57.52* 52.00 36.37 23.10*

Chiu 59.87* 44.71* 69.99* 26.11* 35.48*

Probability Original 58.53 35.67 63.34 58.47 48.28

Stepwise 58.41 36.59 63.54 49.01* 45.61

Chiu 56.74 46.96* 47.67* 60.90 33.71*
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nine attributes with a range from − 39.86% (“Fractions, decimals and proportions”) to 
− 15.39% (“Whole numbers and integers”).

From Table  5 we can also derive remarkable student attribute mastery differences 
between the original and the Q-matrix of Chiu’s method across countries. Overall, we 
see a strong agreement between the original, stepwise, and Chiu Q-matrices. Yet, we 
find 21 remarkable differences between the original and the stepwise Q-matrix and 35 
noticeable differences between the original and Chiu’s Q-matrix across all countries and 
attributes. Although we find many differences between the original and the stepwise 
Q-matrix, we cannot distinguish tendencies for specific attributes. Whether the model 
based on the stepwise Q-matrix classifies more or less students as masters for a specific 
attribute depends on the country.

Overall classification of students as masters or non‑masters

Table 6 presents the range of agreement rates in the classification of students as masters 
or non-masters of nine attributes between three different kinds of Q-matrices (original, 
stepwise, and Chiu’s Q-matrix) for the five selected countries. The average percentage 
of nine attributes regarding the mastery or non-mastery agreement rate gives a general 
impression for three Q-matrices. First, we see that the original Q-matrix has high agree-
ment rates with the Q-matrices refined by the stepwise method. The agreement rates 
of mastery and non-mastery are both over 80%. In contrast, agreement rates between 
Chiu’s method and other methods are smaller (mostly between 70 and 75%). Neverthe-
less, the three different Q-matrices agree on the classification of most of the students 
as masters or non-masters with rates higher than 70%. In addition, we tried to explore 
the reason for the inference consequences. The reason could be the overall Q-matrix 
misfit or the across-countries differences. The Q-matrix refined based on the five-coun-
tries data was included in the comparison to clarify this interesting question. The results 
in Appendix 4 indicate that both could contribute to the inference consequences. Cur-
rently, there is no clear pattern.

Estimated item parameters

Figure  2 shows five scatter plots (corresponding to the five countries) that represent 
the item parameter estimates of the G-DINA, specifically the intercept estimate (= ̂δj0 ) 
where the original Q-matrix (x-axis) and the two refined Q-matrices (y-axis) are used. 
Recall that the intercept parameter refers to the probability of correctly solving the item 
j without mastering any required attribute(s) (i.e., the baseline effect). For each plot, the 
estimates (= dots) that involve the stepwise and Chiu’s methods are colored in blue and 
red, respectively. The dots that fall on the straight line in the plot suggest that the esti-
mates between the original and the refined ones are an exact match. The results show that 
the intercept estimates using the stepwise method are more similar to estimates of the 
original Q-matrix than Chiu’s method, especially for Finland, Singapore, Australia, and 
Tunisia. The estimates using Chiu’s method (in red) are in general (but more noticeably 
for Singapore, USA, and Australia) lower than the estimates using the original one and, 
therefore, appear to deviate remarkably around the bottom right corner. Interestingly, our 
findings in this figure align with the previous classification results (Table  6) where the 
agreement rates between the original Q-matrix and the stepwise Q-matrix is larger.
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Discussion
In this study, we examined the impact of a misspecified expert-designed Q-matrix for 
CDA with the application of international large-scale data (TIMSS 2011 8th grade 
mathematics). Specifically, our study paid particular attention to the recognition of 
different Q-matrices for an assessment that was refined by differentiated data struc-
tures by countries. First, the performance of the G-DINA using refined Q-matrices as 
compared to the expert-design Q-matrix was examined with regard to model fit cri-
teria. Our investigation of the TIMSS data made clear that the original Q-matrix that 
was designed by experts without regard to countries failed to produce an equally good 
model fit as the two refined Q-matrices: the stepwise validation method (Ma & de la 
Torre, 2020a, b) or Chiu’s nonparametric classification method (Chiu, 2013). This find-
ing, to some extent, naturally justifies the use of the country-specific Q-matrix that 
was refined by each country separately. While there are equally pros and cons (as men-
tioned in "Q-matrix refinement methods" section) of the two refinement methods that 
researchers and practitioners must consider, we found from the TIMSS data that the 
stepwise method suggested a better model fit than Chiu’s method across the countries. 
The refined Q-matrices by the stepwise method for the five selected countries are pro-
vided in Appendix 5. Next, we found that using the G-DINA with the stepwise Q-matrix 
was noticeably different from the expert-designed Q-matrix in terms of probabilities of 

Fig. 1 Example item of the TIMSS 2011 8th grade mathematics test (Mullis et al., 2012)
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attribute mastery, classification accuracy, and item parameter estimation. Furthermore, 
the impact of using the refined Q-matrices varied across countries.

Several of our findings merit further discussion. First, researchers and practition-
ers need to consider the advantages and disadvantages of using country-specific 
Q-matrices. One possible advantage of using it is that the expert-designed (or origi-
nal) Q-matrix is refined specifically by each country separately. Therefore, any differ-
ence in the refined outcomes (i.e., number of attributes required for the item) among 
countries for an assessment could suggest the country’s unique instructional contents. 
On the other hand, one disadvantage of using the country-specific Q-matrix for CDA 
for international comparison studies is that it may be unfair (or biased) to directly 
compare student attribute mastery across countries because the Q-matrix applied 
in the fitted model was different from country to country after the country-specific 
refinement, which produced unfair conditions for the across-countries comparison. 
Another possible disadvantage is that regarding retrofitting CDMs and refining  the 
Q-matrix, the design of large-scale assessments may not satisfy the completeness 
of the  Q-matrix or identifiability conditions, which are required for identifying 

Note. Red = intercept parameters based on Chiu Q-matrix; Blue = intercept parameters based 

on Stepwise Q-matrix.
Fig. 2 Intercept Parameters per item for the four G-DINA models per Country
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proficiency classes and estimating model parameters (Köhn & Chiu, 2016). Overall, 
we believe that consideration of the population heterogeneity for Q-matrix refine-
ment is a relatively new and unexplored topic in the area; further research is needed 
for the appropriate use of the refined Q-matrix in real-life assessments.

Notwithstanding the unique insights offered by the current study, there remain some 
limitations to be considered. First, the two Q-matrix refinement approaches are still con-
tingent on the original Q-matrix designed by experts with respect to the q-entries replace-
ments. Therefore, altering the number of attributes specified in the Q-matrix is beyond the 
scope of the current study. Furthermore, it is important to notice that when the q-entries 
in the Q-matrix change, the definition, and interpretation of the attributes may change to 
some degree. In this way, the best fitting Q-matrix may not necessarily be interpretable 
or have practical value (Bradshaw et al., 2014; de la Torre, 2008). Moreover, no consen-
sus exists in the current CDA and G-DINA literature regarding the amount and content 
of specified attributes in the TIMSS mathematics Q-matrix. Researchers specify different 
Q-matrices for the same test and compare countries according to the predefined attrib-
utes (e.g., Im & Park, 2010; Park et al., 2017; Sedat & Arican, 2015). Therefore, a universal 
attribute design of the Q-matrix remains a critical issue within the current CDA literature 
(Groß et al., 2016).

Second, the original Q-matrix used in this study was established after the test items in 
TIMSS were calibrated by a unidimensional IRT. Retrofitting CDMs to the data may result 
in an unbalanced Q-matrix where some attributes are measured significantly more than 
others (Sedat & Arican, 2015). In this study, this was most pronounced for the ‘probabil-
ity’ attribute that was only measured by five items in the original Q-matrix. This imbal-
ance can distort the attribute classification of students because a small number of items 
per attribute can generate a situation in which responses to one or a couple of items deter-
mines the student’s mastery of that attribute (Jurich & Bradshaw, 2014). Therefore, if we 
want to increase the validity and reliability of student attribute mastery patterns estimated 
by CDMs, we recommend defining a relevant set of attributes first and then writing items 
that tap these attributes instead of the other way around (Birenbaum et al., 2005; Bradshaw 
et al., 2014).

Third, this study is explorative in nature, and some approaches to investigating differ-
ences between Q-matrices are very crude. For example, no reliability estimates of student 
attribute mastery estimates (e.g., Sessoms & Henson, 2018) are provided, nor did we per-
form any significance tests to investigate differences in student attribute mastery between 
different Q-matrices. In addition, we do not include relevant domain experts from a spe-
cific country to examine whether the refined country-specific Q-matrices recommended 
by the stepwise method and Chiu’s method are meaningful or better than the original 
universal Q-matrix. We want to stress that the data-driven results are sample-dependent 
and generalization to other countries or time points may not be warranted. Moreover, they 
should be used on sufficiently large datasets, but it is not clear yet when a sample size can 
be considered sufficiently large. Therefore, we recommend the data-driven results to be 
double-checked in tandem with domain experts, or be used as ancillary information when 
the Q-matrix is discussed somehow. Relying on the data-driven results solely and blindly is 
certainly not recommended.
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Conclusions
This study provided useful insights concerning differences between Q-matrix refine-
ment techniques, the country-specificity of Q-matrices, and the consequences for prac-
tice. Findings from this study could help optimize the Q-matrix so CDMs (e.g., G-DINA) 
can be more widely used to extract diagnostic attribute-level information out of inter-
national comparative tests. Together with the expertise of domain experts, teachers and 
policymakers could use this fine-grained information to tailor their instruction to stu-
dents’ specific weaknesses and link this diagnostic information to the existing curricula 
and instructional practices of their particular country. In this way, CDMs are a crucial 
diagnostic information source that could help improve education systems all over the 
world.    

Appendix 1: Flowcharts of the Stepwise Method and Chiu’s Method
See Figs. 3, 4.

Note. This flowchart was reprinted from “An empirical Q-matrix validation method for the sequential generalized DINA 

model.” by Ma, W., and De la Torre, J., 2020, British Journal of Mathematical and Statistical Psychology, 73(1), 142–163.

Fig. 3 Flowchart of the Stepwise Method. This flowchart was reprinted from Ma and Torre (2020b)
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Note. This flowchart was created based on the explanations of “Statistical refinement of the Q-matrix in cognitive diagnosis.”  

by Chiu, C. Y., 2013,  Applied Psychological Measurement, 37(8), 598-618. 

Fig. 4 Flowchart of Chiu’s method. This flowchart was created based on the explanations of Chiu (2013)
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Appendix 2: Attributes of the Original Q‑matrix
See Table 7.

Table 7 Attributes, their explanation and frequency in the expert-designed q-matrix

Attributes and frequency adopted from Johnson et al. (2013)

Content Domain Attribute Explanation Frequency

Number Whole numbers and Integers (1) Items that asses students’ under-
standing of place value, meaning of 
operations, multiples/factors, primes, 
properties, powers and square roots of 
perfect squares

25

Fractions, decimals and proportions (2) Items that asses students’ abilities to 
compare and order decimals and frac-
tions; recognize and compute decimal 
place value; recognize of compute 
equivalence; convert between frac-
tions, percents, and decimals; and 
compute with fractions, decimals, 
or percents. Also includes items that 
require students to either reason 
about or use ratios or proportions. This 
includes items requiring the formation 
of ratios; recognizing or determining 
equivalent ratios; dividing a quantity 
in a given ratio; and recognizing and 
determining proportional relation-
ships

19

Algebra Patterns (3) Items that require students to extend 
numeric, algebraic, or geometric pat-
terns or sequences; find missing terms; 
generalize pattern relationships in a 
sequence or between adjacent terms 
or between the sequence number of 
the term

12

Expressions, equations and functions 
(4)

Items that ask students to reason 
about, solve, or simplify equations of 
various kinds

21

Geometry Lines, angles and shapes (5) Items that require students to under-
stand or apply their understanding of 
basic geometry in one, two, or three 
dimensions

10

Measurement (6) Items that require students to actually 
measure or calculate measure such as 
area of perimeter

8

Location and movement (7) Items related to graphing as well as 
those that require students to visual-
ize and rotate objects, nets or other 
representations in space

9

Data and chance Data organisation, representation and 
interpretation (8)

Items related to creating, interpreting 
and predicting form data

21

Probability (9) Items that reason about simple 
probability situations like judging 
the chance of an outcome as certain, 
more likely, equally likely, less likely, or 
impossible; use data from experiments 
or given probabilities to calculate 
chances or predict future outcomes; 
and determine chance of particular 
outcomes

5
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Appendix 3: Q‑matrix for 89 selected items of TIMSS 2011
See Table 8.

Table 8 Q-matrix designed by experts for 89 Items of TIMSS 2011 8th grade mathematics test

Block Item Attribute

1 2 3 4 5 6 7 8 9

M01 1 1 0 0 0 0 0 0 0 0

M01 2 0 0 1 0 0 0 0 1 0

M01 3 1 0 1 0 0 0 0 1 0

M01 4a 1 0 1 0 0 0 0 1 0

M01 4b 1 0 1 0 0 0 0 1 0

M01 4c 1 0 1 0 0 0 0 1 0

M01 5 0 0 1 1 0 0 0 0 0

M01 6 0 0 0 0 1 0 0 0 0

M01 7 1 0 0 0 0 0 0 0 0

M01 8 0 1 0 0 0 0 0 1 0

M01 9 0 0 0 1 0 0 0 0 0

M02 1 0 1 0 0 0 0 0 0 0

M02 2 0 1 0 0 0 0 0 0 0

M02 3 1 0 0 0 0 0 0 0 0

M02 4 0 1 0 0 0 0 0 0 0

M02 5 0 1 0 0 0 0 0 0 0

M02 6 0 0 0 1 0 1 0 0 0

M02 7 1 0 0 1 0 0 0 0 0

M02 8 1 0 0 1 0 0 0 0 0

M02 9 0 0 0 0 0 1 0 0 0

M02 10 0 0 0 0 1 0 0 0 0

M02 11 1 0 0 0 0 1 0 0 0

M02 12 0 0 0 0 0 1 1 0 0

M02 13 0 0 0 0 0 0 0 0 1

M02 14a 0 0 0 0 0 0 0 1 0

M02 14b 0 0 0 0 0 0 0 1 0

M03 1 0 1 0 0 0 0 0 0 0

M03 2 0 1 0 0 0 0 0 0 0

M03 3 1 0 1 0 0 0 0 0 0

M03 4 0 1 0 0 0 0 0 0 0

M03 5 0 0 0 1 0 0 0 0 0

M03 6 1 0 0 1 0 0 0 0 0

M03 7 1 0 0 1 0 0 0 0 0

M03 8 1 0 0 1 0 0 0 0 0

M03 9 1 0 1 0 0 0 0 0 0

M03 10 1 0 0 1 0 0 0 0 0

M03 11 0 0 0 0 1 0 0 0 0

M03 12 1 0 0 0 0 1 0 0 0

M03 13 0 0 0 0 0 0 1 0 0

M03 14 0 0 0 0 0 0 0 1 0

M03 15 0 0 0 0 0 0 0 0 1

M03 16 0 1 0 0 0 0 0 0 0

M03 17 0 1 0 0 0 0 0 1 0

M05 1 0 1 0 0 0 0 0 0 0

M05 2 0 1 0 0 0 0 0 0 0
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Table 8 (continued)

Block Item Attribute

1 2 3 4 5 6 7 8 9

M05 3 0 1 0 0 0 0 0 0 0

M05 4 0 0 0 1 0 0 0 0 0

M05 5 0 0 0 1 0 0 0 0 0

M05 6 1 0 0 1 0 0 0 0 0

M05 7 0 1 0 0 1 0 0 0 0

M05 8 1 0 0 0 0 1 0 0 0

M05 9 0 0 0 0 0 0 1 0 0

M05 10 0 0 0 0 1 0 0 0 0

M05 11 0 0 0 0 0 0 1 0 0

M05 12 0 0 0 0 0 0 1 0 0

M05 13 0 1 0 0 0 0 0 1 0

M05 14 0 0 0 0 0 0 0 0 1

M06 1 0 1 0 0 0 0 0 0 0

M06 2 0 1 0 0 0 0 0 0 0

M06 3 1 0 0 0 0 0 0 1 0

M06 4 1 0 0 0 0 0 0 0 0

M06 5a 0 0 1 0 0 0 0 0 0

M06 5b 0 0 1 0 0 0 0 0 0

M06 5c 0 0 1 0 0 0 0 0 0

M06 6 1 0 0 1 0 0 0 0 0

M06 7 0 0 0 1 0 0 0 0 0

M06 8 0 0 0 1 0 1 0 0 0

M06 9 0 0 0 0 1 0 0 0 0

M06 10A 0 0 0 0 0 0 1 1 0

M06 10B 0 0 0 0 1 0 1 1 0

M06 11 0 0 0 0 0 0 0 0 1

M06 12a 0 0 0 0 0 0 0 1 0

M06 12b 0 0 0 0 0 0 0 1 0

M06 12c 0 0 0 0 0 0 0 1 0

M07 1 1 0 1 0 0 0 0 1 0

M07 2 0 1 0 0 0 0 0 0 0

M07 3 0 1 0 1 0 0 0 0 0

M07 4 0 0 0 1 0 0 0 0 0

M07 5 0 0 0 1 0 0 0 0 0

M07 6 0 0 0 0 1 0 1 0 0

M07 7 1 0 0 0 0 1 0 0 0

M07 8 0 0 0 0 1 0 1 0 0

M07 9 1 0 0 1 0 0 0 0 0

M07 10 0 0 0 0 1 0 0 0 0

M07 11 0 0 0 0 0 0 0 0 1

M07 12 0 0 0 1 0 0 0 0 0

M07 13a 0 0 0 0 0 0 0 1 0

M07 13b 0 0 0 0 0 0 0 1 0

M07 13c 0 0 0 0 0 0 0 1 0

Adopted from Park et al. (2017)
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Appendix 5: Refined Q‑matrix for five selected countries based on the stepwise 
method
See Tables 10, 11, 12, 13, 14.

Table 10 Q-matrix refined by the stepwise method: Finland

Block Item Attribute

1 2 3 4 5 6 7 8 9

M01 1 1 0 0 0 0 0 0 0 0

M01 2 0 0 0 0 0 0 0 1 0

M01 3 1 0 1 0 0 0 0 1 0

M01 4a 0 0 1 0 0 0 0 0 0

M01 4b 1 0 1 0 0 0 0 0 0

M01 4c 0 0 1 0 1 0 0 0 0

M01 5 0 0 1 1 0 0 0 0 0

M01 6 0 0 0 0 1 0 0 0 0

M01 7 1 0 0 0 0 0 0 0 0

M01 8 0 1 0 0 0 0 0 1 0

M01 9 0 0 0 1 0 0 0 0 0

M02 1 0 1 0 0 0 0 0 0 0

M02 2 0 1 0 0 0 0 0 0 0

M02 3 1 1 0 0 0 0 0 0 0

M02 4 0 1 0 0 0 0 0 0 0

M02 5 0 1 0 0 0 0 0 0 0

M02 6 1 0 0 0 0 0 0 0 0

M02 7 1 0 0 1 0 0 0 0 0

M02 8 1 0 0 1 0 0 0 0 0

M02 9 0 0 0 0 0 1 0 0 0

M02 10 0 0 0 0 1 0 0 0 0

M02 11 1 0 0 0 0 1 0 0 0

M02 12 0 0 0 0 0 1 1 0 0

M02 13 0 0 0 0 0 0 0 0 1

M02 14a 0 0 0 0 0 0 0 1 0

M02 14b 0 0 0 0 0 0 0 1 0

M03 1 0 1 0 0 0 0 0 0 0

M03 2 0 1 0 0 0 0 0 0 0

M03 3 0 0 1 0 0 0 0 0 0

M03 4 0 1 0 0 0 0 0 0 0

M03 5 0 0 0 1 0 0 0 0 0

M03 6 1 0 0 1 0 0 0 0 0

M03 7 1 0 0 0 0 0 0 0 0

M03 8 1 0 0 1 0 0 0 0 0

M03 9 1 0 1 0 0 0 0 0 0

M03 10 1 0 0 1 0 0 0 0 0

M03 11 0 0 0 0 1 0 0 0 0

M03 12 1 0 0 0 0 0 0 0 0

M03 13 0 0 0 0 0 0 1 0 0

M03 14 0 0 0 0 0 0 0 1 0

M03 15 0 0 0 0 0 0 0 0 1

M03 16 0 1 0 0 0 0 0 0 0
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Table 10 (continued)

Block Item Attribute

1 2 3 4 5 6 7 8 9

M03 17 0 1 0 0 0 0 0 1 0

M05 1 0 1 0 0 0 0 0 0 0

M05 2 0 1 0 0 0 0 0 0 0

M05 3 0 1 0 0 0 0 0 0 0

M05 4 0 0 0 1 0 0 0 0 0

M05 5 0 0 0 1 0 0 0 0 0

M05 6 1 0 0 1 0 0 0 0 0

M05 7 0 1 0 0 1 0 0 0 0

M05 8 1 0 0 0 0 1 0 0 0

M05 9 0 0 0 0 0 0 1 0 0

M05 10 0 0 0 0 1 0 0 0 0

M05 11 0 0 0 0 0 0 1 0 0

M05 12 0 0 0 0 0 0 1 0 0

M05 13 0 0 0 0 0 0 0 1 0

M05 14 0 0 0 0 0 0 0 0 1

M06 1 0 1 0 0 0 0 0 0 0

M06 2 0 1 0 0 0 0 0 0 0

M06 3 1 0 0 0 0 0 0 1 0

M06 4 1 0 0 0 0 0 0 0 0

M06 5a 0 0 1 1 0 0 0 0 0

M06 5b 0 0 1 0 0 0 0 0 0

M06 5c 0 0 1 0 0 0 0 0 0

M06 6 0 0 0 1 0 0 0 0 0

M06 7 0 0 0 1 0 0 0 0 0

M06 8 0 0 0 1 0 1 0 0 0

M06 9 0 0 0 0 1 0 0 0 0

M06 10A 0 0 0 0 0 0 1 1 0

M06 10B 0 0 0 0 0 0 1 1 0

M06 11 0 0 0 0 0 0 0 0 1

M06 12a 0 0 0 0 0 0 0 1 0

M06 12b 0 0 0 0 0 0 0 1 0

M06 12c 0 0 0 0 0 0 0 1 0

M07 1 1 0 1 0 0 0 0 1 0

M07 2 0 1 0 0 0 0 0 0 0

M07 3 0 1 0 0 0 0 0 0 0

M07 4 0 0 0 1 0 0 0 0 0

M07 5 0 0 0 1 0 0 0 0 0

M07 6 0 0 0 0 1 0 1 0 0

M07 7 0 0 0 0 0 1 0 0 0

M07 8 0 0 0 0 1 0 1 0 0

M07 9 1 0 0 0 0 0 0 0 0

M07 10 0 0 0 0 1 0 0 0 0

M07 11 0 0 0 0 0 0 0 0 1

M07 12 0 0 0 1 0 0 0 0 0

M07 13a 0 0 0 0 0 0 0 1 0

M07 13b 0 0 0 0 0 0 0 1 0

M07 13c 0 0 0 0 0 0 0 1 0
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Table 11 Q-matrix Refined by the Stepwise Method: United States

Block Item Attribute

1 2 3 4 5 6 7 8 9

M01 1 1 0 0 0 0 0 0 0 0

M01 2 0 0 1 0 0 0 0 0 0

M01 3 1 0 1 0 0 0 0 1 0

M01 4a 0 0 1 0 0 0 0 1 0

M01 4b 1 0 1 0 0 0 0 1 0

M01 4c 0 0 1 0 0 0 0 0 0

M01 5 0 0 1 1 0 0 0 0 0

M01 6 0 0 0 0 1 0 0 0 0

M01 7 1 0 0 0 0 0 0 0 0

M01 8 0 1 0 0 0 0 0 0 0

M01 9 0 0 0 1 0 0 0 0 0

M02 1 0 1 0 0 0 0 0 0 0

M02 2 0 1 0 0 0 0 0 0 0

M02 3 1 0 0 0 0 0 0 0 0

M02 4 0 1 1 0 0 0 0 0 0

M02 5 0 1 0 0 0 0 0 0 0

M02 6 0 0 0 1 0 1 0 0 0

M02 7 1 0 0 1 0 0 0 0 0

M02 8 0 0 1 0 1 0 0 0 0

M02 9 0 0 0 0 0 1 0 0 0

M02 10 0 0 0 0 1 0 0 0 0

M02 11 1 0 0 0 0 1 0 0 0

M02 12 0 0 0 0 0 1 1 0 0

M02 13 0 0 0 0 0 0 0 0 1

M02 14a 0 0 0 0 0 0 0 1 0

M02 14b 0 0 0 0 0 0 0 1 0

M03 1 0 1 0 0 0 0 0 0 0

M03 2 0 1 0 0 0 0 0 0 0

M03 3 1 0 1 0 0 0 0 0 0

M03 4 0 1 0 0 0 0 0 0 0

M03 5 0 0 0 1 0 0 0 0 0

M03 6 1 0 0 1 0 0 0 0 0

M03 7 1 0 0 1 0 0 0 0 0

M03 8 1 0 0 1 0 0 0 0 0

M03 9 1 0 1 0 0 0 0 0 0

M03 10 1 0 0 1 0 0 0 0 0

M03 11 0 0 0 0 1 0 0 0 0

M03 12 1 0 0 0 0 1 0 0 0

M03 13 0 0 0 0 0 0 1 0 0

M03 14 0 0 0 0 0 0 0 1 0

M03 15 0 0 0 0 0 0 0 0 1

M03 16 0 1 0 0 0 0 0 0 0

M03 17 0 1 0 0 0 0 0 1 0

M05 1 0 1 0 0 0 0 0 0 0

M05 2 0 1 0 0 0 0 0 0 0

M05 3 0 1 0 0 0 0 0 0 0

M05 4 0 0 0 1 0 0 0 0 0

M05 5 0 0 0 1 0 0 0 0 0



Page 27 of 36Delafontaine et al. Large-scale Assessments in Education           (2022) 10:19  

Table 11 (continued)

Block Item Attribute

1 2 3 4 5 6 7 8 9

M05 6 1 0 0 1 0 0 0 0 0

M05 7 0 1 0 0 1 0 0 0 0

M05 8 0 0 0 0 0 1 0 0 0

M05 9 0 1 0 0 0 0 1 0 0

M05 10 0 0 0 0 1 0 0 0 0

M05 11 0 1 0 0 0 0 1 0 0

M05 12 0 1 0 0 0 0 1 0 0

M05 13 0 1 0 0 0 0 0 0 0

M05 14 0 0 0 0 0 0 0 0 1

M06 1 0 1 0 0 0 0 0 0 0

M06 2 0 1 0 0 0 0 0 1 0

M06 3 1 0 0 0 0 0 0 0 0

M06 4 1 0 0 0 0 0 0 0 0

M06 5a 0 0 1 0 0 0 0 1 0

M06 5b 0 0 1 0 0 0 0 0 0

M06 5c 0 0 1 0 0 1 0 0 0

M06 6 1 0 0 1 0 0 0 0 0

M06 7 0 0 0 1 0 0 0 1 0

M06 8 0 0 0 1 0 1 0 0 0

M06 9 0 0 0 0 1 0 0 0 0

M06 10A 0 0 0 0 0 0 1 0 0

M06 10B 0 0 0 0 0 0 1 0 0

M06 11 0 0 0 0 0 0 0 0 1

M06 12a 0 0 0 0 0 0 0 1 0

M06 12b 0 0 0 0 0 0 0 1 0

M06 12c 0 0 0 0 0 0 0 1 0

M07 1 1 0 1 0 0 0 0 1 0

M07 2 0 1 0 0 0 0 0 0 0

M07 3 0 1 0 1 0 0 0 0 0

M07 4 0 0 0 1 0 0 0 0 0

M07 5 0 0 0 1 0 0 0 1 0

M07 6 0 0 0 0 1 0 1 0 0

M07 7 0 0 0 0 0 1 0 0 0

M07 8 0 0 0 0 1 0 0 0 0

M07 9 0 0 0 1 0 1 0 0 0

M07 10 0 0 0 0 1 0 0 0 0

M07 11 0 0 0 0 0 0 0 0 1

M07 12 0 0 0 1 0 0 0 0 0

M07 13a 0 0 0 0 0 0 0 1 0

M07 13b 0 0 0 0 0 0 0 1 0

M07 13c 0 1 0 0 0 0 0 1 0



Page 28 of 36Delafontaine et al. Large-scale Assessments in Education           (2022) 10:19 

Table 12 Q-matrix refined by the stepwise method: Singapore

Block Item Attribute

1 2 3 4 5 6 7 8 9

M01 1 0 1 0 0 0 0 0 0 0

M01 2 0 0 0 0 0 0 0 1 0

M01 3 1 0 1 0 0 0 0 1 0

M01 4a 1 0 1 0 0 0 0 1 0

M01 4b 1 0 1 0 0 0 0 1 0

M01 4c 1 0 1 0 0 0 0 1 0

M01 5 0 0 1 1 0 0 0 0 0

M01 6 0 0 0 0 1 0 0 0 0

M01 7 1 0 0 0 0 0 0 0 0

M01 8 0 1 0 0 0 0 0 1 0

M01 9 0 0 0 1 0 0 0 0 0

M02 1 0 1 0 0 0 0 0 0 0

M02 2 0 1 0 0 0 0 0 0 0

M02 3 1 0 1 0 0 0 0 0 0

M02 4 0 1 0 0 0 0 0 0 0

M02 5 0 1 0 0 0 0 0 0 0

M02 6 0 0 0 1 0 1 0 0 0

M02 7 1 0 0 1 0 0 0 0 0

M02 8 1 0 0 1 0 0 0 0 0

M02 9 0 0 0 0 0 1 0 0 0

M02 10 0 0 0 0 1 0 0 0 0

M02 11 1 0 0 0 0 1 0 0 0

M02 12 0 0 0 0 0 1 1 0 0

M02 13 0 0 0 0 0 0 0 0 1

M02 14a 0 0 0 0 0 0 0 1 0

M02 14b 0 0 0 0 0 0 0 1 0

M03 1 0 1 0 0 0 0 0 0 0

M03 2 0 1 0 0 0 0 0 0 0

M03 3 1 0 1 0 0 0 0 0 0

M03 4 0 1 0 0 0 0 0 0 0

M03 5 1 0 0 1 0 0 0 0 0

M03 6 1 0 0 1 0 0 0 0 0

M03 7 1 0 0 1 0 0 0 0 0

M03 8 1 0 0 1 0 0 0 0 0

M03 9 1 0 1 0 0 0 0 0 0

M03 10 1 0 0 1 0 0 0 0 0

M03 11 0 0 0 0 1 0 0 0 0

M03 12 1 0 0 0 0 1 0 0 0

M03 13 0 0 0 0 0 0 1 0 0

M03 14 0 0 0 0 0 0 0 1 0

M03 15 0 0 0 0 0 0 0 0 1

M03 16 0 1 0 0 0 0 0 0 0

M03 17 0 1 0 0 0 0 0 1 0

M05 1 0 1 0 0 0 0 0 0 0

M05 2 0 1 0 0 1 0 0 0 0

M05 3 0 1 0 0 0 0 0 0 0

M05 4 0 0 0 1 0 0 0 0 0

M05 5 0 0 0 1 0 0 0 0 0
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Table 12 (continued)

Block Item Attribute

1 2 3 4 5 6 7 8 9

M05 6 1 1 0 1 0 0 0 0 0

M05 7 0 1 0 0 1 0 0 0 0

M05 8 0 0 0 0 0 1 0 0 0

M05 9 0 0 0 0 0 0 1 0 0

M05 10 0 0 0 0 1 0 0 0 0

M05 11 0 0 0 0 0 0 1 0 0

M05 12 0 0 0 0 0 0 1 0 0

M05 13 0 1 0 0 0 0 0 0 0

M05 14 0 0 0 0 0 0 0 0 1

M06 1 0 1 0 0 0 0 0 0 0

M06 2 0 1 0 0 0 0 0 0 0

M06 3 0 0 0 0 1 0 0 1 0

M06 4 1 0 0 0 0 0 0 0 0

M06 5a 0 0 1 0 0 0 1 0 0

M06 5b 0 0 1 0 0 0 0 0 0

M06 5c 0 0 1 0 0 0 0 0 0

M06 6 1 1 0 1 0 0 0 0 0

M06 7 1 0 0 1 0 0 0 0 0

M06 8 0 0 0 1 0 1 0 0 0

M06 9 0 0 0 0 1 0 0 0 0

M06 10A 0 0 0 0 0 0 1 0 0

M06 10B 0 0 0 0 0 0 1 0 0

M06 11 0 0 0 0 0 0 0 0 1

M06 12a 0 0 0 0 0 0 0 1 0

M06 12b 0 0 0 0 0 0 0 1 0

M06 12c 0 0 0 0 0 0 0 1 0

M07 1 1 1 0 0 0 0 0 0 0

M07 2 0 1 0 0 0 0 0 0 0

M07 3 0 1 0 1 0 0 0 0 0

M07 4 0 0 0 1 0 0 0 0 0

M07 5 0 0 0 1 0 0 0 0 0

M07 6 0 0 0 0 1 0 1 0 0

M07 7 1 0 0 0 0 1 0 0 0

M07 8 0 0 0 0 1 0 1 0 0

M07 9 1 0 0 1 0 0 0 0 0

M07 10 0 0 0 0 1 0 0 0 0

M07 11 0 0 0 0 0 0 0 0 1

M07 12 0 0 0 1 0 0 0 0 0

M07 13a 0 0 0 0 0 0 0 1 0

M07 13b 0 0 0 0 0 0 0 1 0

M07 13c 0 0 0 0 0 0 0 1 0
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Table 13 Q-matrix refined by the stepwise method: Australia

Block Item Attribute

1 2 3 4 5 6 7 8 9

M01 1 1 0 0 0 0 0 0 0 0

M01 2 0 0 1 0 0 0 0 0 0

M01 3 1 0 1 0 0 0 0 0 0

M01 4a 1 0 1 0 0 0 0 0 0

M01 4b 1 0 1 0 0 0 0 1 0

M01 4c 1 0 1 0 0 0 0 0 0

M01 5 0 0 1 1 0 0 0 0 0

M01 6 0 0 0 0 1 0 0 0 0

M01 7 1 0 0 0 0 0 0 0 0

M01 8 0 1 0 0 0 0 0 1 0

M01 9 0 0 0 1 0 0 0 0 0

M02 1 0 1 0 0 0 0 0 0 0

M02 2 0 1 0 0 0 0 0 0 0

M02 3 1 0 0 0 0 0 0 0 0

M02 4 0 1 0 0 0 1 0 0 0

M02 5 0 1 0 0 0 0 0 0 0

M02 6 0 0 0 1 0 1 0 0 0

M02 7 1 0 0 1 0 0 0 0 0

M02 8 1 0 0 1 0 0 0 0 0

M02 9 0 0 0 0 0 1 0 0 0

M02 10 0 0 0 0 1 0 0 0 0

M02 11 1 0 0 0 0 1 0 0 0

M02 12 0 0 0 0 0 1 1 0 0

M02 13 0 0 0 0 0 0 0 0 1

M02 14a 0 0 0 0 0 0 0 1 0

M02 14b 0 0 0 0 0 0 0 1 0

M03 1 0 1 0 0 0 0 0 0 0

M03 2 0 1 0 0 0 0 0 0 0

M03 3 1 0 1 0 0 0 0 0 0

M03 4 0 1 0 0 0 0 0 0 0

M03 5 0 0 0 1 0 0 0 0 0

M03 6 1 0 0 1 0 0 0 0 0

M03 7 1 0 0 1 0 0 0 0 0

M03 8 1 0 0 1 0 0 0 0 0

M03 9 0 0 1 0 0 0 0 0 0

M03 10 1 0 0 1 0 0 0 0 0

M03 11 0 0 0 0 1 0 0 0 0

M03 12 1 0 0 0 0 1 0 0 0

M03 13 0 0 0 0 0 0 1 0 0

M03 14 0 0 0 0 0 0 0 1 0

M03 15 0 0 0 0 0 0 0 0 1

M03 16 0 1 0 0 0 0 0 0 0

M03 17 0 1 0 0 0 0 0 1 0

M05 1 0 1 0 0 0 0 0 0 0

M05 2 0 1 0 1 0 0 0 0 0

M05 3 0 1 0 0 0 0 0 0 0

M05 4 0 0 0 1 0 0 0 0 0

M05 5 0 0 0 1 0 0 0 0 0
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Table 13 (continued)

Block Item Attribute

1 2 3 4 5 6 7 8 9

M05 6 1 0 0 1 0 0 0 0 0

M05 7 0 1 0 0 1 0 0 0 0

M05 8 1 0 0 0 0 1 0 0 0

M05 9 0 0 0 0 0 0 1 0 0

M05 10 0 0 0 0 1 0 0 0 0

M05 11 0 0 0 0 0 0 1 0 0

M05 12 0 0 0 1 0 0 1 0 0

M05 13 0 1 0 0 0 0 0 0 0

M05 14 0 0 0 0 0 0 0 0 1

M06 1 0 1 0 0 0 0 1 0 0

M06 2 0 1 0 0 0 0 0 0 1

M06 3 1 0 0 0 0 0 0 1 0

M06 4 1 0 0 0 0 0 0 0 0

M06 5a 0 0 1 0 0 0 1 0 0

M06 5b 0 0 1 0 0 0 0 0 0

M06 5c 1 0 1 1 0 0 0 0 0

M06 6 1 0 0 1 0 0 0 0 0

M06 7 0 1 0 1 0 0 0 0 0

M06 8 0 0 0 0 0 1 0 0 0

M06 9 0 0 0 0 1 0 0 0 0

M06 10A 0 0 0 0 0 0 1 0 0

M06 10B 0 0 0 0 0 0 1 0 0

M06 11 0 0 0 0 0 0 0 0 1

M06 12a 0 0 0 0 0 0 0 1 0

M06 12b 0 0 0 0 0 0 0 1 0

M06 12c 0 0 0 0 0 0 1 1 0

M07 1 1 0 1 0 0 0 0 1 0

M07 2 0 1 0 1 0 0 0 0 0

M07 3 0 1 0 1 0 0 0 0 0

M07 4 0 0 0 1 0 0 0 0 0

M07 5 0 0 0 1 0 0 0 0 0

M07 6 0 0 0 0 1 0 1 0 0

M07 7 0 0 0 0 0 1 0 0 0

M07 8 0 0 0 0 1 0 1 0 0

M07 9 1 0 0 1 0 0 0 0 0

M07 10 0 0 0 0 1 0 0 0 0

M07 11 0 0 0 0 0 0 0 0 1

M07 12 0 0 0 1 0 0 0 0 0

M07 13a 0 0 0 0 0 0 0 1 0

M07 13b 0 0 0 0 0 0 0 1 0

M07 13c 0 0 0 0 0 0 0 1 0
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Table 14 Q-matrix refined by the stepwise method: Tunisia

Block Item Attribute

1 2 3 4 5 6 7 8 9

M01 1 1 0 0 0 0 0 0 0 0

M01 2 0 0 1 0 0 0 0 0 0

M01 3 1 0 1 0 0 0 0 0 0

M01 4a 0 0 1 0 0 0 0 0 0

M01 4b 0 0 1 0 0 0 0 0 0

M01 4c 0 0 1 1 0 0 0 0 0

M01 5 0 0 1 0 0 0 0 0 0

M01 6 0 0 0 0 1 0 0 0 0

M01 7 1 0 0 0 0 0 0 0 0

M01 8 0 1 0 0 0 0 0 1 0

M01 9 0 0 0 1 0 0 0 0 0

M02 1 0 1 0 0 0 0 0 0 0

M02 2 0 1 0 0 0 0 0 0 0

M02 3 1 0 0 0 0 0 0 0 0

M02 4 0 1 0 0 0 0 0 0 0

M02 5 0 1 0 0 0 0 0 0 0

M02 6 0 0 0 0 0 1 0 0 0

M02 7 1 0 0 1 0 0 0 0 0

M02 8 1 0 0 0 0 0 0 0 0

M02 9 0 0 0 0 0 1 0 0 0

M02 10 0 0 0 0 1 0 0 0 0

M02 11 1 0 0 0 0 1 0 0 0

M02 12 0 0 0 0 0 1 1 0 0

M02 13 0 0 0 0 0 0 0 0 1

M02 14a 0 0 0 0 0 0 0 1 0

M02 14b 0 0 0 0 0 0 0 1 0

M03 1 0 1 0 0 0 0 0 0 0

M03 2 0 1 0 0 0 0 0 0 0

M03 3 1 0 1 0 0 0 0 0 0

M03 4 0 1 0 0 0 0 0 0 0

M03 5 0 0 0 1 0 0 0 0 0

M03 6 1 0 0 1 0 0 0 0 0

M03 7 1 0 0 0 0 0 0 0 0

M03 8 1 0 0 1 0 0 0 0 0

M03 9 1 0 1 0 0 0 0 0 0

M03 10 1 0 0 0 0 0 0 0 0

M03 11 0 0 0 0 1 0 0 0 0

M03 12 1 0 0 0 0 1 0 0 0

M03 13 0 0 0 0 0 0 1 0 0

M03 14 0 0 0 0 0 0 0 1 0

M03 15 0 0 0 0 0 0 0 0 1

M03 16 0 1 0 0 0 0 0 0 0

M03 17 0 1 0 0 0 0 0 0 0

M05 1 0 1 0 0 0 0 0 0 0

M05 2 0 1 0 0 0 0 0 0 0

M05 3 0 1 0 0 0 0 0 0 0

M05 4 0 0 0 1 0 0 0 0 0

M05 5 0 0 0 1 0 0 0 0 0
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Table 14 (continued)

Block Item Attribute

1 2 3 4 5 6 7 8 9

M05 6 1 0 0 1 0 0 0 0 0

M05 7 0 0 0 0 1 0 0 0 0

M05 8 1 0 0 0 0 1 0 0 0

M05 9 0 0 0 0 0 0 1 0 0

M05 10 0 0 0 0 1 0 0 0 0

M05 11 0 0 0 0 0 0 1 0 0

M05 12 0 0 0 0 0 0 1 0 0

M05 13 0 1 0 0 0 0 0 0 0

M05 14 0 0 0 0 0 0 0 0 1

M06 1 0 1 0 0 0 0 0 0 0

M06 2 0 1 0 0 0 0 0 0 0

M06 3 1 0 0 0 0 0 0 1 0

M06 4 1 0 0 0 0 0 0 0 0

M06 5a 0 0 1 1 0 0 0 0 0

M06 5b 0 0 1 0 0 0 0 0 0

M06 5c 0 0 1 1 0 0 0 0 0

M06 6 1 0 0 1 0 0 0 0 0

M06 7 0 0 0 1 0 0 0 0 0

M06 8 0 0 0 0 0 1 0 0 0

M06 9 0 0 0 0 1 0 0 0 0

M06 10A 0 0 0 0 0 0 1 0 0

M06 10B 0 0 0 0 0 0 1 1 0

M06 11 0 0 0 0 0 0 0 0 1

M06 12a 0 0 0 0 0 0 0 1 0

M06 12b 0 0 0 0 0 0 0 1 0

M06 12c 0 0 0 0 0 0 0 1 0

M07 1 1 0 0 0 0 0 0 1 0

M07 2 0 1 0 0 0 0 0 0 0

M07 3 0 1 0 1 0 0 0 0 0

M07 4 0 0 0 1 0 0 0 0 0

M07 5 0 0 0 1 0 0 0 0 0

M07 6 0 0 0 0 1 0 1 0 0

M07 7 1 0 0 0 0 1 0 0 0

M07 8 0 0 0 0 1 0 1 0 0

M07 9 1 0 0 0 0 0 0 0 0

M07 10 0 0 0 0 1 0 0 0 0

M07 11 0 0 0 0 0 0 0 0 1

M07 12 0 0 0 1 0 0 0 0 0

M07 13a 0 0 0 0 0 0 0 1 0

M07 13b 0 0 0 0 0 0 0 1 0

M07 13c 0 0 0 0 0 0 0 1 0
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