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Abstract

The Teacher Education and Development Study in Mathematics (TEDS-M) of 2008
focused on how teachers are prepared to teach mathematics in primary and
lower-secondary schools in 17 countries. The main results were published in 2012,
and the associated public-use database provides a valuable source for secondary
analysis of the collected data. The data originate from complex samples and present a
hierarchical structure. With future teachers embedded in programs embedded in
institutions, various types of cluster effects can be observed. Complex methods,
including the use of sampling weights and replication methods for variance estimation,
are therefore required for data analysis. This paper focuses on the aspects that need to
be considered during any exploration of relationships between variables. Correlation
analysis may produce misleading results if attention is not paid to the structure under
which the data were collected. We illustrate our points with exemplary analysis of
TEDS-M data and propose some guidelines to address the issue.
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Introduction
The Teacher Education and Development Study in Mathematics (TEDS-M) 2008

was the first study of post-secondary education conducted by the International

Association for the Evaluation of Educational Achievement (IEA). Seventeen coun-

tries, reflecting a variety of teacher education systems around the globe, partici-

pated in the study, which focused on how teachers are prepared to teach

mathematics in primary and lower-secondary schools. Major study results were

published by Tatto et al. (2012). The public-use database, accessible free of charge

from <http://rms.iea-dpc.org/>, provides a valuable basis for secondary analysis of

the collected data.

TEDS-M relied on nationally representative samples. Because it targeted different

populations, the TEDS-M research team developed a multipurpose international
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sampling plan and adapted it to the specific circumstances of the participating

countries. One important feature of the sampling plan was that either complex

cluster samples or censuses of individuals, still belonging to clusters, were sur-

veyed. But what were these clusters? For the purposes of TEDS-M, clusters were

defined as “programs.” This concept plays a key role in the organization of teacher

preparation and was common to all participating countries. A program is a specific

pathway of teacher education that exists within an institution, requires students to

undertake a set of subjects and experiences, and leads to the award of a common

credential or credentials on completion (Tatto et al., 2008). During TEDS-M,

teacher preparation institutions, including all programs they were providing at the

time, were selected in a first step. In a second step, future teachers within these

programs were selected. The structure of the final datasets pertaining to future

teachers thus reflected a two-level hierarchy, with future teachers nested within

their respective programsa.

The TEDS-M design enables researchers to investigate important questions about

teacher-preparation practices and outcomes from the collected data, but it also poses a

challenge to analysts. The use of complex cluster samples and the cluster nature of the

data in this study have various implications for subsequent data analyses. Many other

large-scale assessments, such as IEA’s Trends in International Mathematics and Science

Study (TIMSS), IEA’s Progress in International Reading Literacy Study (PIRLS), and the

OECD’s Programme for International Student Assessment (PISA), allow for the use of

hierarchical linear modeling (HLM) as a powerful tool for disentangling effects at

various levels of hierarchical data. However, this analytic method cannot be

recommended for TEDS-M data because the preconditions for HLM in terms of sam-

ple and cluster sizes were not met in most (if not all) of the participating countriesb—a

point we will return to in the following sections. Our main aims in this paper are to

describe how to adequately address the hierarchical data structure of TEDS-M when

analyzing and interpreting results and to highlight the particular issues that need to be

considered, given the structure of the TEDS-M data, when performing correlation

analysis of this information.

Correlation analyses are appropriate for questions about associations among

variables. Many questions of this type can be answered using TEDS-M data, such

as those concerning associations between characteristics of teacher-preparation pro-

grams and the outcomes of those programs. These questions become particularly

interesting when the program outcomes are measured at the student (future

teacher) level. For example, what is the association between programs that focus

more or less on pedagogical practice and future teacher mathematics pedagogical

knowledge? We pose similar questions below to illustrate the ideas regarding

appropriate structuring of the data for correlational analyses with hierarchical data.

In addition, we recognize that most researchers are interested in more complex

questions, typically involving regression models that consider multiple explanatory

variables simultaneously. The issues regarding clustered data in correlation analyses

are presented here because of the simplicity of the correlational models and our

ability to illustrate the effects clearly. All of the concerns and issues raised in this

paper apply equally to regression-based analyses, which are correlational in

themselves.
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Correlation analysis and organizational research
The problems that may arise when performing correlation analysis in research

pertaining to individuals in groups have been frequently addressed. As early as

1950, Robinson (1950) demonstrated in a classic paper known to most sociologists

that the risk of misinterpretation is very large if one infers individual characteristics

from statistics based upon aggregated data, an effect known as the “ecological

fallacy.” Many authors have subsequently contributed to the topic (e.g., Galtung,

1967; Knapp, 1977) by further pointing out that inferences about the nature of

group-level relationships cannot be made from individual-level statistical data.

Cronbach (1976) argued strongly for carrying out both within-group and between-

group analyses rather than paying attention to the total group level, given that

correlation coefficients at that level are always confounded by between- and

within-group effects.

Later generations of researchers (among them, Klein & Kozlowski, 2000; Mossholder

& Bedeian, 1983; Van Mierlo et al. 2009) have explored the conditions under which the

composition of group-level constructs from individual-level survey data are possible.

As Mossholder and Bedeian (1983, p. 548) so aptly put it, “the use of aggregated

measures is neither good nor bad.” The two authors also emphasized the importance of

a sound rationale for interpreting individual measures as functional surrogates of

macro-constructs.

We can illustrate the source of potential misinterpretation of correlation coefficients

when analyzing large-scale assessment data by drawing on data collected from the

TIMSS 2007 Grade 8 sample of students. To gain an understanding of eighth-graders’

views about the utility of mathematics and their enjoyment of it as a school subject,

TIMSS created an index of positive attitudes toward mathematics (Mullis et al. 2008).

In Figure 1, we display the relationship between this index variable and the average

mathematics achievement in all participating TIMSS 2007 countries, using data aggre-

gated at the country level.

A clear positive relationship can be seen in the figure, confirmed by the largec

positive correlation coefficient of 0.7***d. However, on considering the coding of the
Figure 1 Example TIMSS 2007, Grade 8: Mathematics achievement scores and index on attitudes
towards mathematics aggregated at country level.
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index (low values represent highly positive attitudes toward mathematics, while high

values point to negative attitudes), one could infer that students who like mathematics

do not perform well in this subject and vice versa. This inference is actually incorrect

as can be seen if we look at the correlation coefficients calculated separately within

each country and using individual students’ data. In fact, the correlation coefficients are

negative in all participating countries, although the coefficients are often small (-0.2 on

average over all countries). Consequently, the TIMSS investigators pointed to a positive

association between personal attitudes toward mathematics and mathematics achieve-

ment (Mullis et al., 2008).

An earlier TIMSS report also refers to the reverse phenomenon (which we can see

on looking across the participating countries in Figure 1), wherein a demanding

mathematics curriculum may lead to high achievement but little enthusiasm for the

subject matter (Mullis et al., 2001). Of course, there are other considerations regarding

response styles, particularly those that are culture (country) specific, as pointed out by

a reviewer of this paper (see Buckley, 2009, for an example exploration of this issue in

the PISA program).

In order to expand our example, let us look more closely at the data for

Romania as an exemplary TIMSS 2007 country (i.e., with an average correlation

coefficient of -0.2***). If we consider the specific sampling design of TIMSS, we

observe that entire classrooms of Grade 8 students rather than individual students

were sampled (Joncas, 2008), a practice that we consider can influence the result

of our correlation analysis. The reason why we think this is that students who take

their mathematics courses together are exposed to the same teachers, teaching

methods, and environments. They may therefore share, based on this experience,

more similar attitudes on the subject, as well as more similar achievement levelse.

A correlation analysis conducted with individual-level data is hence actually a

mixture of pure individual-level and class-level effects—as far as such effects exist.

Therefore, we may gain information when disentangling the two effects.

Investigators interested in the correlation between the two variables at the individual

level (“within clusters” effects) while controlling for the group effect can perform

group-mean centering. This technique is frequently used in multilevel modeling (see,

for example, Kreft & De Leeuw, 1998; Raudenbush & Bryk, 2002). It involves

subtracting the respective group means from each individual value for the variables of

interest, which results in the group effect (classroom mean) being removed and the

individuals set onto the same scale, as shown in Figure 2 for the Romanian data. Calcu-

lating the correlation coefficient from the group-mean-centered data gives us the rela-

tionship between the two variables at the individual level with the group effect

removed, which is -0.3***.

For the analysis of the group-level effect (the “between-clusters” effect), we can use

data aggregated at the group level (classrooms), but this time utilizing the average

scores of students for attitudes toward mathematics and mathematics achievement as

group-level estimates. As is evident in Figure 3, no relationship between the two

variables can be observed at group level for Romania (correlation coefficient = 0.0).

We do not want to elaborate in detail why there is no such relationship at the group

level even though a relationship exists within groups: a variety of reasons could be

hypothesized. Rather, the example should illustrate our point that the effect size and



Figure 2 Example TIMSS 2007, Grade 8, Romania: Mathematics achievement scores and index on
attitudes towards mathematics, both variables group-mean centered.
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even the direction of relationships can differ depending on whether we look at specific

group levels (classes, countries) or at the individual level, thereby keeping or removing

the group-level effect. Our point holds true for any explored relationship.

We acknowledge, though, that it is not always necessary to disentangle the within-

and between-group-level effects. If, for example, the group-level effect is negligible,

simple individual-level analysis that ignores the group effect may suffice. Also, we

might very well be interested in the composite of both effects, in which case a separ-

ation is, of course, meaningless.
Relevance for correlation analysis with TEDS-M data

According to Kreft and De Leeuw (1998), Raudenbush and Bryk (2002) and Snijders

and Bosker (1999), multilevel modeling is the method of choice when dealing with

cross-level effects. The application of multilevel modeling, however, requires the data
Figure 3 Example TIMSS 2007, Grade 8, Romania: Mathematics achievement scores and index on
attitudes towards mathematics aggregated at class level.
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to fulfill certain preconditions. To name one, the numbers of units at the different hier-

archical levels must be large enough to achieve parameter estimates with acceptable

precision and accuracy. As a rule of thumb, numbers of 30 clusters and 20 individuals

per cluster are frequently contemplated as minimum sample sizes for this kind of

analysisf. These preconditions were not met in many of the countries that participated

in TEDS-M: only seven countries surveyed more than 30 programs for future primary

teachers and only six countries surveyed more than 30 programs for future lower-

secondary teachers. In addition, within these countries, many of the surveyed programs

contained fewer than 10 future teachers (Dumais & Meinck, in press, a). As a further

caveat, the cluster sizes (number of future teachers surveyed per program) varied

greatly. For example, the variation of future primary teachers tested per program in the

Russian Federation ranged from between 7 and 89 individuals in 49 surveyed programs.

In order to answer research questions that deal with correlations of TEDS-M

variables and that acknowledge the clustered data structure, we suggest a four-step

procedure:

1. Formulate a research question that addresses the multilevel data structure;

2. Check preconditions, familiarize yourself with the variables of interest;

3. Generate graphs and perform correlation analysis;

4. Interpret results.

In the following sections, we perform the proposed steps with two examples, both of

which involve use of TEDS-M data.

Future teachers participating in TEDS-M had to complete a questionnaire that fo-

cused on (1) general background information, (2) opportunities to learn, and (3) atti-

tudes and beliefs about the teaching profession. They also had to complete a

knowledge test from which two main outcome scores were derived: a mathematical

content knowledge score (MCK) and a mathematics pedagogy content knowledge score

(MPCK).

There is good reason to assume with regard to TEDS-M that an aggregation of indi-

vidual future teacher responses on certain variables will give a satisfactory approxima-

tion of a feature of their program. We can make this assumption because the future

teachers’ responses are representative of the responses from all future teachers in the

program.

This is certainly the case for variables that provide information about the oppor-

tunities to learn, because such opportunities are very often fixed for all future teachers

within a program. However, this assumption may not hold in countries such as Chinese

Taipei where programs consist of large proportions of elective courses. Also, the ave-

rage MCK or MPCK score may be seen as a good approximation for the average out-

come of a program. It is pertinent to note here the commonly held view that cognitive

scores vary predominantly at the individual level. However, they can also be affected by

clustering. For example, programs with outstanding mathematics educators may pro-

duce future teachers who, on average, have higher MCK scores than their peers in

other programs. Consider, also, the likelihood of institutes with a strong reputation for

quality education and facilities attracting high proportions of particularly good

students. In the absence of experimental design or longitudinal data, the causal
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components cannot be evaluated. The point that we are stressing here is that clustering

plays a role in understanding individual and program or institutional variation.

If we want to reveal whether there is a correlation between, for example, different

opportunities to learn and outcomes of teacher education using TEDS-M data, we need

to take all these considerations into account. We can conclude from the example in the

preceding section that a simple correlation analysis with data from individuals belong-

ing to groups always depicts a mixture of individual and group effects (as far as there

are any such effects). However, as discussed above, the questions may be more com-

plex, in terms of being beyond simple bivariate correlations and involving regression

analyses with multiple predictors. Our intention in presenting the correlational example

that follows is to clearly illustrate the relevant issues for analysis, which apply equally

to regression analysis, which is a correlational model.
Analysis Example 1: Relationship between opportunities to learn and content knowledge

outcome—between- and within-program effects

For the purposes of our example, assume that we are interested in determining whether

there is a relationship between the opportunities given to future primary teachers to

connect classroom learning to practice and their mathematics pedagogy content know-

ledge. The TEDS-M future teacher questionnaire asked for such opportunities to learn

(OTL) through eight different items that contributed to a Rasch score included in the

final dataset (Tatto et al., 2012). This Rasch score is called the OTL index “School

Experiences” in the TEDS-M dataset. As mentioned before, TEDS-M represented

mathematics pedagogy content knowledge by a score (MPCK) derived from a compre-

hensive achievement test. When conducting our analysis for this example, we used

future primary teacher data from the Russian Federation.

Step 1: Formulate a research question that addresses the multilevel data structure

The research question can be phrased as follows: “Is the opportunity to connect classroom

learning to practice related to the mathematics pedagogy content knowledge of future pri-

mary teachers? If there is a relationship, is it driven by individual or group level effects, or

both?” In the case of the Russian Federation, we consider there is no reason that would pre-

vent the use of individual data aggregates as approximations for program-level constructs.

Step 2: Check preconditions and familiarize yourself with the variables of interest

The OTL index School Experiences is a composite scale score, derived from the item

pool shown in Figure 4. The OTL index was measured at the level of future teachers,

indicating the possibility that School Experiences are not experienced similarly across

students within the same program. OTL might be conceived of as a program-level

variable, but as we found in TEDS-M, there is variability in the measurement of OTL

at the future-teacher level. Nevertheless, there is also a great deal of dependency or

consistency in future-teacher reports of OTL within programs. Ignoring this fact leads

to the issues under examination here.

The variable MPCK is a scale score with an international mean of 500 and a standard

deviation (SD) of 100. Both variables deviate somewhat from a normal distribution. As

a check regarding the sensitivity of correlations to nonnormality, Spearman’s rho was

also calculated; however, these coefficients were very close to Pearson correlations

(within 0.05), indicating the departure from normality was not distorting bivariate



Figure 4 Item pool used to derive opportunities to learn index “School Experiences”.
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associations. For most correlational models, including the general linear model, the

resulting statistics are fairly robust to violations of normality. More guidance on deter-

mining risky deviations from nonnormality can be found in Howell (2011).

Step 3: Generate graphs and perform correlation analysis

Figure 5 plots future teacher-level data for the two variables of interest against each

other. The plot does not distinguish between effects at the individual and at the pro-

gram level. The corresponding correlation analysis gives a coefficient of 0.1*, pointing

to a small positive correlation.

In a next step, we aggregated the future teacher data at the program level, using the

means as a program-level feature. The same relationship, now at program level, is

displayed in Figure 6. As we can see, a clearer positive relationship seems to exist. The
Figure 5 Future teacher-level data, scatterplot of variables MPCK and opportunities to learn index
“School Experiences”.



Figure 6 Program-level data (based on future teacher aggregates), scatterplot of variables MPCK
and opportunities to learn index “School Experiences”.
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correlation coefficient based upon the aggregated data is 0.3***, suggesting a moderate

positive relationshipg.

In a last step, we examined whether a relationship would also exist at the individual level

if we controlled for the program-level effect. In order to do that, we performed group-mean

centering, which resulted in the plot in Figure 7. The correlation coefficient of 0.0 (insig-

nificant) for the group-mean-centered data is in agreement with the plot; no connection

between the two variables can be observed once the group-level effect is removed.

Step 4: Interpret results

In the Russian Federation, the average MPCK of future primary teachers was higher in

programs that provided more opportunities to connect classroom learning to practice.

The effect was visible only at the program level; no relationship could be observed at

the individual level once the program-level effect had been removed. Although the data
Figure 7 Future teacher-level data, scatterplot of variables MPCK and opportunities to learn index
“School Experiences,” both variables group-mean centered.
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are cross-sectional and no causal conclusions can be drawn, the result suggests that, in

the Russian Federation, providing more opportunities to connect classroom learning to

practice will have a positive association on future primary teachers’ pedagogical content

knowledge and therefore presents a matter potentially warranting further consideration

when developing program curricula.

Analysis Example 2: Relationship between MCK and MPCK—between- and

within- program effects

We could argue that a future teacher with a good understanding of mathematics con-

cepts does not necessarily possess the pedagogical skills to communicate these concepts

to students. Therefore, a matter of interest is whether there is a connection between

mathematics and MPCK and, if so, how strong that connection is and whether the pro-

gram affiliation could influence this relationship. For the analysis relating to this ex-

ample, we again used future primary teacher data from the Russian Federation.

Step 1: Formulate a research question that addresses the multilevel data structure

The research question can be phrased as follows: “Is mathematics content knowledge associ-

ated with mathematics pedagogy content knowledge? If there is a relationship, is it driven

by individual or group level effects, or both?” Again, we used aggregated individual data as

approximations for average program-level outcomes concerning content knowledge scores.

Step 2: Check preconditions and familiarize yourself with the variables of interest

Similarly to the variable MPCK, the variable MCK is a scale score with an inter-

national mean of 500 and a SD of 100. Both scales depart somewhat from normal

distributions, a situation that signals the need to proceed with caution and evaluate

the results accordingly.

Step 3: Generate graphs and perform correlation analysis

The graph in Figure 8 suggests a clear positive relationship between the two content

knowledge domains, confirmed by the correlation analysis of the individual-level data
Figure 8 Future teacher-level data, scatterplot of variables MCK and MPCK.



Figure 9 Program-level data (based on future teacher aggregates), scatterplot of variables MCK
and MPCK.
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(r = 0.6***). In order to answer the group-level-related aspect of the research question,

we needed to separate program- and individual-level effects. Hence, we used aggregated

future teacher scores to approximate average program-level outcomes in terms of MCK

and MPCK. Figure 9 shows the relationship between the two variables when only the

program-level effect is considered. Computing the correlation coefficient for the aggre-

gated data confirmed the close relationship: r = 0.7***.

In a last step, we performed group-mean centering for the two variables in order to

focus on the effect at the individual level while controlling for the effect of the pro-

gram. As can be seen in Figure 10, a relationship still exists despite removal of the

program-level effect. The connection appears to be weaker, however (r = 0.3***).

Step 4: Interpret results

A large positive correlation between the content knowledge domains of mathematics

and mathematics pedagogy could be observed for the TEDS-M future primary teachers
Figure 10 Future teacher-level data, scatterplot of variables MCK and MPCK, both variables
group-mean centered.
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in the Russian Federation. This effect became considerably smaller at the individual

level, however, once we controlled for the program effect. Hence, program quality influ-

ences both knowledge domains in similar ways. Programs that produce future teachers

with high average MCK also tend to produce future teachers with higher levels of

MPCK. At the same time, and irrespective of the program to which belonged, the fu-

ture teachers tended to combine higher (or lower) levels of both content knowledge

domains.

Again, we cannot make causal inferences from the data. Further research may reveal

the mechanisms that stand behind these interesting findings. Our results could mean

that teachers with an indepth understanding of mathematics are also superior in trans-

ferring mathematics knowledge to (primary) students. TEDS-M has shown, however,

that in many countries the curricula of future primary mathematics teachers do not

focus on mathematics content much beyond that included in the school curriculum of

primary school students (Tatto et al., 2012). Countries might be willing to reconsider

this approach if a causal relation could be demonstrated.
Distortion of correlation coefficients due to structural features of the countries’ systems

of Teacher Education

Given the large variety of teacher education systems surveyed in TEDS-M, the main in-

vestigators of the TEDS-M study deemed simple country-by-country comparisons to be

insufficiently meaningful. The TEDS-M design therefore also included designated

program-groups that described the level of education to which a given program

intended to prepare teachers, including four program-groups at the primary level

(Lower Primary Grade 4 Maximum, Primary Grade 6 Maximum, Primary/Secondary

Grade 10 Maximum, Primary Mathematics Specialist) and two program-groups at the

secondary level (Lower Secondary, Lower/Upper Secondary)h. For example, Poland

provided generalist and specialist programs, thereby enabling graduates from both

groups to teach students regarded as “primary students”i. The next example shows how

this structural feature of Poland’s teacher education system might influence the results

of correlation analysis.
Analysis Example (3): Relationship between opportunities to learn and content

knowledge outcome—effect of program-groups

The question that informed this analysis was the extent to which the specific oppor-

tunities to learn (OTL) provided by programs in Poland related to the mathematics

content knowledge (MCK) of the country’s future primary teachers. We created data

aggregated at the program level, using future primary teachers’ mean MCK scores as

an approximation of the program outcome, and using future primary teachers’ means

of the OTL indexes that were related to MCKj as an approximation of the program

characteristic in terms of OTLs provided.

When computing the correlation coefficients among these variables at the program

level for Poland, we found strikingly high positive correlations between the OTL

indexes and the MCK scores (i.e., coefficients of between 0.5*** and 0.8***). However,

when we looked at the scatterplots, we identified clustering patterns. Figure 11 illus-

trates this example for the relation between the OTL indices “Tertiary Level Math—



Figure 11 Program-level data (based on future teacher aggregates), scatterplot of variables MCK
and opportunities to learn index “Tertiary Level Math—Discrete Structures & Logic”.
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Discrete Structures & Logic” and the MCK score. Indeed, when highlighting and

analyzing the data separately by program group (separating generalist and specialist

programs), we found the correlation coefficient dropped below 0.2 (insignificant) within

both groups (see the right-hand graph in Figure 11).

We can thus see that the specialist programs were providing more opportunities to

learn tertiary-level mathematics and were also producing graduates with higher MCK

scores. However, there seemed to be no or only a very weak relationship between the

considered OTL index and the knowledge domain: our exploration of this relation for

programs within the same program-group produced a correlation coefficient that was

insignificant and close to zero, although there was still considerable variation in OTLs

and knowledge outcomes between programs of the same group. We found similar

patterns when doing the same analysis for other OTL indexes. Therefore, a key ques-

tion for further analysis of Poland’s data might be: What other factors, then, explain

variation in MCK outcomes among programs of the same group?

Note that some of the TEDS-M countries provided, even within the designated

program-groups, different program-types. In such cases, and even if we were to analyze

data separately by program-group, the cluster effects of program-types might distort

the analysis results. For example, in Poland, we found bachelor’s and master’s programs

within the same program-group as shown in Table 1. Interestingly, a further separation

by program-types did not change the results, as can be seen in the lower left-hand

graph of Figure 11. There therefore seems to be only minimal differences between the

considered OTL index and the MCK scores comparing bachelor’s and master’s



Table 1 Program-groups and program-types offering education to future primary
teachers in Poland

Program-type Duration
(years)

Grade
span

Specialization Program-group

• Bachelor of Pedagogy Integrated
Teaching

3 1–3 Generalist Lower primary
(Grade 4 max.)

• Master of Arts Integrated Teaching 5 1–3 Generalist

• Bachelor of Arts in Mathematics 3 4–9 Specialist Primary mathematics
specialist

• Master of Arts in Mathematics 5 4–12 Specialist

Source: Exhibit 2.1 in Tatto et al. (2012).
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programs within the same program-group. This matter might be a topic worthy of fur-

ther research, but it is beyond the scope of this paper.

When countries are compared in terms of these associations, program-type must be

taken into account. Countries should not be compared directly: the comparison should be

only through similar program-typesk. Not all countries have all program-types in their

teacher preparation institutions. TEDS-M is an important comparative study, but the com-

plexity, both in terms of the data structures we have described here and the program struc-

tures introduced in this third example, requires paying additional care and attention

throughout analysis and interpretation. In that spirit, we offer additional cautions that must

be heeded in any correlational comparative analyses. These are briefly described next.
Cautions when undertaking correlational comparative analyses
Among other objectives, an international study usually aims for comparisons across

participating countries. The designated levels and groups of TEDS-M participants

(countries, program-groups, primary versus lower-secondary future teachers, educators,

etc.) invite comparative analyses focused on the key question of whether the relations

among key variables vary across specific groups of participants.

A common comparative approach is to estimate correlations for each subgroup of inter-

est, for example, for program-groups within a country (across institutions) or institutions

within a country, or program-groups across selected countries (and many other possible ar-

rangements). Inferences can then be made regarding differences in correlations. Significance

tests also exist concerning the difference between two correlations (Howell, 2011).

When contemplating the comparison of correlations for any purpose, there is a need

to offer additional cautions and take other considerations into account. At least three

functional characteristics of correlations must be addressed in order to support com-

parative inferences for correlations. These are score distribution shape, degree of linear-

ity, and range variation (Howell, 2011).

When testing the significance of a correlation, we need to ensure that the scores are

relatively normally distributed. Nonnormality does not affect the estimation of the

magnitude of the correlation. However, a more important requirement is that scores be

linearly related. Recall that the Pearson correlation estimates the magnitude of the linear

component of a bivariate association. If the variables are not linearly related, the Pearson

correlation will underestimate the strength of the association, assuming such an associ-

ation exists. Other correlations (e.g., Spearman) may better represent the magnitude of a

nonnormal association, as they are a function of rank order and not dependent on



Table 2 Descriptive statistics for lower-primary generalists in a sample country

Sample Measure Minimum Maximum Mean SD

Full MCK 208 750 457 66

MPCK 98 751 453 89

Restricted MCK 238 579 455 55

MPCK 98 751 451 89
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linearity. A quick method to examine the degree to which scores are linearly related in-

cludes examination of a scatterplot, much like those presented earlier in this paper.

Finally, if there is range variability among subgroups and if product-moment correla-

tions are estimated for each subgroup, correlations may differ because of the change in

variability across the subgroups. Correlations are based on the covariance between two

variables, which is a function of the variances of the two variables. When there is less

variance, and all else being equal, the covariance, and thus the correlation, is attenuated

or reduced. Another similar factor is the presence of measurement error, which simi-

larly attenuates correlations. Corrections exist for adjusting correlations due to range

restriction and measurement error (see, for example, Hunter & Schmidt, 2004; Sackett

& Yang, 2000). Such corrections help to justify comparative inferences.

As an illustration, consider the correlation between MCK and MPCK. Assume that for

one country within the Lower Primary Generalist programs, we find a correlation of 0.54

(Table 2 shows the means and standard deviations). We find, when using data from all the

participating countries, that the MCK SD = 66, whereas when we consider only the sam-

ple country, the MCK SD = 55 (a 30% reduction in variance). This reduction results in a

correlation between MCK and MPCK of 0.48 for the restricted sample. Note that we

constructed this example from the TEDS-M database by restricting the range on a single

country, so reducing the range of scores on MCK, which in original form ranged from

208 to 750, but in the restricted range included only the scores from 238 to 579.
Further methodological background: sampling weights and variance estimation
In this section, we look at one important aspect tied to the complex sampling design

applied in the TEDS-M study and not previously highlighted in this paper. The

TEDS-M sampling design actually has two particular implications for all types of data

analysis, that is, also for correlation analysis.

Firstly, varying selection probabilities of programs and individuals make the use of

sampling weights absolutely critical in order to achieve unbiased parameter estimates

(e.g., correlation coefficients)l. But the graphs in all preceding figures in this paper

display only the relationships observed in the sample. When making inferences about

the population, we have to use sampling weights. As a matter of fact, the data points in

the graphs may have different weights, or, in other words, they may contribute to the

analysis with different magnitudes. This is true for both individual and aggregated data.

Note, though, that we took the sampling weights into account for the computation of

the correlation coefficients presented throughout the whole paper.

The second aspect requiring careful consideration is the estimation of sampling

variance. Formulas for computing sampling errors applied in many standard statis-

tical software packages such as the base module of SPSS assume simple random
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sampling. Applying these formulas to TEDS-M data, which originate from cluster

samples, can lead, in many instances, to underestimation of the sampling error (and

consequently underestimated p-values). For the correct estimation of sampling

errors, TEDS-M employed Fay’s variant of balanced repeated replication (BRR) (Fay,

1989; Judkins, 1990; McCarthy, 1966). Statistical software packages that feature BRR

(e.g., the IDB Analyzerm or WesVarn) have to be used to obtain correct estimates

for sampling variances. We applied BRR in order to obtain the sampling errors and

the presented significance levels in the TEDS-M examples above.

The TEDS-M public-use database provides all files along with the correct estima-

tion weights for individual and aggregated data. Further, all files carry the necessary

variables for variance estimation, using balanced repeated replication. Brese and

Tatto (2012) explain in detail the correct use of the weight variables and the steps

needed to correctly estimate sampling variances when analyzing TEDS-M data.
Conclusions and final remarks

The examples given in this paper show that correlation coefficients calculated at

individual level (future teachers) differ in amount and meaning from those calcu-

lated at program level or computed separately for different program-groups. Due to

the possible differences between individual and group effects in magnitudes or even

direction, we need to take the clustered data structure into account when phrasing

research questions, analyzing the data, and interpreting the results. Sound hypo-

theses must drive the rationale for using individual data or aggregated future

teacher data as surrogates for program-level constructs in order to derive cor-

relation coefficients. If all of these aspects are suitably considered, the hierarchical

structure of the data can even improve the possibilities of extracting valuable infor-

mation from the data.

It is also important to consider the complex cluster sample design of TEDS-M

when carrying out statistical analyses of TEDS-M data. Sampling weights have to be

used to calculate population-based parameter estimates, and balanced repeated repli-

cation has to be applied to generate population-based variance estimates for any esti-

mated parameter. These requirements hold true whether the model is a bivariate

correlation, a regression model, or a general linear model.

With regard to the sample analyses given in this paper, many further questions arise

that might also be answered with TEDS-M data. For instance, would the findings hold

for the future secondary teacher population in the Russian Federation, or in other

participating countries? And what are the reasons for the program-level effects? Are

they perhaps associated with the intake of the program? Or are they connected to

certain selection criteria, or opportunities to learn given in the program? And so on.

Although we examined only the case of correlation analysis in this paper, subsequent

analysis may call for different methods—regression analysis, for example. Also, be

aware that even though this matter is not addressed in this paper, other types of

analysis may be influenced by the clustered data structure.

As is the case with all data analytic strategies, we need to remember to follow a

systematic approach to analysis. The distributional properties of the variables should be

understood and the assumptions of the intended statistics assessed. For correlations,
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the normality of the distribution of each variable as well as the extent to which the

variables are linearly related need to be evaluated.

Finally, when considering the use of correlations for comparative purposes, we need

to evaluate the summary statistics for each measure in conjunction with making

comparative statements about the magnitudes of correlations across multiple groups.

All else being equal, variation in subgroups will directly affect the magnitude of cor-

relations. It should be recalled that, in some cases, samples differ from group to group,

a situation which also influences correlations. Overall, we consider that the TEDS-M

international database provides a very valuable source for new findings in the field of

mathematics teacher education, offering scope for valid results, but only if the

attributes of the datasets are properly considered during analyses.
Endnotes
aTeacher preparation institutions and mathematics educators comprised further

target populations of TEDS-M but were not within the scope of this paper (see Brese &

Tatto, 2012).
bFor detailed descriptions of the participating countries’ sample designs, see Meinck

and Dumais (in press).
cUsing Cohen’s (1988) scale of magnitudes of correlations.
dIn the following, significance levels are indicated as given here: * p = 0.05, **

p = 0.01, *** p = 0.001.
eThis general particularity of cluster samples can be measured by the intraclass

correlation coefficient and calls for specific variance estimation methods. For more

information, see Joncas (2008).
fFor further reading, refer to Afshartous (1995), Bell et al. (2010); Maas and Hox

(2005), Meinck and Vandenplas (2012), Mok (1995), and Snijders (2005).
gNote that the correlation coefficients of raw and aggregated data cannot be directly

compared (see section “Cautions in Correlational Comparative Analyses”).
hFor more details, please refer to Chapter 2.2 of Tatto et al. (2012).
iTEDS-M considered students in ISCED Level 1 to be primary school students. ISCED

stands for International Standard Classification of Education. See for example, >http://

www.uis.unesco.org/Education/ISCEDMappings/Pages/default.aspx< for country map-

pings to ISCED levels.
jTEDS-M reported on six OTL indexes pertaining to school-level or tertiary-level

mathematics.
kThe program-types of all participating countries are described in Chapter 3.3 in

Tatto et al. (2012), and a matching of program-types to program-groups is given in

Exhibit 2.1 of the same source.
lLohr (1999) and Dumais and Meinck (in press, b) are recommended for further

reading on the topic.
mInternational Association for the Evaluation of Educational Achievement (IEA)

(2012).
nWestat Inc (2008).
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